Solution Concepts and Well-posedness of Hybrid Systems

Maurice Heemels

Department of Mechanical Engineering Eindhoven University of Technology Control Systems Technology group m.heemels@tue.nl

DISC Course on Modeling and Control of Hybrid Systems 2017

Solution concept

* * * * *

Description format / syntax / model

solutions / trajectories / executions/ semantics/ behavior

Well-posedness: given initial condition does there exist a solution and is it unique?

* * * * 3/52

Key issues:

- Dynamics and Funny Behaviour: Solution concepts
- Well-posedness: existence & uniqueness of solutions given initial condition
- Second hour: (Start with) Stability and stabilisation (control/observer design)

Outline lecture

- How does this work for continuous systems (differential equations)?
- How does this work for hybrid automata?
- What can happen?
- Zeno behaviour: infinite number of discrete events/actions in a finite length interval ...
- Various examples
- Switched systems/Discontinuous dynamical systems
- Sliding modes

1/52

2/52

Hybrid systems

Hybrid systems are combinations of

- discrete models such as finite state machines / automata
- continuous models such as differential equations

How does this work for continuous systems, i.e. differential eqs?

* * * * 4/52

Continuous systems: differential equations

Example
$$\dot{x} = f(t, x)$$
 $x(0) = x_0$.

A solution trajectory is a function $x:[0,T]\to\mathbb{R}^n$ that is continuous, differentiable and satisfies $x(0)=x_0$ and

$$\dot{x}(t) = f(t, x(t)) \text{ for all } t \in (0, T)$$

Well-posedness: given initial condition does there exists a solution and is it unique?

Question: Who can say something about this that makes sense???

5/52

Global well-posedness

Example $\dot{x} = x^2 + 1$, x(0) = 0. Solution: $x(t) = \tan t$. **Local** on $[0, \pi/2)$.

• Note that we have $\lim_{t \uparrow \pi/2} x(t) = \infty$. Finite escape time!

Theorem 2 (Global Lipschitz condition) Suppose f(t,x) is piecewise continuous in t and satisfies

$$||f(t,x) - f(t,y)|| \le L||x - y||$$

for all x, y in \mathbb{R}^n and for all $t \in [0, T]$. Then, a unique solution exists on [0, T] for any initial state x_0 at 0.

- Not necessary: $\dot{x} = -x^5$ not glob. Lipsch., but unique global solutions.
- As hybrid system = discrete system × continuous system, the above can happen, but even more awkward stuff (Zeno)

7/52

Well-posedness

Example
$$\dot{x} = 2\sqrt{|x|}, x(0) = 0$$
. Solutions: $x(t) = 0$ and $x(t) = t^2$.

Local existence and uniqueness of solutions given an initial condition:

Theorem 1 Let f(t,x) be piecewise continuous in t and satisfy the following Lipschitz condition: there exist an L > 0 and r > 0 such that

$$||f(t,x) - f(t,y)|| \le L||x - y||$$

and all x and y in a neighborhood $B:=\{x\in\mathbb{R}^n\mid \|x-x_0\|< r\}$ of x_0 and for all $t\in[0,T].$

 \leftarrow

There is a $\delta > 0$ s.t. a unique solution exists on $[0, \delta]$ starting in x_0 at time 0.

 \bullet what if f is continuously differentiable?

♣ ▲ ▶ ▼ 6/52

Hybrid automaton

Hybrid automaton H is collection $H = (Q, X, f, \mathsf{lnit}, \mathsf{lnv}, E, G, R)$ with

- $Q = \{q_1, \dots, q_N\}$ is finite set of discrete states or *modes*
- $X = \mathbb{R}^n$ is set of continuous states
- $f: Q \times X \to X$ is vector field
- Init $\subseteq Q \times X$ is set of initial states
- Inv : $Q \rightarrow P(X)$ describes the *invariants*
- $E \subseteq Q \times Q$ is set of edges or *transitions*
- $G: E \to P(X)$ is guard condition
- $R: E \to P(X \times X)$ is reset map

Formalization: Hybrid time trajectory

Definition 3 A hybrid time trajectory $\tau = \{I_i\}_{i=0}^N$ is a finite $(N < \infty)$ or infinite $(N = \infty)$ sequence of intervals of the real line, such that

- $I_i = [\tau_i, \tau_i']$ with $\tau_i \le \tau_i' = \tau_{i+1}$ for $0 \le i < N$;
- if $N < \infty$, either $I_N = [\tau_N, \tau_N']$ or $I_N = [\tau_N, \tau_N')$ with $\tau_N \le \tau_N' \le \infty$.
- For instance,

$$\tau = \{[0, 2], [2, 3], \{3\}, \{3\}, [3, 4.5], \{4.5\}, [4.5, 6]\}$$

$$\tau = \{[0, 2], [2, 3], [3, 4.5], \{4.5\}, [4.5, 6], [6, \infty)\}$$

$$I_0 = [0, \frac{1}{2}], I_1 = [\frac{1}{2}, \frac{3}{4}], I_2 = [\frac{3}{4}, \frac{7}{8}], \dots, I_i = [1 - 2^i, 1 - 2^{i+1}]$$

• $\lim \tau'_i = 1$ for latter case!

* * * * *

11/52

Evolution of hybrid automaton

- Initial hybrid state $(q_0, x_0) \in Init$
- Continuous state x evolves according to

$$\dot{x} = f(q_0, x)$$
 with $x(0) = x_0$

discrete state q remains constant: $q(t) = q_0$

- Continuous evolution can go on as long as $x \in lnv(q_0)$
- If at some point state x reaches guard $G(q_0, q_1)$, then
- transition $q_0 \rightarrow q_1$ is enabled
- discrete state may change to q_1 , continuous state then jumps from current value x^- to new value x^+ with $(x^-, x^+) \in R(q_0, q_1)$
- Next, continuous evolution resumes and whole process is repeated

*** * * * ***

10/52

Execution of hybrid automaton

Definition 4 An execution χ of a HA consists of $\chi = (\tau, q, x)$

- τ a hybrid time trajectory;
- $q = \{q_i\}_{i=0}^N$ with $q_i : I_i \to Q$; and
- $x = \{x_i\}_{i=0}^N \text{ with } x_i : I_i \to X$

Initial condition $(q(\tau_0), x(\tau_0)) \in Init;$

Continuous evolution for all i

- q_i is constant, i.e. $q_i(t) = q_i(\tau_i)$ for all $t \in I_i$;
- x_i is solution to $\dot{x}(t) = f(q_i(t), x(t))$ on I_i with initial condition $x_i(\tau_i)$ at τ_i ;
- for all $t \in [\tau_i, \tau_i')$ it holds that $x_i(t) \in Inv(q_i(t))$.

Discrete evolution for all i,

- $e = (q_i(\tau'_i), q_{i+1}(\tau_{i+1})) \in E$,
- $x(\tau_i') \in G(e)$;
- $\bullet \ (x_i(\tau_i'),x_{i+1}(\tau_{i+1})) \in R(e).$

*** * * * *** 12/52

Executions of hybrid automata: the thermostat example

This is an infinite execution as it can be defined for all times $t \in [0, \infty)$

* * * * *

13/52

* * * * *

14/52

Bouncing ball

• Assuming $x_1(0) = 0$, $x_2(0) > 0$, event times are related through

$$au_{i+1} = au_i + rac{2c^i x_2(0)}{g}$$

- Sequence has finite limit $\tau^* = \frac{2\nu_2(0)}{g-gc} < \infty$ (geometric series)
- Physical interpretation: ball is at rest within finite time span, but after infinitely many bounces \rightarrow Zeno behavior

right-accumulation point In this case: infinite number of state re-initializations, set of event times contains

* * * *

15/52

* * * * *

16/52

This is also called an infinite execution as it has an infinite number of transitions ...

Zeno behavior: infinitely many mode switches in finite length time interval

Executions of hybrid automata: the bouncing ball example

- Dynamics: $\ddot{x}_1 = -g$ subject to $x_1 \ge 0$ $(x_1(t))$: height)
- $x_2(t)$ is velocity
- Newton's restitution rule (0 < c < 1):

$$x_2(\tau+) = -cx_2(\tau-)$$
 when $x_1(\tau-) = 0, x_2(\tau-) \le 0$

Bouncing ball

Zeno of Elea and one of his paradoxes

Distance Travelled (m) by Achilles

Event times of A reaching previous T position

0.5 0.25 0.025 0.0625 0.03125 0.015625 0.0078125 0.00390625 0.001953125

1.5 1.75 1.875 1.9375 1.96875 1.984375 1.9921875 1.99609375 1.998046875

* * * * *

17/52

Well-posedness for hybrid automata

• $\mathcal{H}^{\infty}_{(q_0,x_0)}$: infinite executions: either defined on $[0,\infty)$ or infinite number of transi-

Formally: τ is an infinite sequence or if $\lim_{i\to N} \tau_i' = \sum_i (\tau_i' - \tau_i) = \infty$

• $\mathcal{H}_{(q_0,z_0)}^M$: maximal executions: solution cannot be continued any further (at end of Formally: τ is not a strict prefix of another one. the execution system in deadlock or it is an infinite execution).

• A hybrid automaton is called *non-blocking*, if $\mathscr{H}^{\infty}_{(q_0,x_0)}$ is non-empty for all $(q_0,x_0)\in\mathsf{Init}.$

• It is called *deterministic*, if $\mathcal{H}^{M}_{(q_0,x_0)}$ contains at most one element for all $(q_0,x_0) \in$

* * * *

19/52

Executions of hybrid automata: the M system

 $Q = \{q_1, q_2\}, X = \mathbb{R}, \text{Init} = \{(q_1, 0)\}\$

Mode q_1 :

- $\bullet \ \dot{x} = f(q_1, x) = 1$
- $\bullet \ \mathsf{Inv}(q_1) = \{x \in X \mid x \le 1\}$

Mode q_2 :

- $\dot{x} = f(q_2, x) = -1$
- $Inv(q_2) = \{x \in X \mid x \ge 0\}$

Transitions: $E = \{(q_1, q_2)\}\$ with Guard $G((q_1, q_2)) = \{x \in X \mid x \ge \frac{1}{2}\}\$

Reset relation $R(q_1, q_2) = \{(x, 0) \mid x \in X\}.$

System is not deterministic

of execution, the system is in deadlock No infinite solutions, but - as any HA - it does have so-called maximal ones at end

* * * * *

18/52

Well-posedness for hybrid automata - continued

Assumption

- ullet The vector field $f(q,\cdot)$ is globally Lipschitz continuous for all $q\in \mathcal{Q}$
- The edge e = (q, q') is contained in E if and only if $G(e) \neq \emptyset$ and $x \in G(e)$ if and only if there is an $x' \in X$ such that $(x, x') \in R(e)$.

and $(q(\tau'_N), x(\tau'_N)) = (\hat{q}, \hat{x}).$ A state $(\hat{q},\hat{x}) \in \text{Reach}$, if there exists a finite execution (τ,q,x) with $\tau = \{[\tau_i,\tau_i']\}_{i=0}^N$

*** * * * *** 20/52

SmoothContinuation and Out

• The set of states from which continuous evolution is possible:

 ${\tt SmoothContinuation} = \{(q_0, x_0) \in Q \times X \mid \exists \varepsilon > 0 \forall t \in [0, \varepsilon) \; x_{q_0, x_0}(t) \in \mathsf{Inv}(q_0) \}$

• The set of states from which continuous evolution is impossible:

$$\mathsf{Out} = \{(q_0, x_0) \in \mathcal{Q} \times X \mid \forall \varepsilon > 0 \exists t \in [0, \varepsilon) \ x_{q_0, x_0}(t) \not\in \mathsf{Inv}(q_0)\}$$

in which $x_{q_0,x_0}(\cdot)$ denotes the unique solution to $\dot{x}=f(q_0,x)$ with $x(0)=x_0$.

* * * * *

21/52

* * * * *

22/52

Examples with Zeno behavior

- Zeno behavior: infinitely many mode switches in finite time interval
- ullet Prevents that solutions are globally defined $[0,\infty)$ ("simulators get stuck")
- Examples
- 1. bouncing ball
- 2. two-tank system

★ ▲ ▶ ▼ 23/52

Well-posedness theorems

Theorem A hybrid automaton is non-blocking, if for all $(q, x) \in \text{Reach} \cap \text{Out}$, there exists $e = (q, q') \in E$ with $x \in G(e)$. In case the automaton is deterministic, this condition is also necessary.

Theorem A hybrid automaton is deterministic, if and only if for all $(q,x) \in \mathsf{Reach}$

- if $x \in G((q, q'))$ for some $(q, q') \in E$, then $(q, x) \in \mathsf{Out}$;
- $\bullet \text{ if } (q,q') \in E \text{ and } (q,q'') \in E \text{ with } q' \neq q'' \text{, then } x \not\in G((q,q')) \cap G((q,q'')); \text{ and }$
- if $(q,q') \in E$ and $x \in G((q,q'))$, then there is at most one $x' \in X$ with $(x,x') \in R((q,q'))$.

Bouncing ball

• Assuming $x_1(0) = 0$, $x_2(0) > 0$, event times are related through

$$au_{i+1} = au_i + rac{2c^i x_2(0)}{g}$$

- Sequence has finite limit $\tau^* = \frac{2\nu_2(0)}{g-gc} < \infty$ (geometric series)
- \bullet Physical interpretation: ball is at rest within finite time span, but after infinitely many bounces \to Zeno behavior

In this case: infinite number of state re-initializations, set of event times contains right-accumulation point

Non-blocking and deterministic HA, but no solutions on $[0, \infty)$

Two tank system

- Two tanks (x_i : volume of water in tank)
- Tanks are leaking at constant rate $v_i > 0$
- Water is added at constant rate w through hose, which at any point in time is dedicated to either one tank or the other
- Objective: keep water volumes above r_1 and r_2
- Controller that switches inflow to tank 1 whenever $x_1 \le r_1$ and to tank 2 whenever $x_2 \le r_2$

* * * * *

25/52

Description of two-tank system as hybrid automaton (cont.)

- Invariants: $lnv(q_1) = \{x \in \mathbb{R}^2 \mid x_2 \ge r_2\}$ $lnv(q_2) = \{x \in \mathbb{R}^2 \mid x_1 \ge r_1\}$
- Guards: $G(q_1, q_2) = \{x \in \mathbb{R}^2 \mid x_2 \le r_2\}$ $G(q_2, q_1) = \{x \in \mathbb{R}^2 \mid x_1 \le r_1\}$
- No resets:

$$R(q_1, q_2) = R(q_2, q_1) = \{(x^-, x^+) \mid x^-, x^+ \in \mathbb{R}^2 \text{ and } x^- = x^+\}$$

27/52

* * * *

Description of two-tank system as hybrid automaton

- Two modes: filling tank 1 (mode q_1) or tank 2 (mode q_2)
- Evolution of continuous state:

• $lnit = \{q_1, q_2\} \times \{(x_1, x_2) \mid x_1 \ge r_1 \text{ and } x_2 \ge r_2\}$

A ► ▼

26/52

Description of two-tank system as hybrid automaton (cont.)

A simulation

$$r_1 = r_2 = 1$$
, $v_1 = 2$, $v_2 = 3$, $w = 4$, $x_1(0) = x_2(0) = 2$, $q(0) = q_1$

* * * * *

29/52

Summary

- Smooth differential equations
- Lipschitz continuity sufficient for well-posedness
- absence Lipschitz: possibly non-uniqueness $\dot{x} = 2\sqrt{x}$
- absence global Lipschitz: possibly finite escape times and no global existence $\dot{x}=x^2+1$
- Hybrid automata:
- Non-blocking and deterministic can be checked via Out and Reach
- Complications due to Zeno: non-blocking HA might have no solutions on $[0,\infty)$
- Zenoness might also lead to erroneous conclusions ... tanks do not stay full ...

★▲▶▼ 31/52

Two-tank system and Zeno behavior

- Assume total outflow $v_1 + v_2 > w$
- Control objective cannot be met and tanks will empty in finite time
- \bullet Infinitely many switchings in finite time \to Zeno behavior

Be careful with your conclusions!

30/52

Dynamics of switched systems? Funny phenomena?

Switched systems

$$-\int \sigma(x)$$

 $\{f_1(x), f_2(x), \dots, f_N(x)\}$ family of smooth vector fields from \mathbb{R}^n to \mathbb{R}^n

Switching signal $\sigma:[0,\infty)\mapsto\{1,2,\ldots,N\}$ piecewise constant function of time

- Function of time t: $\sigma(t)$

• Function of state x(t): $\sigma(x)$ Piecewise smooth systems or Discontinuous dynamical systems

• Combinations: $\sigma(t, x)$

be discontinuous ... No resets, continuous state variable x evolves continuously, only its derivative may

Example: thermostat

* * * * *

33/52

* * * * *

34/52

Example 1: Piecewise linear system

$$\begin{cases} \dot{x}_1 = -2x_1 - 2x_2 \text{sgn}(x_1) \\ \dot{x}_2 = x_2 + 4x_1 \text{sgn}(x_1) \end{cases}$$

$$\dot{x} = \begin{cases} A_1 x & \text{, when } x_1 < 0 \\ A_2 x & \text{, when } x_1 > 0 \end{cases}$$

where
$$A_1 = \begin{pmatrix} -2 & 2 \\ -4 & 1 \end{pmatrix}$$
 and $A_2 = \begin{pmatrix} -2 & -2 \\ 4 & 1 \end{pmatrix}$.

* * * *

35/52

Discontinuous dynamical systems / Piecewise smooth systems

$$\dot{x} = f_{+}(x)$$

$$c_{+}$$

$$\phi(x)$$

State-dependent switching

Example 1: Piecewise linear system

* * * * 36/52

Sliding modes

 $f_+(x)$ points towards C_- and $f_-(x)$ points towards C_+ .

No classical solution

- ullet Relaxation: spatial (hysteresis) Δ , time delay au, smoothing arepsilon
- Chattering / infinitely fast switching (limit case $\Delta \downarrow 0$, $\varepsilon \downarrow 0$, and $\tau \downarrow 0$)

Filippov's convex definition: convex combination of both dynamics

$$\dot{x} = \lambda f_+(x) + (1 - \lambda)f_-(x)$$
 with $0 \le \lambda \le 1$

such that x moves ("slides") along $\phi(x) = 0$. "Third mode ..."

37/52

* * * * *

38/52

Differential inclusions

* * * * *

$$\dot{x} = \begin{cases} f_{+}(x), & \text{if } \phi(x) > 0\\ \lambda f_{+}(x) + (1 - \lambda) f_{-}(x), & \text{if } \phi(x) = 0, \ 0 \le \lambda \le 1\\ f_{-}(x), & \text{if } \phi(x) < 0, \end{cases}$$

Differential inclusion $\dot{x} \in F(x)$ with set-valued

$$\hat{f}(x) = \begin{cases} \{f_{+}(x)\}, & \phi(x) > 0 \\ \{\lambda f_{+}(x) + (1 - \lambda) f_{-}(x) \mid \lambda \in [0, 1]\}, & \phi(x) = 0 \\ \{f_{-}(x)\}, & \phi(x) < 0 \end{cases}$$

Definition 5 A function $x : [a,b] \mapsto \mathbb{R}^n$ is a *solution* of $\dot{x} \in F(x)$, if x is absolutely continuous and satisfies $\dot{x}(t) \in F(x(t))$ for almost all $t \in [a,b]$.

★ ▲ **L** ▼ **∀**

39/52

* * * *

40/52

Discontinuous differential equations: a class of switched systems

$$\dot{x} = f_{c}(x)$$

$$\dot{x} = f_{c}(x)$$

$$\dot{x} = f_{c}(x)$$

$$C$$

$$C$$

$$\dot{x} = \begin{cases} f_+(x) & \text{, if } x \in C_+ := \{x \in \mathbb{R}^n \mid \phi(x) > 0\} \\ f_-(x) & \text{, if } x \in C_- := \{x \in \mathbb{R}^n \mid \phi(x) < 0\} \end{cases}$$

- x in interior of C_- or C_+ : just follow!
- $f_{-}(x)$ and $f_{+}(x)$ point in same direction: just follow!
- $f_+(x)$ points towards C_+ and $f_-(x)$ points towards C_- : At least two trajectories
- $f_+(x)$ points towards C_- and $f_-(x)$ points towards C_+ : sliding mode! Filippov

Example 1: Piecewise linear

.

$$\begin{cases} \dot{x}_1 = -2x_1 - 2x_2 \text{sgn}(x_1) \\ \dot{x}_2 = x_2 + 4x_1 \text{sgn}(x_1) \end{cases}$$

Example 1: Piecewise linear system

Equivalent dynamics on sliding modes

Example: Piecewise linear system

$$\begin{cases} \dot{x}_1 = -2x_1 - 2x_2 \text{sgn}(x_1) \\ \dot{x}_2 = x_2 + 4x_1 \text{sgn}(x_1) \end{cases}$$

on
$$S_1^+ = \{x \mid x_1 = 0 \land x_2 \ge 0\}$$

Filippov solutions satisfy $\dot{x}(t) \in \alpha A_1 x(t) + (1-\alpha)A_2 x(t)$ for some $\alpha \in [0,1]$

The only solution is given by α =1/2, resulting in the unique sliding dynamics

If x(t) should stay on S_1^+ , we must have $\dot{x}_1(t)=0$, i.e.,

 $\alpha \cdot 2x_2 + (1 - \alpha) \cdot (-2x_2) = x_2(4\alpha - 2) = 0$

- Attractive and repulsive sliding mode
- Sliding modes might be non-unique

* * * * *

41/52

* * * * *

Vector fields

* * * *

43/52

* * * *

44/52

Example 2:

$$\begin{aligned}
 \dot{x}_1 &= -x_1 + x_2 - u \\
 \dot{x}_2 &= 2x_2(u^2 - u - 1) \\
 u &= \begin{cases}
 1, & \text{if } x_1 > 0 \\
 -1, & \text{if } x_1 < 0.
 \end{aligned}$$

Two "original" dynamics:

• C_+ the region $x_1 > 0$: $\dot{x} = f_+(x)$

$$\dot{x} = f_+(x)$$
 • C_- the region $x_1 < 0$ $\dot{x} = f_-(x)$

$$\dot{x}_1 = -x_1 + x_2 - 1
 \dot{x}_2 = -2x_2$$

$$\dot{x}_1 = -x_1 + x_2 + 1
 \dot{x}_2 = 2x_2$$

$$\begin{aligned}
x_1 &= -x_1 + x_2 \\
\dot{x}_2 &= 2x_2
\end{aligned}$$

Sliding modes?

Two "original" dynamics:

•
$$C_+$$
 the region $x_1 > 0$: $\dot{x} = f_+(x)$

•
$$C_-$$
 the region $x_1 < 0$: $\dot{x} = f_-(x)$
 $\dot{x}_1 = -x_1 + x_2 + 1$

•
$$n(x)^T f_+(x) = x_2 - 1 < 0 \longrightarrow x_2 < 1$$

•
$$n(x)^T f_-(x) = x_2 + 1 > 0 \longrightarrow x_2 > -1$$

• Sliding possible in
$$x_1 = 0$$
 and $x_2 \in [-1, 1]$.

45/52

* * * * *

Filippov's solution concept

Two "original" dynamics:

- C_+ the region $x_1 > 0$: $\dot{x} = f_+(x)$
- $\dot{x}_2 = 2x_2$ $\dot{x}_1 = -x_1 + x_2 + 1$

• C_- the region $x_1 < 0$: $\dot{x} = f_-(x)$

- $\dot{x}_1 = -x_1 + x_2 1$ $\dot{x}_2 = -2x_2$
- Filippov: Take convex combination of dynamics

$$\dot{x} = \lambda f_+(x) + (1 - \lambda) f_-(x)$$

such that state slides on
$$x_1 = 0$$
: Hence, $x_1 = \dot{x_1} = 0$.

- $\lambda(x_2-1)+(1-\lambda)(x_2+1)=0$ implies $\lambda=\frac{1}{2}(x_2+1)$
- Hence, $\dot{x_2} = \lambda(-2x_2) + (1-\lambda)(2x_2) = -2x_2^2$
- 0 is unstable equilibrium.

46/52

Solution trajectories: Filippov's case + hysteresis

* * * * * 48/52

A well-posedness result $\mathbf{x}' = \mathbf{f}_{\scriptscriptstyle{+}}(\mathbf{x})$ x' = f(x) $_{\downarrow}$ C $\phi(x)=0$

- f_- and f_+ are continuously differentiable (C^1)
- the discontinuity vector $h(x) := f_{+}(x) f_{-}(x)$ is C^{1}

If for each point x with $\phi(x) = 0$ at least one of the two condition holds:

- $f_+(x)$ points strictly towards $C_-(n(x)^T f_+(x) < 0$ where $n(x) = \frac{\nabla \phi(x)}{\|\nabla \phi(x)\|}$ is normal to switching surface at the point *x*)
- $f_{-}(x)$ points strictly towards $C_{+}(n(x)^{T}f_{-}(x) > 0)$

(for different points a different inequality may hold), then the Filippov solutions are

Local existence is always guaranteed under continuity of f_+ and f_- .

49/52

Summary

- Continuous differential equations
- Solution concept straightforward
- Continuity sufficient for local existence, not for uniqueness
- Local Lipschitz continuity sufficient for local well-posedness
- Global Lipschitz continuity sufficient for global well-posedness
- absence global Lipschitz finite escape times and no global existence
- Hybrid automata: non-blocking and deterministic
- Characterizations of well-posedness using Reach and Out!
- Conditions for hybrid automata: implicit!
- Be careful with conclusions due to Zeno!

***** • • • ***** 51/52

Summary discontinuous dynamical systems

- Discontinuous dynamical systems and piecewise smooth systems
- Dynamics: sliding modes
- Formalized this
- Filippov's convex definition (limit case / idealization of hysteresis, spatial de-
- (Local) existence of solutions guaranteed
- Well-posedness: directions of vector field at switching plane

* * * * * 50/52

Summary - continued

- Discontinuous differential equations
- Interpret idealized simple models such that they match underlying real plant (hysteresis).
- Filippov's convex definition
- Solution concept from differential inclusions
- Sliding motions
- Local existence of solutions always guaranteed
- For uniqueness conditions on directions of vector field at switching plane

* * * * * 52/52