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Solution concept

Description format / syntax / model

l

solutions / trajectories / executions/ semantics/ behavior

Temperatuurverioop
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= Ty (minuten)

Well-posedness: given initial condition does there exist a solution and is it unique?

Let’s start simple ...
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Key issues:

e Dynamics and Funny Behaviour: Solution concepts
e Well-posedness: existence & uniqueness of solutions given initial condition

e Second hour: (Start with) Stability and stabilisation (control/observer design)

Outline lecture

e How does this work for continuous systems (differential equations)?
e How does this work for hybrid automata?
e What can happen?

— Zeno behaviour: infinite number of discrete events/actions in a finite length
interval ...

e Various examples
e Switched systems/Discontinuous dynamical systems

- Sliding modes
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Hybrid systems
Hybrid systems are combinations of
e discrete models such as finite state machines / automata

e continuous models such as differential equations

How does this work for continuous systems, i.e. differential eqs?
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Continuous systems: differential equations

Example x = f(f,x)  x(0) = xp.

A solution trajectory is a function x : [0,7] — R" that is continuous, differentiable
and satisfies x(0) = xp and

x(t) = f(t,x(z)) forallz € (0,T)

Well-posedness: given initial condition does there exists a solution and is it unique?

Question: Who can say something about this that makes sense???
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Global well-posedness

Example i = x> 4 1, x(0) = 0. Solution: x() = tanz. Local on [0,7/2).

e Note that we have lim,;, x(t) = . Finite escape time!

Theorem 2 (Global Lipschitz condition) Suppose f(z,x) is piecewise continuous in
t and satisfies

[l (2,x) = f (&, 3)]| < Lllx—yll

for all x, y in R” and for all 7 € [0, T]. Then, a unique solution exists on [0, 7] for any
initial state xq at 0.

o Not necessary: x = —x°> not glob. Lipsch., but unique global solutions.

e As hybrid system = discrete system X continuous system, the above can happen,
but even more awkward stuff (Zeno)
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Well-posedness

Example i = 2,/]x|, x(0) = 0. Solutions: x(¢) = 0 and x(¢) = 2.
Local existence and uniqueness of solutions given an initial condition:

Theorem 1 Let f(z,x) be piecewise continuous in ¢ and satisfy the following Lips-
chitz condition: there exist an L > 0 and r > 0 such that

1F(t,0) = f (6 3) | < Llbx =y
and all x and y in a neighborhood B := {x € R" | ||x — x¢|| < r} of xp and for all
t€0,7].
I

There is a 8 > 0 s.t. a unique solution exists on [0, 8] starting in x at time 0.

e what if f is continuously differentiable?
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Hybrid automaton
Hybrid automaton H is collection H = (Q, X, f, Init,Inv, E, G, R) with
e O={qi,...,qn} is finite set of discrete states or modes
e X = R" is set of continuous states
e f: 0 xX — X is vector field
e Init C O x X is set of initial states
o Inv: Q — P(X) describes the invariants
e £ C O x Q is set of edges or transitions
e G:E — P(X) is guard condition
® R:E — P(X x X) is reset map
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(g0, 20) € Init
d0

& = f(qo. )
z € Inv(qo)

R(q0,q1)

a
&= f(q,x)
z € Inv(q)

Q?B,@v
G(g2,q1)

R(q1,
Rias, ) " (91,42)
@ = f(g2,7)

z € Inv(ga)
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Formalization: Hybrid time trajectory
Definition 3 A hybrid time trajectory T = ?.x,\n o 18 a finite (N < o) or infinite (N =
o0) sequence of intervals of the real line, such that

o ;= [1,7] with; <7/ =141 for 0 <i<N;

o if N < oo, either Iy = [Ty, Ty] or Iy = [Ty, Ty) With Ty < Ty < co.

e For instance,
7 ={[0,2],[2,3],{3},{3},[3,4.5],{4.5},[4.5,6]}

7 =1{[0,2],[2,3],[3,4.5],{4.5},[4.5,6],[6,00) }
1 13 37

h=05.h=1[7L= ﬁNuW

=12 12!
JN qu_. T bt ﬁ I Q

e lim 7/ = 1 for latter case!
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Evolution of hybrid automaton

e Initial hybrid state (go,xo) € Init

e Continuous state x evolves according to
X = f(qo,x) withx(0)=xg

discrete state ¢ remains constant: g(f) = qo
e Continuous evolution can go on as long as x € Inv(go)
o If at some point state x reaches guard G(qo,q1 ), then

— transition gg — ¢ is enabled
— discrete state may change to ¢, continuous state then jumps from current
value x~ to new value x™ with (x~,x%) € R(qo,q1)

e Next, continuous evolution resumes and whole process is repeated
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Execution of hybrid automaton
Definition 4 An execution y of a HA consists of x = (7,q,x)
e 7 a hybrid time trajectory;
o g={qi}¥, withg;: I; - Q; and
o x={x; “.<Hc withx;: [ =+ X
Initial condition (¢(7),x(7)) € Init;
Continuous evolution for all i
o g; is constant, i.e. ¢;(t) = ¢;(7;) for all t € I;
o x; is solution to x(¢) = f(g;(¢),x(r)) on I; with initial condition x;(7;) at 7;;
o forall 7 € [7,7) it holds that x;(r) € Inv(g;(r)).
Discrete evolution for all i,
e e = (qi(),qir1(Ti+1)) €E,
o x(1]) € G(e);
o (xi(%),xi41(Ti+1)) € R(e).
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Executions of hybrid automata: the thermostat example
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This is an infinite execution as it can be defined for all times ¢ € [0, )
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Bouncing ball

T =0Az2 <0 zp 1= —cxy

e Assuming x;(0) = 0, x2(0) > 0, event times are related through

2¢ixy(0)
8

Tit1 =T+

2%(0)

g—sc

e Physical interpretation: ball is at rest within finite time span, but after infinitely
many bounces — Zeno behavior

e Sequence has finite limit 7% = < oo (geometric series)

In this case: infinite number of state re-initializations, set of event times contains
right-accumulation point
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Executions of hybrid automata: the bouncing ball example

24 didone oo

( iy = —g )
// z > c\
e Dynamics: ¥} = —g subject tox; >0 (x1(¢): height)

® x,(t) is velocity

e Newton’s restitution rule (0 < ¢ < 1):

x(t+) = —cxp(t—)  whenx(1—) =0, x(t—) <0
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Bouncing ball

®

>

0 5 10
This is also called an infinite execution as it has an infinite number of transitions ...

Zeno behavior: infinitely many mode switches in finite length time interval
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Zeno of Elea and one of his paradoxes

Distance Travelled (m) by Achilles Event times of A reaching previous T position
1 1

0.5 1.5

0.25 1.75

0.125 1.875

0.0625 1.9375

0.03125 1.96875

0.015625 1.984375

0.0078125 1.9921875

0.00390625 1.99609375

0.001953125 1.998046875
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Well-posedness for hybrid automata

° ): infinite executions: either defined on [0, ) or infinite number of transi-

" (q0.%0
tions.
Formally: 7 is an infinite sequence or if lim;_,y T} = Y,(7/ — 7;) = oo
° wmﬁ x0) maximal executions: solution cannot be continued any further (at end of

the execution system in deadlock or it is an infinite execution).
Formally: 7 is not a strict prefix of another one!

=

e A hybrid automaton is called non-blocking, if %ﬁ ) is non-empty for all

. 40:X0
(qo,x0) € Init.
o It is called deterministic, if %mw\m %) contains at most one element for all (go,xo) €
Init. ‘
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Executions of hybrid automata: the M system

@ = AQTQNHJX =R, Init= AAQTOVW

Mode ¢;:
o= f(q1,x)=1
elnv(gq))={xeX|x<1}
Mode ¢»:

o &= f(g2,x) = —1
o Inv(q) ={xeX|x>0}

Transitions: E = {(q1,42)} with Guard G((¢q1,¢2)) ={x€X |x > wv
Reset relation R(g1,92) = {(x,0) | x € X}.

System is not deterministic

No infinite solutions, but - as any HA - it does have so-called maximal ones .... at end
of execution, the system is in deadlock
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Well-posedness for hybrid automata - continued
Assumption
e The vector field f(g, -) is globally Lipschitz continuous for all g € Q.

o The edge ¢ = (¢,4’) is contained in E if and only if G(e) # 0 and x € G(e) if and
only if there is an x’ € X such that (x,x") € R(e).

A state (§,£) € Reach, if there exists a finite execution (7,q,x) with T = {[7;, ]|},
and (q(ty),x(1y)) = (4, %).
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SmoothContinuation and Out

o The set of states from which continuous evolution is possible:

SmoothContinuation = {(go,x0) € Q x X | 3& > OV € [0,€) x4yx,(¢) € Inv(qo) }

o The set of states from which continuous evolution is impossible :

Out = {(g0,%0) € O x X | Ve > 03t € [0,€) xg.5,(t) & Inv(qo)}

in which x4 »,(-) denotes the unique solution to % = f(go,x) with x(0) = xo.
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Examples with Zeno behavior

e Zeno behavior : infinitely many mode switches in finite time
interval

e Prevents that solutions are globally defined [0,00) (“simulators get stuck”)
e Examples

1. bouncing ball
2. two-tank system
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Well-posedness theorems

Theorem A hybrid automaton is non-blocking, if for all (¢g,x) € Reachn Out, there
exists ¢ = (q,q') € E with x € G(e). In case the automaton is deterministic, this
condition is also necessary.
Theorem A hybrid automaton is deterministic, if and only if for all (¢,x) € Reach

e if x € G((¢,¢")) for some (q,4’) € E, then (g,x) € Out;

e if (q,4) € E and (q,q") € E with ¢’ # ¢", thenx € G((¢q,4")) N G((¢,q")); and

e if (q,¢') € E and x € G((q,¢')), then there is at most one x' € X with (x,x') €
R((9.9))-
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Bouncing ball

v =0Aw2 <0 rp 1= —cxy

i =2

)

e Assuming x;(0) = 0, x2(0) > 0, event times are related through

2¢ix,(0)
8

Tit1 =T+

2%(0)

g—sc

e Physical interpretation: ball is at rest within finite time span, but after infinitely
many bounces — Zeno behavior

e Sequence has finite limit 7% = < oo (geometric series)

In this case: infinite number of state re-initializations, set of event times contains
right-accumulation point

Non-blocking and deterministic HA, but no solutions on [0, )
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Two tank system

|

e Two tanks (x;: volume of water in tank)

vl

e Tanks are leaking at constant rate v; > 0

e Water is added at constant rate w through hose, which at any point in time is
dedicated to either one tank or the other

e Objective: keep water volumes above rj and r,

e Controller that switches inflow to tank 1 whenever x; < r| and to tank 2 whenever
X2 <1
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Description of two-tank system as hybrid automaton (cont.)

|

vl

o Invariants: Inv(q;) = {x € R? | xp > ry}
Inv(g2) = {x € R*| x1 > r1}

e Guards: G(q1,92) = {x € R* | x» <12}
G(qa,q1) = {x €R? | x; <1y}

e No resets:

R(q1,q2) = R(qa,q1) = {(x",x") | x ,xT € R? and x~ =x"}
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Description of two-tank system as hybrid automaton

e Two modes: filling tank 1 (mode g;) or tank 2 (mode g»)

e Evolution of continuous state:

X1=w—vi X1 =—v .
) in mode ¢q ) in mode ¢
Xo=—w Xo=w—m1

o Init={q1,q2} x {(x1,%2) | x; > ryand x, > r}
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Description of two-tank system as hybrid automaton (cont.)

xp=>riandx, >n xp =z rpandx; >
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A simulation

ri=rn=1Lvi=2,v=3w=4,x(0)=x(0)=2,9(0)=q

o
=}
[
2}
(8}
(%)
2
w

Time
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Summary

e Smooth differential equations
— Lipschitz continuity sufficient for well-posedness
— absence Lipschitz: possibly non-uniqueness x = 2,/x
— absence global Lipschitz: possibly finite escape times and no global existence
=241
e Hybrid automata:
— Non-blocking and deterministic can be checked via Out and Reach

— Complications due to Zeno: non-blocking HA might have no solutions on
[0,20)
— Zenoness might also lead to erroneous conclusions ... tanks do not stay full ...
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Two-tank system and Zeno behavior

x> and x> xyzrandx; >

e Assume total outflow vi +vy, > w
e Control objective cannot be met and tanks will empty in finite time
e Infinitely many switchings in finite time — Zeno behavior

Be careful with your conclusions!
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Dynamics of switched systems? Funny phenomena?
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Switched systems
X = fo(x)
{fi(x), /2(x),..., fn(x)} family of smooth vector fields from R" to R"

Switching signal o : [0,e0) — {1,2,...,N} piecewise constant function of time

e Function of time 7: o(r)

e Function of state x(¢): o(x)
Piecewise smooth systems or Discontinuous dynamical systems

e Combinations: o (¢,x)

No resets, continuous state variable x evolves continuously, only its derivative may
be discontinuous ...

Example: thermostat

33/52
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Example 1: Piecewise linear system

T1 —2x1 — M&nmmzﬁn\.uv
T2 = x2 + 4x159n(z1)

e e

Ax s when x; <0
Axx , whenx; >0

where A| = AHM wv and A, = AIAN IHNV
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Discontinuous dynamical systems / Piecewise smooth systems

C.

x = fi(x)

¢(x)=0

State-dependent switching
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Example 1: Piecewise linear system
PPy b V' LY
W N T\ N
I N T\ \
A by N 2 \
\,\.‘@,/z/, NN f\. X
WY W \ o \
2o, A N T ’ \
hy | N b ‘
! 1Y i T t y %
“W <A> 36/52




Sliding modes
f(x,)

f+(x) points towards C_ and f_(x) points towards C. .

No classical solution

e Relaxation: spatial (hysteresis) A, time delay 7, smoothing €
o Chattering / infinitely fast switching (limit case A | 0, £ | 0, and 7 | 0)

Filippov’s convex definition: convex combination of both dynamics

F=ALL(0)+(1—A)f-(x) With0< A < 1

such that x moves (“slides”) along ¢ (x) = 0. “Third mode ...
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Differential inclusions

fr(x), if ¢(x) >0
X={Afi(x)+(1=A)f_(x), ifo(x)=0,0<A<1
f-(x), if ¢(x) <0,

Differential inclusion X € F(x) with set-valued

(£}, 9(x) >0
F@) =3 {Af0)+ (- )f- () [ A€ 0,1}, ¢(x)=0
(-}, o(x) <0

Definition 5 A function x : [a,b] — R" is a solution of % € F(x), if x is absolutely
continuous and satisfies %(¢) € F(x(z)) for almost all 7 € [a, b].
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Discontinuous differential equations: a class of switched systems

C,

X = fi(x)

o(x)=0

frx) SifxeCyp:={xeR"|¢(x) >0}
fo(x) ,ifxeC_:={xeR"|¢(x) <0}

X=
e x in interior of C_ or C;: just follow!

e f_(x)and f (x) point in same direction: just follow!

o fi(x) points towards C and f_(x) points towards C_: At least two trajectories

o f1(x) points towards C_ and f_(x) points towards C.: sliding mode! Filippov
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Example 1: Piecewise linear

W
W
1 = —2x1 — M&wmmzﬁ.&.uv M g,
T2 = x2 + 4x159n(z1) A
|
“W <A> 40/52




Example 1: Piecewise linear system

Equivalent dynamics on sliding modes

Example: Piecewise linear system

ﬁﬂ.- ”Im.ﬁlwammmzAHHv
o = xp + 4x15gn(z1)

on 8f ={z|z1=0Az, >0}

Filippov solutions satisfyz(t) € aAjz(t) + (1 — a)Axz(t) for some « € [0,1]

SSNNN

~~F

If x(t) should stay on S;+, we must have @:(t) =0, i.e.,
a- 22+ (1 —a) (—2z2) =22(4a—2) =0

The only solution is given by a=1/2, resulting in the unique sliding dynamics

Example 2:

X1
X2

u

—X1+x2—u
20> —u—1)
1, ifx; >0
-1, ifx; <O.

Two “original” dynamics:

o C the region x; > 0:

X1
X2

—x1+x—1
\Nkm

x=fi(x)

e C_theregionx; <0 x=f_(x)

X1
X2

—x1+x+1
Nkw

1 =0, T2 = T2

e Attractive and repulsive sliding mode

e Sliding modes might be non-unique
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Vector fields: zoom
4
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Sliding modes?
Two “original” dynamics:

e C theregionx; >0: x=fi(x) e C_ the region x; < 0:
X1 = —x1+x—1 X1 = —x1+x+1

—2xp Xy = 2xp

X2

en(x)Tfi(x)=x—-1<0 — xm<l
on(X)Tf (X)=0+1>0 — x>-1

e Sliding possible in x; =0 and x; € [—1,1].

<« <4 A> >

Vector fields: Filippov’s case
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Filippov’s solution concept
Two “original” dynamics:

e C theregionx; >0: x=fi(x) e C_theregionx; <0: x=f_(x)

X = —x1+x-—1 X1 = —xi+x+l1

Xy = —2x X2 = 2x

e Filippov: Take convex combination of dynamics
F= AL+ (1= A)f- ()
such that state slides on x; = 0: Hence, x; = x; = 0.
e A(xp—1)+(1=A)(x241) =0 implies A = 3(xo+1)

e Hence, ¥, = A(—2x2) + (1 — 1)(2x2) = —2x3

o 0 is unstable equilibrium.
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Solution trajectories: Filippov’s case + hysteresis
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A well-posedness result
C

+

X' =1,(x)

0(x)=0

C

x'=f(x)

e f_and f, are continuously differentiable (C')

o ¢ is C?

e the discontinuity vector h(x) := £, (x) — f_(x) is C!
If for each point x with ¢ (x) = O at least one of the two condition holds:

e f(x) points strictly towards C_ (n(x)” £, (x) < O where n(x) = % is normal

to switching surface at the point x)

e f_(x) points strictly towards C; (n(x)7 f_(x) > 0)
(for different points a different inequality may hold), then the Filippov solutions are
unique.

Local existence is always guaranteed under continuity of f and f_.
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Summary

e Continuous differential equations

— Solution concept straightforward

— Continuity sufficient for local existence, not for uniqueness

— Local Lipschitz continuity sufficient for local well-posedness

— Global Lipschitz continuity sufficient for global well-posedness

— absence global Lipschitz finite escape times and no global existence

e Hybrid automata: non-blocking and deterministic
e Characterizations of well-posedness using Reach and Out!
e Conditions for hybrid automata: implicit!

e Be careful with conclusions due to Zeno!
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Summary discontinuous dynamical systems

e Discontinuous dynamical systems and piecewise smooth systems
e Dynamics: sliding modes
e Formalized this

— Filippov’s convex definition (limit case / idealization of hysteresis, spatial de-
lay)

e (Local) existence of solutions guaranteed.

e Well-posedness: directions of vector field at switching plane
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Summary - continued

e Discontinuous differential equations
— Interpret idealized simple models such that they match underlying real plant
(hysteresis).
— Filippov’s convex definition
— Solution concept from differential inclusions
— Sliding motions
— Local existence of solutions always guaranteed
— For uniqueness conditions on directions of vector field at switching plane
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