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Problem C ...

Problem A : Find conditions for which the switched system is UGAS for any switch-
ing signal.

Problem B : Show that the switched system is GAS for a given switching strategy
or a class of switching strategies.

Problem C : Construct a switching signal that makes the switched system GAS (i.e. a
stabilization problem).
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Outline of lecture 3

e Problem C: Construct a stabilizing switching sequence, a discrete control problem

— State-dependent switching
— Time-dependent switching

e Continuous (and discrete) control problems

e Summary
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State-based switching

Stabiliz. switched linear systems via suitable switching (Pr. C)
i=Ax, iel:={1,2,....N}

Find switching rule ¢ as function of time / state such that closed loop is asymptoti-
cally stable.

Quadratic stabilization via a single Lyapunov function

Select o(x) : R" — I:={1,2,...,N} s.t. closed loop has single quadratic Lyapunov
function x Px.

One solution: convex combination of A; is stable
A=Y oA (0>0, Yoy =1)is stable

Select Q > 0 and let P > 0 be solution of ATP+PA = —Q.
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Quadratic stabilization - continued

From x” (ATP+ PA)x = —xT Qx < 0 it follows that

Y ailx" (AT P+ PA)x] < 0.

1

e For each x there is at least one mode with x (A7 P+ PA;)x < 0 or stronger

Ufx 15" (AT P+ PA)x < —x"0x} = R”
il 2

e Switching rule:
i(x) := arg minx” (AT P+ PA;)x

e Leads possibly to sliding modes. Alternative?
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Stabilization via multiple Lyapunov functions (Problem C)
Main idea: Find Vi(x) = xT Pix that decreases for x = A;x in some region.
Define 2; := {x | xT[AT P+ PA;]x < 0}.

If 27U 2, =R, try to switch to satisfy multiple Lyapunov criterion to guarantee
asymptotic stability.

Find P, and P, such that they satisfy the coupled conditions:
aﬂCJx: +>_ﬂ3vx < 0 when xﬂQu_ —P)x>0,x#0

and
xﬂCcN\»N +>w$vx < 0 when kﬂﬁw —P)x>0,x#0.

Then o(t) = arg max{V;(x(¢)) | i = 1,2} stabilizing (Vs = continuous)

<« <A>» 7/39

Alternative switching rule for quadratic stabilization
e A modified switching rule (based on hysteresis switching logic):

x stay in mode i as long as x” (AT P+ PA;)x < —px Ox,
with0<p < 1.

* when bound reached, switch to a new mode j that satisfies

X" ?Jﬂ;c +PAj)x < —x" Ox.

o There is a lower bound on the duration in each mode!

Theorem 1 If there exists a quadratically stabilizing state-dependent switching law
for the switched linear system with N = 2, then the matrices A; and A, have a Hurwitz
convex combination.
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... S-procedure ...

S-procedure There exist 1, B > 0 such that

—PlA |>Nﬁ_ n_vm_ ANVN |ﬁ_v >0
—PyAy — AP+ Bo(PL—P2) >0

o(t) = argmin{V;(x(¢)) | i = 1,2} when you can find f;, B, <0

“ <A>» 8/39




— state-based switching previously ... now ..

Time-controlled switching / pulse width modulation
If dynamical system switches between several subsystems

— stability properties of total system may be quite different
from those of subsystems

T=0, x =X
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Example

e Consider 05 | 00
-05 1 -1 -1
Ar=1100 1] 4=
e A}, A, not Hurwitz, but matrix wg_ +A;) is Hurwitz
— switched system should be stable if frequency of switching is
sufficiently high

e Minimal switching frequency found by computing eigenvalues of the mapping
exp(5€Az)exp(3€A;) (Why?)
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Time-controlled switching

2
° xQo.Twmv = mxw@m}vé = xo.)'w}xo.fmﬂx&ko._!:
X(to+€) = (I+ 540+ S+ ) (I +EA + 54T+ )xo
= (I+€[3A1 + 142+ £ AT+ A3+ 24041 ] + - ).
® Compare with

exple(JA1 +142)] = T+ €[4 +145] + £ (AT + A3+ A1 A+ ArA ] +- -

— same for € ~ 0
® So for € — 0 solution of switched system tends to solution of

%= (JA1+1A2)x  (“averaged” system)

® Possible that A| and A, are Hurwitz, whereas matrix w> 1+ W\S is not Hurwitz, or vice versa.
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Example (cont.)

4 T T T T

modulus of eigenvalues
n

0 001 002 003 004 005
€

— maximal value of €: 0.04 (50H?z)
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Example (cont.)
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Conclusions
e Stability of switched systems
e Problem A: UGAS under arbitrary switching: common Lyapunov functions
e Problem B: Stability under particular switching strategies
— State-dependent switching (PWL): continuous PWQ Lyap. functions
— Time-dependent switching: minimal or average dwell time
— Systems with jumps: jump-flow or impulsive systems
e Problem C: Design of stabilizing switching signals:
— State-dependent and time-dependent switching design
e In case of switched linear systems LMIs a helpful tool!!

e Next: include continuous control inputs!
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Conclusions
o Stability of switched systems
e Problem A: UGAS under arbitrary switching: common Lyapunov functions
e Problem B: Stability under particular switching strategies
— State-dependent switching (PWL): continuous PWQ Lyap. functions
— Time-dependent switching: minimal or average dwell time
— Systems with jumps: jump-flow or impulsive systems
e Problem C: Design of stabilizing switching signals:
— State-dependent and time-dependent switching design

e In case of switched linear systems LMIs a helpful tool!!
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Only find switching sequence (discrete inputs)! What if also continuous inputs are
present?

Stabilization of switched linear systems with continuous inputs
Switched linear system with inputs:
X=Ax+Bu,iel= ﬁr...“\/\w

Now 0 : [0,00) — I and feedback controllers u = K;x are to determined.

Case 1: Determine K; such that closed loop UGAS under arbitrary switching (assum-
ing known mode)!

Case 2: Determine both ¢ : [0,00) — I and K;

Case 3: o given as function of state (PWL). Determine K;
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Case 1: Stabiliz. of switched linear system under arb. switching
RH\»T&:TWNSV iel= ﬁ_vu\/\w

Sufficient condition: find a common guadratic Lyapunov function V (x) = xT Px for
some positive definite matrix P and K7, ..., Ky.

(Ai+BiK;)"P+P(A;+BiK;) <Oforalli=1,...,Nand P >0
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Case 2: Design of switched feedback and switching sequence
X=Ax+Bu,icl={1,2}

Determine 0 : [0,00) > Tandu =Kix,i=1,...,N

Use previous conditions for finding switching sequence

i) Find K;, K and « € [0, 1] such that a(A; + B1K;) + (1 — &) (A2 + B2K») is stable,
ie.

[0t(A1 +B1K1) + (1 — &) (A + B2Ko)]" P+ Plat(A1 + B1 K1) + (1 — &) (A2 + B2K>)] < 0.
For fixed o previous transformation leads to LMIs!

ii) Find B; > 0, B > 0, Py and P, positive definite and gains K; and K; such that
—P ?: x_vw_w_v — Ak_ +w_Nﬁvﬂﬁ_ x_va ATM \NVC >0

\WNA\»N x_vaNﬂwv — T»N =+ wmwmvﬂﬁm =+ mmﬁu_ — Wmv > 0.
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(Ai+BiK;)TP+P(A;+BiK;) <Oforalli=1,....,N and P> 0
Pre- and postmultiplying by P~ !:

P Y (A;+BK)T + (Ai+BiK)P ' <Oforalli=1,....Nand P! >0

Linear Matrix Inequalities
ZAT +AZ+ Y/ Bl +BY; <Oforalli=1,...,N and Z > 0,

P l'=Zand K;P~!=:Y,. Hence, P=Z 'and K; = ¥,Z~ .

Hence, if LMISs feasible, then u = K;x leads to UGAS “cloop” under arbitrary switch-
ing knowing the mode as we use u = K;x when subsystem i is active!
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Case 3: Design of switched feedback
If switching structure has already been given

X =A;x+ Bju, when x € Z;,
N Zi=R"and Z;N Zj for i # jis a (lower-dimensional) boundary.

If u = Kix when x € Z; we obtain closed-loop dynamics

X = A\K.A_lwmw_.vk, when x € Z;

— V(x)=xTPx Z: C{x|Ex>0}
Find K7, ...,Ky, P > 0 and symmetric U; with nonnegative entries s.t.
(Ai+BK))"P+P(A;+BK))+EUE; <0,i=1,....N

e Extensions via continuous PWQ Lyapunov functions (BMIs!)
Also discrete-time results!!!
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Discrete-time case

Xyt = A+ B, i€l ={1,...,N}

Goal: construct switched state feedback u; = Kixy, i € I = {1,...,N} that stabilizes
the closed-loop systems under arbitrary switching (with known mode):

Xer1 = (Ai+BiKi)x, ieI={1,....N}

Sufficient: find a common quadratic Lyapunov function V(x) = x” Px for positive
definite P and K1, ...,Kn.

V(xkt1) —V(xx) <0, whenx; #0, ie.

(Ai+BiK)TP(A;+BiK;)—P <0,i=1,....Nand P> 0

The free variables K; and P appear not linearly?
What to do?
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Applying Schur complements to:
P— A\:ATWMNADN‘TA\:ATWNNSV >0,i=1,...,Nand P >0

w Elmmavﬂ
Ai+BK; P!

vvo;Hr:;z

—1
Em-m:a@ow::c_avqsoég\ Awo wv So_&:m

A p! P YA; +B:K;)T

Using the linearizing change of variables P~! =: Z and K;P~! =:Y; gives LMlIs:
AZ+BY, 7 VVO,NH_“:;Z

In discrete-time one does not need common quadratic Lyapunov function for GAS
under arbitrary switching (BZ)

A zZ  ZAT+Y!BT
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Use Schur complements

Schur Complement Forall X € S*,Y € R™X", Z € S™, the following statements are
equivalent:

) Z»-0, X-YTZ-Y - 0. ) Z-0, X-YTZ-lY -0
X YT X v?

b) - 0. b) Z > O, z0;
Y Z Y Z

Proof Assume Z > ©. The nonsingular matrix

L )
T =
-Z7Y 1
establishes the congruence transformation
| X Yyt X-YTZ-'Y o
T T= - ?XW @Y
Y Z (] Z
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Summary: Stabilization of switched systems with continuous inputs
X=Ax+Bu,icl={1,....N}

Now 0o : [0,00) — I and feedback controllers # = K;x are to determined.

x=(A+BK)x,iel={1,...,N}
Case 1: Determine K; such that closed loop stable under arbitrary switching.
(Ai+BiK;)TP+P(A;+BiK;) <Oforalli=1,....,N and P> 0
Case 2: Determine both o : [0,%) — I and K;
[o(A1+B1K)) + (1— QVA>N+mNNNv_Hw+wT«A>~ +B1K))+ (1 — o) (A2 + B2K3)] < 0.

or arg-max based approach.
Case 3: o given as function of state (PWL). Determine K;

(Ai+BiK)TP+P(A;+BK;)) + EIUE; <0,i=1,....N

Also discrete-time results!!!
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Summary

e Problem C: Construct a stabilizing switching sequence, a discrete control problem
— State-dependent switching
* Find convex combination that is Hurwitz: single LF

Transforming nonlinear MI into LMIs * Multiple LF approach, “max”-switching law

“Tricks:

— Time-dependent switching based on Hurwitz convex combination
e Continuous control problem
e Pre- and postmultiplying by suitable invertible matrices S” and S

— construct K; for all : common P via LMIs!
P> 0iff STPS >0

— construct K; and o use top 2 approaches (almost LMI for single LF)!
e Apply Schur complements

— construct K; given 6 (PWL): use conditions from stability analysis (BMIs)!
o Change of variables

e Combinations
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Problem statement
e Consider the system:
. Aix+Bu, ifH'x<0
X =
Ayx+Bu, ifH'x>0
y = Cx,
Observer design
L 11 1
Goal: Design an observer that gives the B
state estimate X, using only u,y as inputs -
<« <A>» 27/39
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Linear case

X

Ax+Bu x(0) =xg
y = Cx

Observer: copy of the system and output injection term

£ = AR+Bu+L(y—3) x(0)=%
9§ = Ct

Estimated state £ and observation error ¢ := x — X
ée=(A—LC)e
GAS (e(t) — 0 when ¢ — o), when A — LC Hurwitz or, equivalently

P>0and (A—LC)"P+ P(A—LC) < 0 has a solution

Note that this is equivalent to (A,C) being detectable (sufficient: observable)

Question: Is this a LMI? Why (not)?

Question: How can we influence the decrease rate of e?
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When mode is known...

X = N»O.SRITWQS:

y = Copyx o(t) € {1,2,...N} known but arbitrary
Observer X = >QSR>+MWQ3=+~LQ30\ \v&
y = QQS&

Observation error ¢ := x — X

¢ = (As() — Lo()Co(r))e

Find common Lyap. function V(e) = e’ Pe s.t. V <0

(Ai— LiC)TP+P(A; — LiC;}) <0Oand P> 0
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Switched linear systems with known mode ...
X = \»QSR;]WQSE
y = Copx o(t) € {1,2,...N} known but arbitrary

A A

Observer £ = Ag(f+Bou+Lo)(y—9)
y = QO.AQX)
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Often mode is unknown ...

 JAx+Bu, ifH'x<0
i=

Axx+Bu, ifH x>0
y=Cx,

® Proposed observer

. A1 +Bu+Li(y—9), if H'£ <0
" At +ButLo(y—9), if H' >0

y=C%

® observation error e = x — £

(A1 —LiC)e, H'x<0, H'x—HTe<0

o) (Ar—LiC)e—AAx, H'x>0, H'x—H"e<0
T ) (A2—LxC)e+AAx, H'x<0, H'x—HTe>0
(A2 —LxC)e, H'x>0, H'x—HTe >0,

where AA:=A| —A;

We have N? modes in error dynamics because of inclusion of mixed modes
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Stabilization of error dynamics
Use a Lyapunov function of the form

Vie)=elPe, P=P' >0
and demand V < —pel e, which yields

e e {(A|—LiC)"P+P(A| —LiC)+ pl}e <0,
when H'x <0,HT (x—¢) <0,

<0

. T;ﬂ ﬁ ENLNQ?M\,WAwﬁFQJrE ww\; T;

when H'x < 0,H” (x—e) >0,

Je "1 (A —LiO)TP+P(A —LiC)+ul —PA ][ e <o
X —AATP 0 x| —
when H'x > 0,H” (x—¢) <0,
e e’ {(Ay—LC)"P+P(Ay— LC) + ul}e <0
when H'x > 0,H" (x—¢) >0
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S-procedure

-

e 0 \wmmﬂ e
| x| | —3HHT HHT x) =0
should imply

(e 17 [ (Aa—LoC)T P+ P(As — LoC) + pl w?é T%

x| | AATP 0 x
Hence, it is sufficient to find A > 0

e 1" [ (A2—LC) P+ P(Ar—LoC) 4+l PAA][e] _, e "I' 0o —lHH" e
x AATP 0 =" x —1HHT  HHT x
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S-procedure: incorporating regional info

e by requiring

V < —uele everywhere

global exponential stability of e is achieved

o from H'x <0and HT (x —e) > 0 we have xTHHT (x —e) <0 or

x| | —sHH" HHT

] Lo i ][]

e from H'x >0 and HT (x —e) > 0 we have xTHHT (x —e) <0 or

el” 0 —IHHT | [ e >0
x| | —3HH" HH" ||x|~

e previous condition can be used to relax requirements on V using S-procedure:

x!'Sx >0= ' Tx
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S-procedure

F AT -

e 0 —LHHT e
S L L=
should imply

<0

e [ (A—LC)"P+PAy—L,C)+ul PAA ][ e
x AATP 0 x

Hence, it is sufficient to find A >0

x AATP 0

n.SN\EDJU+I>N\EQ+E§> _ ﬁ m g A»
x\
Theorem [Juloski, Heemels, Weiland, IRNC 2007] If there e
P = PT > 0 such that

ﬁ (A2 — LC)T'P+P(Ar — LyC) +ul  PAA+ALHHT _

AATP 4+ ASHHT —AHHT
(A —LiC)"P+P(A —L\C)+ul —PAM+ALHHT
—AATP+ALHH —AHHT

then the error dynamics is exponentially stable.

Question: what happened to the other (non-mixed)
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>0
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e]” 0 \wmmﬂ e
x —3HHT  HHT x

xist Ly, Ly and A > 0, 4 > 0 and

N
=]

IN
=]

modes?
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Main result

Theorem If there exist L1, L, and A >0, u > 0 and P = PT > 0 such that

(A2 — LC) P+ P(Ay — LC) +ul PAA+ALHHT <0
AATP 4+ ASHHT —~AHH" =

(A1 —LiC)"P+P(A; —LiC) +ul —PAMA+A;HHT | _ 0
—AATP+ALHH —AHHT =

then the error dynamics is exponentially stable.

e Only works for continuous PWL systems
H'x=0 = Ajx =Axx
which implies that Ay = A; + GH” and thus
i=A1x+Gmax(H" x,0) + Bu

e Absolute stability theory / Popov and circle criteria
e Exploiting continuity and common observer gain L = L, simpler LMIs
o Similar results for discrete-time systems [Juloski, Heemels, Weiland, IJRNC 2007]

e What can you do when system discontinuous (recover mode, make effect x on e small) [Heemels, Weiland,
Juloski, HSCC 2007]

e For systems with friction-like characteristics, see [Doris et al, CST 2008], [De Bruijn et al, Automatica,
2009], [Brogliato, Heemels, TAC09], etc.
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Summary

e Problem C: Construct a stabilizing switching sequence, a discrete control problem

— State-dependent switching
* Find convex combination that is Hurwitz: single LF
* Multiple LF approach, “max”-switching law
— Time-dependent switching based on Hurwitz convex combination

e Continuous control problem
— construct K; for all 6: common P via LMIs!
— construct K; and o use top 2 approaches (almost LMI for single LF)!
— construct K; given 6 (PWL): use conditions from stability analysis (BMIs)!
e Observer design
e No complete systematic controller design (except optimization-based, but own problems)

e Open research area ....

e ... also identification, observer design, etc.: see final chapter for further reading!
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Continuous PWA system and common gain

Awx+Bu, ifH'x<O0
Aox+Bu, ifH'x>0
y=Cx,

X=

e Proposed observer

AE+Bu+L(y—79), if H'£<0
At +Bu+L(y—3), if H'£>0
y=Csk

=

e Observation error e = x— X and AA :=A| — A»

(A1 —LC)e, H'x<0, H'x—HTe<0
(Ay—LC)e—AAx, H'x>0, H'x—HTe<0
(Ay—LC)e+AAx, H'x<0, H'x—H"e>0
(Ay—LC)e, H'x>0, H'x—H"¢ >0,

6=

Theorem [Pavlov et al, book 2005] Suppose there exist P > 0 and observer gain L such
that (A; — LC)TP+P(A;— LC) <0 i= 1,2, then the error dynamics is exponentially
stable

o discrete-time case: [Heemels et al, CDC 2008]
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