Modeling & Control of Hybrid Systems

Chapter 7 — Model Checking and
Timed Automata

Overview

1. Introduction

2. Transition systems
3. Bisimulation

4. Timed automata

hs _check.1

1. Introduction

e Model checking = process of automatically analyzing properties
of systems by exploring their state space

¢ Finite state systems — properties can be investigated by system-
atically exploring states
E.g., check whether particular set of states will be reached

e Not possible for hybrid systems since number of states is infinite

e However, for some hybrid systems one can find “equivalent” finite
state system by partitioning state space into finite number of sets
such that any two states in set exhibit similar behavior
— analyze hybrid system by working with sets of partition

e Generation and analysis of finite partition can be carried out by
computer

hs_check.2

2. Transition systems

e [ransition system T = (S, d,Sy,Sr) consists of

— set of states S (finite or infinite)
— transition relation 6 : S — P(S)
— set of initial states Sy C S

— set of final states S C S

e Trajectory of transition system is (in)finite sequence of states
{s;}¥, such that

— S0 € 3¢
— 811 € 0(s;) for all i

hs_check.3

Example of finite state transition system

e States: S={qo,...,qs};

e Transition relation: 6(qo) = {q0,91,92}, 6(q1) = {90,93,q4}, 6(q2) =
{490,95,96}, 8(q3) = 8(qs) = 8(gqs5) = 8(qes) = @

e Initial states: Sy = {qo}
e Final states: Sy = {¢3,9s} (indicated by double circles) hs_check.4

Transition system of hybrid automaton

e Hybrid automaton can be transformed into transition system by
abstracting away time

e Consider hybrid automaton H = (Q, X, Init, f,Inv, E,G,R) and
“final” set of states F C O x X

e Define
-S=0xX,ie. s=(g,x)
- So = Init
—Sp=F
— transition relation o consists of two parts:
x discrete transition relation 6, for each edge e = (¢,4') € E:
5,(3.%) = { {¢'} xR(e,x) ifg=gqandxe G(e)

7 % if G £ q or £ G(e)
hs_check.5

Transition system of hybrid automaton (cont.)

* continuous transition relation o:

6c(4,2) ={(§, %) | § =g and Tt > 0, x(#) = £'A
Vt € |0,%],x(t) € Inv(g)}

where x(-) is solution of

= f(g,x) with x(0) =%
+ Qverall transition relation is then
= Oc(s) U U 0. ()

eck

— transition from s to s’ is possible if either discrete transition e € E
of hybrid system brings s to s’, or s can flow continuously to s’
after some time

hs_check.6

Transition system of hybrid automaton (cont.)

e Time has been abstracted away:
we do not care how long it takes to get from s to s/, we only care
whether it is possible to get there eventually

— transition system captures sequence of events that hybrid system
may experience, but not timing of these events

hs_check.7

Reachability

e Transition system is reachable if there exists trajectory such that
s; € Sy for some i

e Predecessor operator Pre : P(S) — P(S) defined as
Pre(S) = {s € S |35 € S with § € §(s)}

— Pre gives set of states that can reach S in one transition

e Algorithm 1 (Backwards Reachability)
initialization: Wy, =Sr, i =0
repeat
if W,NSy # o
return “Sy reachable”
end if
Wit = Pre(W;)) UW,
i=1+1
until W, = w,_;
return “S not reachable” hs_check.8

Reachability (cont.)

e Problem: if new states get added to W; each time we go around
repeat-until loop — algorithm does not terminate

Example:
-T =(S,0,50,5F) with S =R, 0(x) =2x, So ={—1}, Sp = {1}
— Backwards Reachability algorithm produces
Wom {1VWi = {10} W= {12 (1)}
2 2 2
— algorithm will not terminate
e With finite state systems termination is not a problem

hs_check.9

Example of finite state transition system (cont.)

o Wo =1{93.96}, W1 =191,92,93, 96 } s W2 = {90, 91, 92,93, 96 }

o W2NSo={q0} # 2
— after 2 steps algorithm terminates with answer “Sr reachable”

hs check.10

3. Bisimulation

e Turn infinite state system into finite state system by grouping to-
gether states that have “similar” behavior — partition

e Fartitionis collection of sets of states {S;},c; with S; C Sand S; # &
such that

1. any two sets S; and S; in partition are disjoint
2. union of all sets in partition is entire state space, i.e., |J,.;Si=S

e Finite partition: if I is finite set

e Examples:
Partition: {QO},{CH,%};{%7%}7{%745}
No partitions: {91,93,94},192,95,96 }

{QO; q1,43, q4}7 {q()7 q2,4s, Q6}

hs check.11

Quotient transition system

e Given transition system T = (S, 9,50, Sr), and partition {S;}.c;
e Quotient transition system T = (S, 6,8,,Sr) is defined as

— 8§ ={S;}ic1, i.€., states are sets of partition

— 6 allows transition from set S; to S; if and only if § allows a
transition from some state s € S; to some state s’ € S;

— S; is in initial set of 7' if and only if some element s € S; is initial
state of original transition system

- S; is final set of 7 if and only if some element of s € S; is final
state of original transition system

o If partition is finite, then quotient transition system 7 is finite state
system — can be easily analyzed

hs check.12

Quotient transition system (cont.)

e Problem: for most partitions properties of quotient transition sys-
tem do not allow to draw any useful conclusions about properties
of original system

e However, special type of partition for which quotient system 7T is
“equivalent” to original transition system T': bisimulation

e A bisimulation of transition system T = (S,0,Sy,SF) is partition
{Si}iel such that
— Sp IS a union of elements of the partition
— Sr is a union of elements of the partition

—if one state s In some set §; of the partition can transition to
another set S; in the partition, then all other states § € §; must
be able to transition to some state in S

hs check.13

Example of bisimulation

® {90},191,92},193,96},194,95}
IS bisimulation:

@

- So = {q0} which is an element of the partition
- Sr ={q3,q96¢} Which is also an element of the partition
— Consider, e.g., set {q1,92}

From ¢; one can jump to {qo},{g3.96},{q4,95}
From g, one can jump to exactly these same sets
— third condition is satisfied for set {gq1,¢>}

+ also satisfied for other sets

¢ {q0},191,93,94},{92,95, 96} Not bisimulation (Sr;q1—qo but g3/4q0)
hs _check.14

Important property

If {S;}ic; is bisimulation of transition system T and 7T is quotient
transition system, then Sr is reachable by T if and only if Sg is
reachable by 7

e For finite state systems — computational efficiency
Study reachability in quotient system instead of original system
(quotient system usually much smaller than original)

e For infinite state systems:
Even if original transition system has infinite humber of states,
sometimes bisimulation consisting of finite number of sets
— answer reachability questions for infinite state system by
studying equivalent finite state system

e For timed automata we can always find finite bisimulation oo 15
S_ChecCkK.

Bisimulation algorithm
Algorithm 2 (Bisimulation)
initialization: &2 = {S,,Sr,S\ (SoUSF)}
while ElSi,Sj c & such that S;N Pre(Sj) 7é @ and S;N Pre(Sj) 7& S; do
Si — Si M PFE(SJ')
S = S;\ Pre(S))
P = (P\S;)U{S;, S/}
end while
return &

e Algorithm maintains partition &2 that gets refined progressively
so that it looks more and more like a bisimulation

e From definition of bisimulation we deduce that bisimulation must
at least allow us to “distinguish” initial and final states.
— start with partition containing 3 sets: Sy, Sr, and everything else
hs_check.16

Bisimulation algorithm (cont.)

Algorithm 3 (Bisimulation)
initialization: &7 = {S,,Sr,S\ (SoUSF)}

while 35;,S; € & such that S;NPre(S;) # @ and S;NPre(S;) # S; do
S; — S,‘ M Pre(Sj)
S? = S;\ Pre(S})
P =(Z\S8;)U{S;, S}

end while

return &/

e Assume we can find two sets §;,S; € &2 such that Pre(S;) contains
some elements of S; but not all of them

— some states s € §; may find themselves in S; after one transi-
tion while others do not

— not allowed if &2 is to be bisimulation
— replace S; by two sets: states in §; that can transition to S;
states in S; that cannot transition to §;
hs_check.17

Bisimulation algorithm (cont.)

e If bisimulation algorithm terminates, it will produce the coarsest
bisimulation of the transition system (i.e., bisimulation containing
smallest number of sets)

e For finite state systems bisimulation algorithm is easy to imple-
ment (by enumerating the states) and will always terminate

e Problem: it may be more work to find bisimulation than to inves-
tigate reachabillity of the original system

e For Infinite state systems: sometimes, algorithm may never ter-
minate (reason: not all infinite state transition systems have finite
bisimulations)

e But for timed automata: bisimulation algorithm terminates in finite

number of steps
hs_check.18

4. Timed automata

e Timed automata involve simple continuous dynamics:

— all differential equations of form x =1,

—all invariants, guards, etc. involve comparison of real-valued
states with constants (e.g., x=1,x <2, x>0, etc.)

e Timed automata are limited for modeling physical systems

e However, very well suited for encoding timing constraints such as

“event A must take place at least 2 seconds after event B and not
more than 5 seconds before event C”

e Applications: multimedia, Internet, audio protocol verification

hs check.19

4.1 Rectangular sets

e Subset of R” set is called rectangular if can be written as finite
boolean combination of constraints of form

xi<a, x;<b, x;=c, x;,=2d, x;>e
e Rectangular sets are “rectangles” or “boxes” in R” whose sides
are aligned with the axes, or unions of such rectangles/boxes
e Examples:
—{(x1,x) | (k1 Z0)A (] <K2))A (2 =2 1) A (2 <2)}
= {(x,x2) | (1 = 0) A (2 =0)) V ((x1 = 0) A (xz >0))}
—empty set (e.g., @ ={(x1,x) | (x1 > 1) A (x; <0))}
e However, set {(x1,x;) | x; = 2x,} is not rectangular

hs check.20

4.2 Timed automaton

e Timed automaton is hybrid automaton with following characteris-
tics:
— automaton involves differential equations of form x; = 1;

continuous variables governed by this differential equation are
called “clocks” or “timers”

— sets involved in definition of initial states, guards, and invari-
ants are rectangular sets

— reset maps involve either rectangular set, or may leave certain
states unchanged

hs check.21

4.3 Example of timed automaton

X1:X2:O

xX1:=3Axy:=0

hs check.22

Timed automata (cont.)

e For timed automaton of example: all constants are non-negative
integers
— can be generalized

e Given any timed automaton whose definition involves rational
and/or negative constants, we can define an equivalent timed
automaton whose definition involves only non-negative integers
Done by “scaling” and “shifting” (adding appropriate integer) some
of states

e [ransformation into transition systems
— transition system corresponding to timed automaton always
has finite bisimulation

e Standard bisimulation for timed automata is region graph

hs check.23

Region graph

hs check.24

Construction of region graph

e Assume w.l.0.g. that all constants are non-negative integers

e Let C; be largest constant with which x; is compared in initial sets,
guards, invariants and resets
In example: C; =5and C, =3

e If all we know about timed automaton is these bounds C;,
then x; could be compared with any integer M € {0,1...,C;} in
some guard, reset or initial condition set

e Hence, discrete transitions of timed automaton may be able to
“distinguish” states with x; < M from states with x; = M and from
states with x; > M (e.g., discrete transition may be possible from

state with x; < M but not from state with x; > M)
hs_check.25

Construction of region graph (cont.)

e Add sets to candidate bisimulation:

for x;:x; € (0,1),x1 € (1,2),x1 € (2,3),x1 € (3,4),x1 € (4,5),x1 € (5,00)
x1=0x1=1,x1=2,x1=3,x1=4,x, =95

for x, 1 x, € (O, 1),)62 c (1,2),)62 c (2,3),)62 c (3,00)
XQZO,)CQ: 1,)62:2,)6223

e Products of all sets:

(xeER*|x1 € (0,1)Ax € (0,1)} {xeR*|x€(0,1)Ax, =1}
(xeR*|x;=1Ax,€(0,1)} (xeR* |xi=1Ax =1}
(xeR*|x;€(1,2)Ax; € (3,)}, etc.

define all sets in R? that discrete dynamics can distinguish

— open squares, open horizontal and vertical line segments,
Integer points, and open, unbounded rectangles hs check 26

.

Construction of region graph (cont.)

e Since x; = x, = 1, continuous states
move diagonally up along 45° lines I SRR *

— by allowing time to flow timed automaton
may distinguish points below diagonal
of each square, points above diagonal,
and points on the diagonal

ET 1 2 M

e E.g., points above diagonal of square
{xeR*|x; € (0,1)Ax, € (0,1)}

will leave square through line {x € R* | x; € (0,1) Ax, = 1}
Points below diagonal leave square through line

(xeR*|x;=1Ax,€(0,1)}
Points on diagonal leave square through point (1,1) hs check 27

Construction of region graph (cont.) x,,

e Split each open square in three: .
two open triangles and 3
open diagonal line segment

2y

s is enough to generate bisimulation: |/ |
Theorem:

The region graph is finite bisimula-

tion of timed automaton

e Disadvantage: total number of regions in the region graph grows
very quickly (exponentially) as n increases

hs check.28

5. Summary

e Verification of hybrid systems — hard problem
e [ransition systems

e Bisimulation & reachabillity
— turn infinite state system into finite state system by grouping
together states that have “similar” behavior

e [imed automata — finite bisimulation

hs check.29

