
Modeling & Control of Hybrid Systems

Chapter 7 — Model Checking and
Timed Automata

Overview

1. Introduction

2. Transition systems

3. Bisimulation

4. Timed automata

hs check.1



1. Introduction

• Model checking = process of automatically analyzing properties

of systems by exploring their state space

• Finite state systems → properties can be investigated by system-

atically exploring states

E.g., check whether particular set of states will be reached

• Not possible for hybrid systems since number of states is infinite

• However, for some hybrid systems one can find “equivalent” finite

state system by partitioning state space into finite number of sets

such that any two states in set exhibit similar behavior

→ analyze hybrid system by working with sets of partition

• Generation and analysis of finite partition can be carried out by

computer

hs check.2



2. Transition systems

• Transition system T = (S,δ ,S0,SF) consists of

– set of states S (finite or infinite)

– transition relation δ : S → P(S)

– set of initial states S0 ⊆ S

– set of final states SF ⊆ S

• Trajectory of transition system is (in)finite sequence of states

{si}
N
i=0

such that

– s0 ∈ S0

– si+1 ∈ δ (si) for all i

hs check.3



Example of finite state transition system

q0

q1 q2

q3 q4 q5 q6

• States: S = {q0, . . . ,q6};

• Transition relation: δ (q0) = {q0,q1,q2}, δ (q1) = {q0,q3,q4}, δ (q2) =
{q0,q5,q6}, δ (q3) = δ (q4) = δ (q5) = δ (q6) =∅

• Initial states: S0 = {q0}

• Final states: SF = {q3,q6} (indicated by double circles) hs check.4



Transition system of hybrid automaton

• Hybrid automaton can be transformed into transition system by

abstracting away time

• Consider hybrid automaton H = (Q,X , Init, f , Inv,E,G,R) and

“final” set of states F ⊆ Q×X

• Define

– S = Q×X , i.e., s = (q,x)

– S0 = Init

– SF = F

– transition relation δ consists of two parts:

∗ discrete transition relation δe for each edge e = (q,q′) ∈ E:

δe(q̂, x̂) =

{

{q′}×R(e, x̂) if q̂ = q and x̂ ∈ G(e)
∅ if q̂ 6= q or x̂ 6∈ G(e)

hs check.5



Transition system of hybrid automaton (cont.)

∗ continuous transition relation δC:

δC(q̂, x̂) = {(q̂′
, x̂′) | q̂′ = q̂ and ∃tf > 0, x(tf) = x̂′∧

∀t ∈ [0, tf],x(t) ∈ Inv(q̂)}

where x(·) is solution of

ẋ = f (q̂,x) with x(0) = x̂

∗ Overall transition relation is then

δ (s) = δC(s)∪
⋃

e∈E

δe(s)

→ transition from s to s′ is possible if either discrete transition e ∈ E

of hybrid system brings s to s′, or s can flow continuously to s′

after some time

hs check.6



Transition system of hybrid automaton (cont.)

• Time has been abstracted away:

we do not care how long it takes to get from s to s′, we only care

whether it is possible to get there eventually

→ transition system captures sequence of events that hybrid system

may experience, but not timing of these events

hs check.7



Reachability

• Transition system is reachable if there exists trajectory such that

si ∈ SF for some i

• Predecessor operator Pre : P(S)→ P(S) defined as

Pre(Ŝ) = {s ∈ S | ∃ŝ ∈ Ŝ with ŝ ∈ δ (s)}

→ Pre gives set of states that can reach Ŝ in one transition

• Algorithm 1 (Backwards Reachability)

initialization: W0 = SF, i = 0

repeat

if Wi∩S0 6=∅

return “SF reachable”

end if

Wi+1 = Pre(Wi)∪Wi

i = i+1

until Wi =Wi−1

return “SF not reachable” hs check.8



Reachability (cont.)

• Problem: if new states get added to Wi each time we go around

repeat-until loop → algorithm does not terminate

Example:

– T = (S,δ ,S0,SF) with S = R, δ (x) = 2x, S0 = {−1}, SF = {1}

– Backwards Reachability algorithm produces

W0 = {1},W1 = {1,
1

2
}, . . . ,Wi = {1,

1

2
, . . . ,

(

1

2

)i

}, . . .

→ algorithm will not terminate

• With finite state systems termination is not a problem

hs check.9



Example of finite state transition system (cont.)

q0

q1 q2

q3 q4 q5 q6

•W0 = {q3,q6},W1 = {q1,q2,q3,q6},W2 = {q0,q1,q2,q3,q6}

•W2∩S0 = {q0} 6=∅

→ after 2 steps algorithm terminates with answer “SF reachable”

hs check.10



3. Bisimulation

• Turn infinite state system into finite state system by grouping to-

gether states that have “similar” behavior → partition

• Partition is collection of sets of states {Si}i∈I with Si ⊆ S and Si 6=∅

such that

1. any two sets Si and S j in partition are disjoint

2. union of all sets in partition is entire state space, i.e.,
⋃

i∈I Si = S

• Finite partition: if I is finite set

• Examples:

Partition: {q0},{q1,q2},{q3,q6},{q4,q5}

No partitions: {q1,q3,q4},{q2,q5,q6}

{q0,q1,q3,q4},{q0,q2,q5,q6}

hs check.11



Quotient transition system

• Given transition system T = (S,δ ,S0,SF), and partition {Si}i∈I

• Quotient transition system T̂ = (Ŝ, δ̂ , Ŝ0, ŜF) is defined as

– Ŝ = {Si}i∈I, i.e., states are sets of partition

– δ̂ allows transition from set Si to S j if and only if δ allows a

transition from some state s ∈ Si to some state s′ ∈ S j

– Si is in initial set of T̂ if and only if some element s ∈ Si is initial

state of original transition system

– Si is final set of T̂ if and only if some element of s ∈ Si is final

state of original transition system

• If partition is finite, then quotient transition system T̂ is finite state

system → can be easily analyzed

hs check.12



Quotient transition system (cont.)

• Problem: for most partitions properties of quotient transition sys-

tem do not allow to draw any useful conclusions about properties

of original system

• However, special type of partition for which quotient system T̂ is

“equivalent” to original transition system T : bisimulation

• A bisimulation of transition system T = (S,δ ,S0,SF) is partition

{Si}i∈I such that

– S0 is a union of elements of the partition

– SF is a union of elements of the partition

– if one state s in some set Si of the partition can transition to

another set S j in the partition, then all other states ŝ ∈ Si must

be able to transition to some state in S j

hs check.13



Example of bisimulation
q0

q1 q2

q3 q4 q5 q6

• {q0},{q1,q2},{q3,q6},{q4,q5}

is bisimulation:

– S0 = {q0} which is an element of the partition

– SF = {q3,q6} which is also an element of the partition

– Consider, e.g., set {q1,q2}

From q1 one can jump to {q0},{q3,q6},{q4,q5}

From q2 one can jump to exactly these same sets

→ third condition is satisfied for set {q1,q2}

+ also satisfied for other sets

• {q0},{q1,q3,q4},{q2,q5,q6} not bisimulation (SF;q1→q0 but q3 6→q0)
hs check.14



Important property

If {Si}i∈I is bisimulation of transition system T and T̂ is quotient

transition system, then SF is reachable by T if and only if ŜF is

reachable by T̂

• For finite state systems → computational efficiency

Study reachability in quotient system instead of original system

(quotient system usually much smaller than original)

• For infinite state systems:

Even if original transition system has infinite number of states,

sometimes bisimulation consisting of finite number of sets

→ answer reachability questions for infinite state system by

studying equivalent finite state system

• For timed automata we can always find finite bisimulation
hs check.15



Bisimulation algorithm

Algorithm 2 (Bisimulation)
initialization: P = {S0,SF,S\ (S0∪SF)}
while ∃Si,S j ∈ P such that Si∩Pre(S j) 6=∅ and Si∩Pre(S j) 6= Si do

S′
i = Si∩Pre(S j)

S′′
i = Si \Pre(S j)

P = (P \Si)∪{S′
i,S

′′
i }

end while

return P

• Algorithm maintains partition P that gets refined progressively

so that it looks more and more like a bisimulation

• From definition of bisimulation we deduce that bisimulation must

at least allow us to “distinguish” initial and final states.

→ start with partition containing 3 sets: S0, SF, and everything else
hs check.16



Bisimulation algorithm (cont.)
Algorithm 3 (Bisimulation)

initialization: P = {S0,SF,S\ (S0∪SF)}
while ∃Si,S j ∈ P such that Si∩Pre(S j) 6=∅ and Si∩Pre(S j) 6= Si do

S′
i = Si∩Pre(S j)

S′′
i = Si \Pre(S j)

P = (P \Si)∪{S′
i,S

′′
i }

end while

return P

• Assume we can find two sets Si,S j ∈P such that Pre(S j) contains

some elements of Si but not all of them

→ some states s ∈ Si may find themselves in S j after one transi-

tion while others do not

→ not allowed if P is to be bisimulation

→ replace Si by two sets: states in Si that can transition to S j

states in Si that cannot transition to S j

hs check.17



Bisimulation algorithm (cont.)

• If bisimulation algorithm terminates, it will produce the coarsest

bisimulation of the transition system (i.e., bisimulation containing

smallest number of sets)

• For finite state systems bisimulation algorithm is easy to imple-

ment (by enumerating the states) and will always terminate

• Problem: it may be more work to find bisimulation than to inves-

tigate reachability of the original system

• For infinite state systems: sometimes, algorithm may never ter-

minate (reason: not all infinite state transition systems have finite

bisimulations)

• But for timed automata: bisimulation algorithm terminates in finite

number of steps
hs check.18



4. Timed automata

• Timed automata involve simple continuous dynamics:

– all differential equations of form ẋ = 1,

– all invariants, guards, etc. involve comparison of real-valued

states with constants (e.g., x = 1, x < 2, x > 0, etc.)

• Timed automata are limited for modeling physical systems

• However, very well suited for encoding timing constraints such as

“event A must take place at least 2 seconds after event B and not

more than 5 seconds before event C”

• Applications: multimedia, Internet, audio protocol verification

hs check.19



4.1 Rectangular sets

• Subset of Rn set is called rectangular if can be written as finite

boolean combination of constraints of form

xi 6 a, xi < b, xi = c, xi > d, xi > e

• Rectangular sets are “rectangles” or “boxes” in R
n whose sides

are aligned with the axes, or unions of such rectangles/boxes

• Examples:

– {(x1,x2) | (x1 > 0)∧ (x1 6 2)∧ (x2 > 1)∧ (x2 6 2)}

– {(x1,x2) | ((x1 > 0)∧ (x2 = 0))∨ ((x1 = 0)∧ (x2 > 0))}

– empty set (e.g., ∅= {(x1,x2) | (x1 > 1)∧ (x1 6 0))}

• However, set {(x1,x2) | x1 = 2x2} is not rectangular

hs check.20



4.2 Timed automaton

• Timed automaton is hybrid automaton with following characteris-

tics:

– automaton involves differential equations of form ẋi = 1;

continuous variables governed by this differential equation are

called “clocks” or “timers”

– sets involved in definition of initial states, guards, and invari-

ants are rectangular sets

– reset maps involve either rectangular set, or may leave certain

states unchanged

hs check.21



4.3 Example of timed automaton

q1

ẋ1 = 1

ẋ2 = 1

x2 6 3

q2

ẋ1 = 1

ẋ2 = 1

x1 6 5

x2 > 2

x1 > 4

x1 := 3∧ x2 := 0

x1 := 0

x1 = x2 = 0

hs check.22



Timed automata (cont.)

• For timed automaton of example: all constants are non-negative

integers

→ can be generalized

• Given any timed automaton whose definition involves rational

and/or negative constants, we can define an equivalent timed

automaton whose definition involves only non-negative integers

Done by “scaling” and “shifting” (adding appropriate integer) some

of states

• Transformation into transition systems

→ transition system corresponding to timed automaton always

has finite bisimulation

• Standard bisimulation for timed automata is region graph

hs check.23



Region graph

q1

ẋ1 = 1

ẋ2 = 1

x2 6 3

q2

ẋ1 = 1

ẋ2 = 1

x1 6 5

x2 > 2

x1 > 4

x1 := 3∧ x2 := 0

x1 := 0

x1 = x2 = 0 x1

x2

0

1

1

2

2

3

3 4 5

hs check.24



Construction of region graph
ẋ1 = 1

ẋ2 = 1

x2 6 3

ẋ1 = 1

ẋ2 = 1

x1 6 5

x2 > 2

x1 > 4

x1 := 3∧ x2 := 0

x1 := 0

x1 = x2 = 0

• Assume w.l.o.g. that all constants are non-negative integers

• Let Ci be largest constant with which xi is compared in initial sets,

guards, invariants and resets

In example: C1 = 5 and C2 = 3

• If all we know about timed automaton is these bounds Ci,

then xi could be compared with any integer M ∈ {0,1 . . . ,Ci} in

some guard, reset or initial condition set

• Hence, discrete transitions of timed automaton may be able to

“distinguish” states with xi < M from states with xi = M and from

states with xi > M (e.g., discrete transition may be possible from

state with xi < M but not from state with xi > M)
hs check.25



Construction of region graph (cont.)
ẋ1 = 1

ẋ2 = 1

x2 6 3

ẋ1 = 1

ẋ2 = 1

x1 6 5

x2 > 2

x1 > 4

x1 := 3∧ x2 := 0

x1 := 0

x1 = x2 = 0

• Add sets to candidate bisimulation:

for x1 : x1 ∈ (0,1),x1 ∈ (1,2),x1 ∈ (2,3),x1 ∈ (3,4),x1 ∈ (4,5),x1 ∈ (5,∞)

x1 = 0,x1 = 1,x1 = 2,x1 = 3,x1 = 4,x1 = 5

for x2 : x2 ∈ (0,1),x2 ∈ (1,2),x2 ∈ (2,3),x2 ∈ (3,∞)

x2 = 0,x2 = 1,x2 = 2,x2 = 3

• Products of all sets:

{x ∈ R
2 | x1 ∈ (0,1)∧ x2 ∈ (0,1)} {x ∈ R

2 | x1 ∈ (0,1)∧ x2 = 1}

{x ∈ R
2 | x1 = 1∧ x2 ∈ (0,1)} {x ∈ R

2 | x1 = 1∧ x2 = 1}

{x ∈ R
2 | x1 ∈ (1,2)∧ x2 ∈ (3,∞)}, etc.

define all sets in R
2 that discrete dynamics can distinguish

→ open squares, open horizontal and vertical line segments,

integer points, and open, unbounded rectangles hs check.26



Construction of region graph (cont.)

x1

x2

0 1

1

2

2

• Since ẋ1 = ẋ2 = 1, continuous states

move diagonally up along 45
◦ lines

→ by allowing time to flow timed automaton

may distinguish points below diagonal

of each square, points above diagonal,

and points on the diagonal

• E.g., points above diagonal of square

{x ∈ R
2 | x1 ∈ (0,1)∧ x2 ∈ (0,1)}

will leave square through line {x ∈ R
2 | x1 ∈ (0,1)∧ x2 = 1}

Points below diagonal leave square through line

{x ∈ R
2 | x1 = 1∧ x2 ∈ (0,1)}

Points on diagonal leave square through point (1,1) hs check.27



Construction of region graph (cont.)

x1

x2

0

1

1

2

2

3

3 4 5

• Split each open square in three:

two open triangles and

open diagonal line segment

→ is enough to generate bisimulation:

Theorem:

The region graph is finite bisimula-

tion of timed automaton

• Disadvantage: total number of regions in the region graph grows

very quickly (exponentially) as n increases

hs check.28



5. Summary

• Verification of hybrid systems → hard problem

• Transition systems

• Bisimulation & reachability

→ turn infinite state system into finite state system by grouping

together states that have “similar” behavior

• Timed automata → finite bisimulation

hs check.29


