Modeling & Control of Hybrid Systems

Chapter 7 — Model Checking and Timed Automata

Overview

- 1. Introduction
- 2. Transition systems
- 3. Bisimulation
- 4. Timed automata

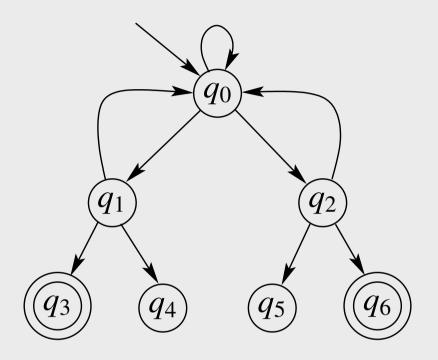
1. Introduction

- Model checking = process of automatically analyzing properties of systems by exploring their state space
- Finite state systems → properties can be investigated by systematically exploring states
 E.g., check whether particular set of states will be reached
- Not possible for hybrid systems since number of states is infinite
- However, for some hybrid systems one can find "equivalent" finite state system by partitioning state space into finite number of sets such that any two states in set exhibit similar behavior
 - → analyze hybrid system by working with sets of partition
- Generation and analysis of finite partition can be carried out by computer

2. Transition systems

- Transition system $T = (S, \delta, S_0, S_F)$ consists of
 - set of states S (finite or infinite)
 - transition relation $\delta: S \to P(S)$
 - set of initial states $S_0 \subseteq S$
 - set of final states $S_F \subseteq S$
- *Trajectory* of transition system is (in)finite sequence of states $\{s_i\}_{i=0}^N$ such that
 - $-s_0 \in S_0$
 - $-s_{i+1} \in \delta(s_i)$ for all i

Example of finite state transition system



- States: $S = \{q_0, \dots, q_6\}$;
- Transition relation: $\delta(q_0) = \{q_0, q_1, q_2\}, \ \delta(q_1) = \{q_0, q_3, q_4\}, \ \delta(q_2) = \{q_0, q_5, q_6\}, \ \delta(q_3) = \delta(q_4) = \delta(q_5) = \delta(q_6) = \emptyset$
- Initial states: $S_0 = \{q_0\}$
- Final states: $S_F = \{q_3, q_6\}$ (indicated by double circles) hs_check.4

Transition system of hybrid automaton

- Hybrid automaton can be transformed into transition system by abstracting away time
- Consider hybrid automaton $H=(Q,X,\mathrm{Init},f,\mathrm{Inv},E,G,R)$ and "final" set of states $F\subseteq Q\times X$
- Define

$$-S = Q \times X$$
, i.e., $s = (q, x)$

- $-S_0 = Init$
- $-S_F = F$
- transition relation δ consists of two parts:
 - * discrete transition relation δ_e for each edge $e=(q,q')\in E$:

$$\delta_e(\hat{q},\hat{x}) = \left\{ egin{array}{ll} \{q'\} imes R(e,\hat{x}) & ext{if } \hat{q} = q ext{ and } \hat{x} \in G(e) \\ arnothing & ext{if } \hat{q}
eq q ext{ or } \hat{x}
otin G(e) \end{array}
ight.$$

Transition system of hybrid automaton (cont.)

* continuous transition relation δ_C :

$$\delta_C(\hat{q},\hat{x}) = \{(\hat{q}',\hat{x}') \mid \hat{q}' = \hat{q} \text{ and } \exists t_f \geqslant 0, x(t_f) = \hat{x}' \land \\ \forall t \in [0,t_f], x(t) \in \mathsf{Inv}(\hat{q})\}$$

where $x(\cdot)$ is solution of

$$\dot{x} = f(\hat{q}, x)$$
 with $x(0) = \hat{x}$

* Overall transition relation is then

$$\delta(s) = \delta_C(s) \cup \bigcup_{e \in E} \delta_e(s)$$

 \rightarrow transition from s to s' is possible if either discrete transition $e \in E$ of hybrid system brings s to s', or s can flow continuously to s' after *some* time

Transition system of hybrid automaton (cont.)

- Time has been abstracted away:
 we do not care how long it takes to get from s to s', we only care whether it is possible to get there eventually
- → transition system captures sequence of events that hybrid system may experience, but *not* timing of these events

Reachability

- Transition system is *reachable* if there exists trajectory such that $s_i \in S_F$ for some i
- Predecessor operator $Pre : P(S) \rightarrow P(S)$ defined as

$$\operatorname{Pre}(\hat{S}) = \{ s \in S \mid \exists \hat{s} \in \hat{S} \text{ with } \hat{s} \in \delta(s) \}$$

ightarrow Pre gives set of states that can reach \hat{S} in one transition

```
• Algorithm 1 (Backwards Reachability) initialization: W_0 = S_F, i = 0 repeat if W_i \cap S_0 \neq \varnothing return "S_F reachable" end if W_{i+1} = \operatorname{Pre}(W_i) \cup W_i i = i+1 until W_i = W_{i-1} return "S_F not reachable"
```

Reachability (cont.)

 Problem: if new states get added to W_i each time we go around repeat-until loop → algorithm does not terminate Example:

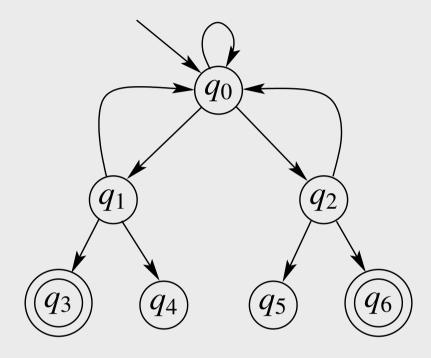
$$-T = (S, \delta, S_0, S_F)$$
 with $S = \mathbb{R}$, $\delta(x) = 2x$, $S_0 = \{-1\}$, $S_F = \{1\}$

- Backwards Reachability algorithm produces

$$W_0 = \{1\}, W_1 = \{1, \frac{1}{2}\}, \dots, W_i = \{1, \frac{1}{2}, \dots, \left(\frac{1}{2}\right)^i\}, \dots$$

- → algorithm will not terminate
- With finite state systems termination is not a problem

Example of finite state transition system (cont.)



- $W_0 = \{q_3, q_6\}, W_1 = \{q_1, q_2, q_3, q_6\}, W_2 = \{q_0, q_1, q_2, q_3, q_6\}$
- $W_2 \cap S_0 = \{q_0\} \neq \emptyset$
 - \rightarrow after 2 steps algorithm terminates with answer " S_F reachable"

3. Bisimulation

- Turn infinite state system into finite state system by grouping together states that have "similar" behavior → partition
- *Partition* is collection of sets of states $\{S_i\}_{i\in I}$ with $S_i\subseteq S$ and $S_i\neq\varnothing$ such that
 - 1. any two sets S_i and S_j in partition are disjoint
 - 2. union of all sets in partition is entire state space, i.e., $\bigcup_{i \in I} S_i = S$
- *Finite partition*: if *I* is finite set
- Examples:

Partition:
$$\{q_0\}, \{q_1, q_2\}, \{q_3, q_6\}, \{q_4, q_5\}$$

No partitions:
$$\{q_1, q_3, q_4\}, \{q_2, q_5, q_6\}$$

$${q_0,q_1,q_3,q_4},{q_0,q_2,q_5,q_6}$$

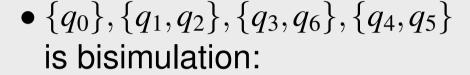
Quotient transition system

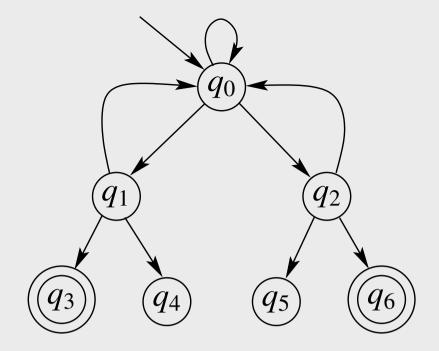
- ullet Given transition system $T=(S, \delta, S_0, S_F)$, and partition $\{S_i\}_{i\in I}$
- Quotient transition system $\hat{T} = (\hat{S}, \hat{\delta}, \hat{S}_0, \hat{S}_F)$ is defined as
 - $-\hat{S} = \{S_i\}_{i \in I}$, i.e., states are sets of partition
 - $-\hat{\delta}$ allows transition from set S_i to S_j if and only if δ allows a transition from some state $s \in S_i$ to some state $s' \in S_j$
 - S_i is in initial set of \hat{T} if and only if some element $s \in S_i$ is initial state of original transition system
 - $-S_i$ is final set of \hat{T} if and only if some element of $s \in S_i$ is final state of original transition system
- ullet If partition is finite, then quotient transition system \hat{T} is finite state system o can be easily analyzed

Quotient transition system (cont.)

- Problem: for most partitions properties of quotient transition system do not allow to draw any useful conclusions about properties of original system
- However, special type of partition for which quotient system \hat{T} is "equivalent" to original transition system T: bisimulation
- ullet A bisimulation of transition system $T=(S,\delta,S_0,S_F)$ is partition $\{S_i\}_{i\in I}$ such that
 - $-S_0$ is a union of elements of the partition
 - $-S_F$ is a union of elements of the partition
 - if one state s in some set S_i of the partition can transition to another set S_j in the partition, then *all* other states $\hat{s} \in S_i$ must be able to transition to some state in S_j

Example of bisimulation





- $-S_0 = \{q_0\}$ which is an element of the partition
- $-S_F = \{q_3, q_6\}$ which is also an element of the partition
- Consider, e.g., set $\{q_1,q_2\}$ From q_1 one can jump to $\{q_0\},\{q_3,q_6\},\{q_4,q_5\}$ From q_2 one can jump to exactly these same sets
 - ightarrow third condition is satisfied for set $\{q_1,q_2\}$
 - + also satisfied for other sets
- $\{q_0\}, \{q_1, q_3, q_4\}, \{q_2, q_5, q_6\}$ not bisimulation $(S_F; q_1 \rightarrow q_0 \text{ but } q_3 \not\rightarrow q_0)$

Important property

If $\{S_i\}_{i\in I}$ is bisimulation of transition system T and \hat{T} is quotient transition system, then S_F is reachable by T if and only if \hat{S}_F is reachable by \hat{T}

- For finite state systems → computational efficiency
 Study reachability in quotient system instead of original system (quotient system usually much smaller than original)
- For infinite state systems:
 Even if original transition system has infinite number of states, sometimes bisimulation consisting of finite number of sets
 - → answer reachability questions for infinite state system by studying equivalent finite state system
- For timed automata we can always find finite bisimulation

Bisimulation algorithm

Algorithm 2 (Bisimulation) initialization: $\mathscr{P} = \{S_0, S_F, S \setminus (S_0 \cup S_F)\}$ while $\exists S_i, S_j \in \mathscr{P}$ such that $S_i \cap \operatorname{Pre}(S_j) \neq \varnothing$ and $S_i \cap \operatorname{Pre}(S_j) \neq S_i$ do $S_i' = S_i \cap \operatorname{Pre}(S_j)$

 $S_i'' = S_i \setminus \mathsf{Pre}(S_j)$ $\mathscr{P} = (\mathscr{P} \setminus S_i) \cup \{S_i', S_i''\}$

end while

return P

- Algorithm maintains partition P that gets refined progressively so that it looks more and more like a bisimulation
- From definition of bisimulation we deduce that bisimulation must at least allow us to "distinguish" initial and final states.
 - \rightarrow start with partition containing 3 sets: S_0, S_F , and everything else

Bisimulation algorithm (cont.)

```
Algorithm 3 (Bisimulation) initialization: \mathscr{P} = \{S_0, S_F, S \setminus (S_0 \cup S_F)\} while \exists S_i, S_j \in \mathscr{P} such that S_i \cap \operatorname{Pre}(S_j) \neq \varnothing and S_i \cap \operatorname{Pre}(S_j) \neq S_i do S_i' = S_i \cap \operatorname{Pre}(S_j) S_i'' = S_i \setminus \operatorname{Pre}(S_j) \mathscr{P} = (\mathscr{P} \setminus S_i) \cup \{S_i', S_i''\} end while return \mathscr{P}
```

- Assume we can find two sets $S_i, S_j \in \mathscr{P}$ such that $Pre(S_j)$ contains some elements of S_i but not all of them
 - \rightarrow some states $s \in S_i$ may find themselves in S_j after one transition while others do not
 - \rightarrow not allowed if \mathscr{P} is to be bisimulation
 - \rightarrow replace S_i by two sets: states in S_i that can transition to S_j states in S_i that cannot transition to S_j

Bisimulation algorithm (cont.)

- If bisimulation algorithm terminates, it will produce the coarsest bisimulation of the transition system (i.e., bisimulation containing smallest number of sets)
- For finite state systems bisimulation algorithm is easy to implement (by enumerating the states) and will always terminate
- Problem: it may be more work to find bisimulation than to investigate reachability of the original system
- For infinite state systems: sometimes, algorithm may never terminate (reason: not all infinite state transition systems have finite bisimulations)
- But for timed automata: bisimulation algorithm terminates in finite number of steps

4. Timed automata

- Timed automata involve simple continuous dynamics:
 - all differential equations of form $\dot{x} = 1$,
 - all invariants, guards, etc. involve comparison of real-valued states with constants (e.g., x = 1, x < 2, $x \ge 0$, etc.)
- Timed automata are limited for modeling physical systems
- However, very well suited for encoding timing constraints such as "event A must take place at least 2 seconds after event B and not more than 5 seconds before event C"
- Applications: multimedia, Internet, audio protocol verification

4.1 Rectangular sets

• Subset of \mathbb{R}^n set is called rectangular if can be written as finite boolean combination of constraints of form

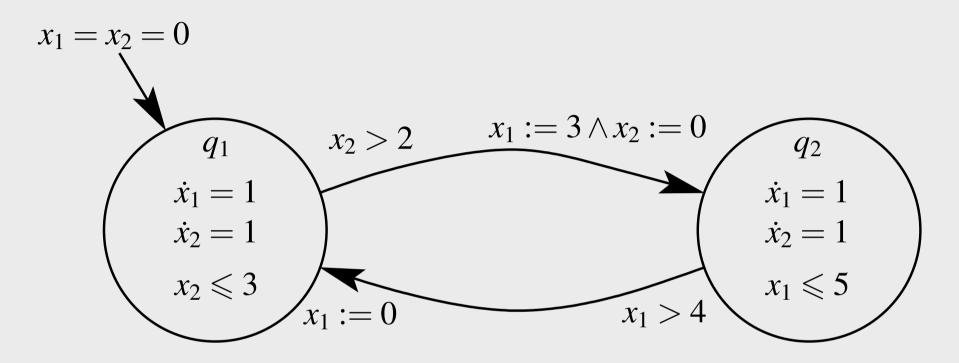
$$x_i \leqslant a, \quad x_i < b, \quad x_i = c, \quad x_i \geqslant d, \quad x_i > e$$

- Rectangular sets are "rectangles" or "boxes" in \mathbb{R}^n whose sides are aligned with the axes, or unions of such rectangles/boxes
- Examples:
 - $-\{(x_1,x_2) \mid (x_1 \geqslant 0) \land (x_1 \leqslant 2) \land (x_2 \geqslant 1) \land (x_2 \leqslant 2)\}\$
 - $-\{(x_1,x_2) \mid ((x_1 \ge 0) \land (x_2 = 0)) \lor ((x_1 = 0) \land (x_2 \ge 0))\}$
 - empty set (e.g., $\emptyset = \{(x_1, x_2) \mid (x_1 > 1) \land (x_1 \leq 0)\}$
- However, set $\{(x_1, x_2) \mid x_1 = 2x_2\}$ is not rectangular

4.2 Timed automaton

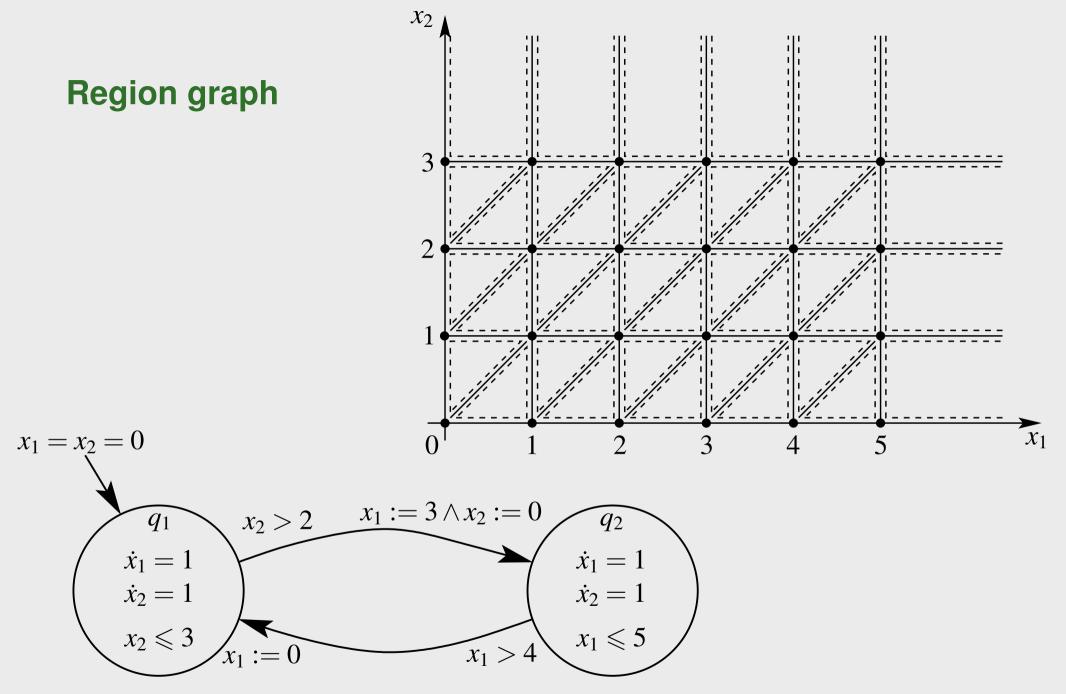
- Timed automaton is hybrid automaton with following characteristics:
 - automaton involves differential equations of form $\dot{x}_i = 1$; continuous variables governed by this differential equation are called "clocks" or "timers"
 - sets involved in definition of initial states, guards, and invariants are rectangular sets
 - reset maps involve either rectangular set, or may leave certain states unchanged

4.3 Example of timed automaton

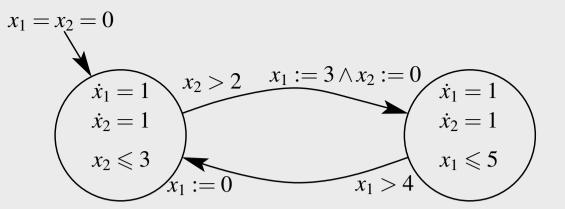


Timed automata (cont.)

- For timed automaton of example: all constants are non-negative integers
 - → can be generalized
- Given any timed automaton whose definition involves rational and/or negative constants, we can define an equivalent timed automaton whose definition involves only non-negative integers Done by "scaling" and "shifting" (adding appropriate integer) some of states
- Transformation into transition systems
 - → transition system corresponding to timed automaton always has finite bisimulation
- Standard bisimulation for timed automata is region graph

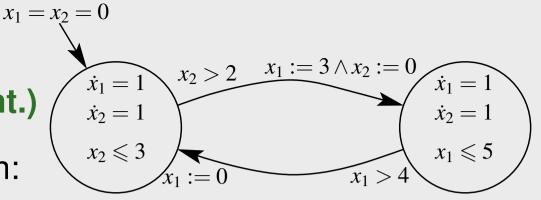


Construction of region graph



- Assume w.l.o.g. that all constants are non-negative integers
- Let C_i be largest constant with which x_i is compared in initial sets, guards, invariants and resets In example: $C_1 = 5$ and $C_2 = 3$
- If all we know about timed automaton is these bounds C_i , then x_i could be compared with any integer $M \in \{0, 1, ..., C_i\}$ in some guard, reset or initial condition set
- Hence, discrete transitions of timed automaton may be able to "distinguish" states with $x_i < M$ from states with $x_i = M$ and from states with $x_i > M$ (e.g., discrete transition may be possible from state with $x_i < M$ but not from state with $x_i > M$)

Construction of region graph (cont.)



Add sets to candidate bisimulation:

for
$$x_1 : x_1 \in (0,1), x_1 \in (1,2), x_1 \in (2,3), x_1 \in (3,4), x_1 \in (4,5), x_1 \in (5,\infty)$$

 $x_1 = 0, x_1 = 1, x_1 = 2, x_1 = 3, x_1 = 4, x_1 = 5$
for $x_2 : x_2 \in (0,1), x_2 \in (1,2), x_2 \in (2,3), x_2 \in (3,\infty)$
 $x_2 = 0, x_2 = 1, x_2 = 2, x_2 = 3$

Products of all sets:

$$\{x \in \mathbb{R}^2 \mid x_1 \in (0,1) \land x_2 \in (0,1) \}$$

$$\{x \in \mathbb{R}^2 \mid x_1 \in (0,1) \land x_2 = 1 \}$$

$$\{x \in \mathbb{R}^2 \mid x_1 = 1 \land x_2 \in (0,1) \}$$

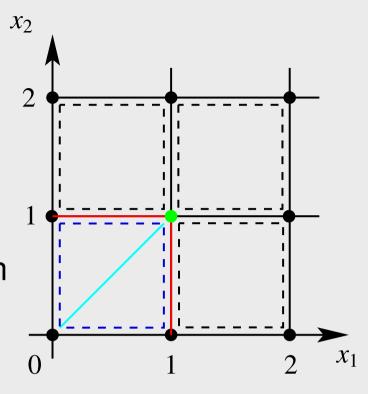
$$\{x \in \mathbb{R}^2 \mid x_1 = 1 \land x_2 = 1 \}$$

$$\{x \in \mathbb{R}^2 \mid x_1 \in (1,2) \land x_2 \in (3,\infty) \},$$
 etc.

define all sets in \mathbb{R}^2 that discrete dynamics can distinguish \rightarrow open squares, open horizontal and vertical line segments, integer points, and open, unbounded rectangles $\frac{1}{\text{hs_check.26}}$

Construction of region graph (cont.)

- Since $\dot{x}_1 = \dot{x}_2 = 1$, continuous states move diagonally up along 45° lines
- → by allowing time to flow timed automaton may distinguish points below diagonal of each square, points above diagonal, and points on the diagonal



E.g., points above diagonal of square

$${x \in \mathbb{R}^2 \mid x_1 \in (0,1) \land x_2 \in (0,1)}$$

will leave square through line $\{x \in \mathbb{R}^2 \mid x_1 \in (0,1) \land x_2 = 1\}$ Points below diagonal leave square through line

$${x \in \mathbb{R}^2 \mid x_1 = 1 \land x_2 \in (0,1)}$$

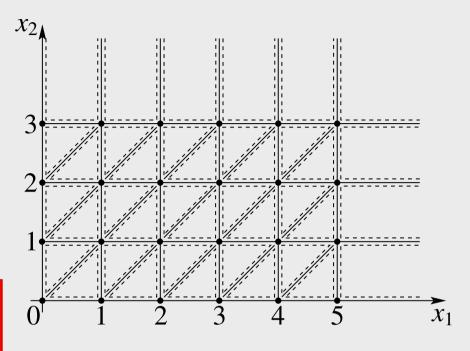
Points on diagonal leave square through point (1,1)

Construction of region graph (cont.)

- Split each open square in three: two open triangles and open diagonal line segment
- \rightarrow is enough to generate bisimulation:

Theorem:

The region graph is finite bisimulation of timed automaton



 Disadvantage: total number of regions in the region graph grows very quickly (exponentially) as n increases

5. Summary

- Verification of hybrid systems → hard problem
- Transition systems
- Bisimulation & reachability
 - → turn infinite state system into finite state system by grouping together states that have "similar" behavior
- Timed automata → finite bisimulation