INTRODUCTION TO HYBRID SYSTEMS: ORIGINS, EXAMPLES, APPLICATIONS

C. G. Cassandras

Dept. of Manufacturing Engineering and

Center for Information and Systems Engineering (CISE) Boston University

cgc@bu.edu http://vita.bu.edu/cgc

OUTLINE

> WHAT'S A HYBRID SYSTEM...

> HYBRID SYSTEMS AND COMPLEXITY:

DECOMPOSITION: HYBRID SYSTEM → DES

ABSTRACTION: DES → HYBRID SYSTEM

> EXAMPLES, APPLICATION AREAS

WHAT'S A HYBRID SYSTEM?

More on modeling frameworks, open problems, etc: [Proc. of IEEE Special Issue (Antsaklis, Ed.), 2000]

Switching Times

$$x_{i+1} = f_i(x_i, u_i, t)$$

SWITCHING TIMES HAVE THEIR OWN DYNAMICS!

REPLACE THE USUAL CONTROL LOOP BY

- Plant: *time-driven* + *event-driven* dynamics
- Controller affects both
 time-driven +
 event-driven components
- Control may be continuous signal and/or discrete event

DECOMPOSITION

TIME-DRIVEN SYSTEM

What exactly does that mean?

LESS COMPLEX

DECOMPOSITION

HIERARCHICAL DECOMPOSITION

HIEARARCHICAL DECOMPOSITION

CONTINUED

HYBRID CONTROL SYSTEM

ABSTRACTION (AGGREGATION)

TIME-DRIVEN SYSTEM

HYBRID SYSTEM

ABSTRACTION (AGGREGATION)

EVENT-DRIVEN SYSTEM

HYBRID SYSTEM

DECOMPOSITION

WHAT IS THE RIGHT ABSTRACTION LEVEL?

TOO FAR...
model not
detailed enough

JUST RIGHT...
good model

TOO CLOSE...
too much
undesirable
detail

CREDIT: W.B. Gong

EXAMPLES

HYBRID SYSTEM EXAMPLES

1. Autonomous Switching, e.g., *Hysteresis*

2. External Switching, e.g., Zeno's bouncing ball

3. Controlled Switching, e.g., Interconnected tanks

- 4. Other cases of controlled switching:
 - Diving: control depths for decompression
 TRADEOFF: Safety vs. Time
 - Vehicle transmission: control gear switching TRADEOFF: Efficiency vs. Time
 - Low-power electronics: power control

 TRADEOFF: Power conservation vs. Time
 - Manufacturing: process control + operational control
 TRADEOFF: Product quality vs. Time

HYBRID SYSTEMS IN MANUFACTURING

Key questions facing manufacturing system integrators:

How to integrate 'process control' with 'operations control'?

How to improve product Quality in reasonable TIME?

- Physicists
- Material Scienti

Mendalkagineers

OPERATIONS CONTROL

Industrial Engineers, OF Schedupriven Work Work Work Work Control

Throughout a manuf. process, each part is characterized by

- A PHYSICAL state (e.g., size, temperature, strain)
- A TEMPORAL state (e.g., total time in system, total time to due-date)

EXAMPLE

HYBRID SYSTEMS IN COOPERATIVE CONTROL

HYBRID SYSTEMS IN COOP. CONTROL

HYBRID SYSTEMS IN COOP. CONTROL

CONTINUED

ABSTRACTION OF A DISCRETE-EVENT SYSTEM

ABSTRACTION OF A DISCRETE-EVENT SYSTEM

http://vita.bu.edu/cgc/hybrid

DESIGN, ANALYSIS, SYNTHESIS ISSUES

Differential equations with jumps/switches:

Stability, Robustness Optimal Control, etc.

Automata with state transitions dependent on diff. equations:

Supervisory Control, Reachability Perturbation Analysis, etc.

DECIDABILITY, VERIFICATION, QUANTIZATION, SIMULATION, ...

[Proc. of IEEE Special Issue (Antsaklis, Ed.), 2000]