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Timed Automata review

Alur & Dill 1990
Clocks: x, y
Guard
Boolean combination of integer bounds
/ on clocks and clock-differences.
Action x<=5&y>3 Reset

for synchronization

Action perfomed on clocks
a State
(

location, x=v , y=u) where v,u arein R
Transitions

s (n, x=24,y=3.1415) —a >
piseret® (m, x=0, y=3.1415 )

1.1
o™ (1, Xx=24, y=3.1415) &11)
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Timed Automata review

Invariants

/— e Clocks: x, y

Transitions
x<=5&y>3

. e(32)
Location (n, x=2.4, y=3.1415)
Invariants a

e(1.1
(n, x=2.4, y=3.1415) — el
(m, x=3.5, y=4.2415)

Invariants ensure

progress!!

(n, x=3.5, y=4.2415)
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Constraints
Definition

Let X be a set of clock variables. The set B(X) of clock constraints
¢ Is given by the grammar:

¢ =

z<c|e<z|z<c|e<z|d1 A2
where c ¢ N (or Q).




Clock Valuations and Notation

Definition
The set of clock valuations, RC is the set of functions ¢ —» Rxo
ranged over by u,v,w,....

MNotation
Let uc RS, r CC, d € Ryg, and g € B(X) then:

e u+de RC is defined by (u+ d)(z) = u(z) + d for any clock

« ulr] € RE is defined by u[r](z} = 0 when = € r and
ulrl(z) = u(z) for z ¢ r.

+ u = g denotes that g is satisfied by u.

Timed Automata

Definition
A timed automaton A over clocks C and actions Aect is a tuple
(L,lg, E, I'), where:

e [ is 2 finite set of locations

e Iy € L is the initial location

o ECLxB(X)x Act x P(C) % L is the set of edges

e [: L — B(X) assigns to each location an invariant

3 4
= el
A Emi
] Timed Automata: Example
Semantics
e guard
Definition
The semantics of a timed automaton A is a labelled transition sys- ocati
tem with state space L x RC with initial state (ig,ug)* and with the ocation
following transitions: \
o 0w D Qutd) i ue ) and utde 10), L) 2sess
o (l,u) 5 (I',u) iff there exists (I,g,a,r,1") € I such that e/ {z}
—ufFEg /
- = u[r], and action
reset-set
- v ern{l")
*ug(z) =0forall zc C
8 »
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Timed Automata: Example Timed Automata: Example
guard
location ¢ |
\ 4
value —~ oz
. al o L
Y 2€2€3 of 7 P O S S, =) / {I}
{z} T » x<3 a
A . X
2 4 G 8 10
Invariant
reset-set
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Updatable Timed Automata

Diagonal-free

‘W Diagonals 1

Patricia Bouyer, Catherine Dufourd,
Emmanuel Fleury, Antoine Petit

Undecdable

Undecidable

| Pepace complet | Diagonal-free I W Diagonals |
= = Pspace complete TA-bisimilar
Tivyte il e |
i 1 Urdecidable TA-bisimilar :
| e <z (pld | Turing
yreo<iri<z+d Undecidable |
With ~€ {<,2,2,>} and c.d € .m..‘. 1
{ TA,
T~y Turing
(y4)e <:z:< (p4)d
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Two-way synchronization
on complementary actions.

Closed Systems!

Example transitions

/12, m1,......., X=2, y=3.5,.....) _tau

(/1,m1,......... X=2.2, y=3.7, .....)

DISC Summer School, June 2003 Kim G. Larsen

If a URGENT CHANNELJ

= 8
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Timed Automata: Example
[}
|4
value
z 2 of £
222 Y
{z}
2 4 6 8 10
. time -
Invariant
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Fundamental Results
9‘2’"&0 o1
¢ 0 Reachability ©  awr, pin
I Trace-inclusion aur, il
| Timed ® ; Untimed ©
I Bisimulation
| Timed © cerans ; Untimed ©

I Model-checking ©

M
| TCTL, Trur Lo Rhad
vS"“CE
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Other Extensions

v Ordinary clocks ..... Xxrate 1

v Integer variables .... xrate0

Q,ss@z
v Stopwatches ... xrate 0 or xrate 1 (foc.dep.)” (‘"seq
v Cost ... c raten where nisin Nat,
however ¢ cannot be guarded

+ Const. slope clocks .. xraten wherenisin Nat

-+ Parameters xrate 0 (and NOT assignable)

-+ Multirate clocks #,

Lin. Hyb. Aut. ..... xrate [l,u] where Luisin Nat e,
linear guards & linear asgn.
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The UPPAAL Model

= Networks of Timed Automata + Integer Var + Array Var + ....

Two-way synchronization
on complementary actions.

a? srsssasanaaan

Closed Systems!

L

Example transitions

/12, m1,........, x=2, y=3.5, i=.

(/11,m1,
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If a URGENT CHANNELJ
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I Virtual machine:

1 10 tasks, 4 timers,
16 integers.

1 infra-red port

I Several Programming Languages:
I NotQuiteC, Mindstorm, Robotics, legOS, etc.

int active;
int DELAY;
int LIGHT_ LEVEL;

NQC programs

task MAIN{

DELAY=75; task PUSH

LIGHT LEVEL=35; ask {
0. while (true) {

active=0;

Sensor (IN_1, IN _LIGHT); wait (Timer (1) >DELAY && active==1);

wait (IN_1>LIGHT_LEVEL) ;
}
}

DISC Summer School, June 2003 Kim G. Larsen
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. First UPPAAL model
LEGO Mindstorms/RCX Sorting of Lego Baxes Ken Tindell
I Sensors: temperature, —3 output ports| Piston
light, rotation, pressure. < Boxes ‘
I Actuators: motors, lamps,

eject

18
Bick
Rd

Controller

- . Conve‘/er Belt .)I -
- L R -

Exercise: Design Controller so that only black boxes are being pushed out
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[ o I Conpons Searcn

Fa il

Fwd (OUT A, 1) ; active=0;

: = Rev (OUT C,1);
Display (1) ; Sleep (8)_'

. Fwd (OUT_C,1); UPPAAL Demo
start PUSH; —
Sleep(12) ;

while (true) { Of£ (OUT_C) ;

Hait(IN_1<=LIGHT_LEVEL) ; }

ClearTimer (1) ; }

active=1;

PlaySound (1) ;

IDA foredrag 20.4.99

[ 4 | [ [ 3 | |
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From RCX to UPPAAL

I Model includes
Round-Robin
Scheduler.

I Compilation of RCX
tasks into TA models.

I Presented at ECRTS
2000

Kim G. Larsen
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The Production Cell

Course at DTU, Copenhagen

Production I
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Case-Studies: Controllers

I Gearbox Controller [TAcas98]

I Bang & Olufsen Power Controller
[RTPS'99,FTRTFT'2k]

I SIDMAR Steel Production Plant [RTCSA'99, DSVV2k]
I Real-Time RCX Control-Programs [ECRTS"2k]

I Experimental Batch Plant (2000)

I RCX Production Cell (2000)

I Terma, Memory Management for Radar (2001)
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Train Crossing

Stopable
Area

* [10,20]

[3,5]

'

y -
11 ‘
EEREAN Gate ;
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UPPAAL 3.2 (and 3.3, 3.4)
Released October 01

I Graphical User Interface
I XML based file format
I Better syntax-error indicataion
I Drop-and-drag for transitions
I Changed menu
I Verification Engine
I Restructured (increased flexibility)
I Normalization-bug fixed
I More freedom in combing optimization options
I Deadlock checking
I Support for more general properties (E[]p, A<>p, p—>q)
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Case Studies: Protocols

Philips Audio Protocol [Hs'95, cAv/95, RTSS'95, CAV'96]
Collision-Avoidance Protocol [spinos]

Bounded Retransmission Protocol [TAcas97]
Bang & Olufsen Audio/Video Protocol [rTss97]
TDMA Protocol [pPrFTS97]

Lip-Synchronization Protocol [Fvics97]
Multimedia Streams [psvis9s]

ATM ABR Protocol [cAv99]

ABB Fieldbus Protocol [EcrTs2k]

IEEE 1394 Firewire Root Contention (2000)
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Communication via channels and
shared variable.

Train Crossing

Stopable
Area

m [10,20]

appr, ‘ 13,5]

stop

[7,15]
y

Queue empty
nonempty
hd, add,rem| Gate c s ﬂ
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THE UPPAAL ENGINE

Symbolic
Reachability
Checking

IDA foredrag 20.4.99




From infinite to finite

State Symbolic state (set)

(n, x=3.2, y=2.5) (n, 1<x<4,1<y<3)
Zone:
conjunction of

y y X-y<=n, X<=>n
X X

DISC Summer School, June 2003
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Zones

Kim G. Larsen
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o n Compuier Science.
5ischel”s Protocol
analysis using zones

3
'\% - 2 | = ﬁ
3

’\% / lv Criticial Section

X<10 X:=0, X>10
(o o L@
Y<10 Vem2 .Y>10 .

— [ 3 | pd
= et .
B Em
Symbolic Transitions
/ iix:ig 1<=x, 1<=y
v =y<= vl D<mxy<=3
delays to
]
—x
y y 3<x, 1<=y
. 2<ixy<=3
C> conjuncts to O
X L
X
projects to =0
N Thus (n,1<=x<=4,1<=y<=3) =a =>(m,3<x, y=0) ]
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Fischers cont.

<10 - X::>10 »
@<10 \,._7Y:=Q/‘;(>10 _

[ALA2,v=1 F—{ ALB2,v=2 |—{ A,cs2,v=2 |—{ B1,c52,v=1 ——{ cs1,cs2,=1]

(e
&

Untimed case
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Fischers cont. <10 x.=>1o i @ Fischers cont.

Untimed case

= >10
e C

[ALA2v=1 ——] a1B2,v=2 — At,cs2,v=2 | BL,cs2,v=1 —] cs1,c2,v=1 |

Taking time into account
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Untimed case

<10 X >10 _ @
e

[ALA2,v=1 |—>[A1B2,v=2 —{ A,cs2,v=2 | ] B1,Cs2,v=1 F—] cs1,c52,v=1 |

Taking time into account

Y Y
10 f = 10
X
X 10
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]
;

Fischers cont. <1° X:=>1° -

Untimed case

= >10
g e

=
;

[ALA2,v=1 ——>[A1,B2,v=2 —{ A1,c52,v=2 | B1,c52,v=1 ——] cs1,c52,v=1 |

Taking time into account

Untimed case

Fischers cont.

<10 . ><:=>10 .

e

(@ e @

[ALA2,v=1 |——>] A1,B2,v=2 —[ AL,Ccs2,v=2 | —{ B1,C52,=1 ——] cs1,c52,v=1 |

Taking time into account
Y Y Y Y
10 {--- = 10 10 10 10
X 0% X 10 % w0 X
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i £:=0 A H . .
Fischers cont. <10 \ >10 - () Forward Rechability Init -> Final ?
<10 .o Yi= >10,_
(a2 S v (a5 2 ™\ -
Untimed case . INITIAL Pas_s_ed =0;
Walti Final Waiting := {(n0,Z0)}
[ALA2v=1 —{ A1B2,v=2 —{ ALcs2,v=2 |—] B1,Cc52,v=1 —{ cs1,c52,=1] = m(g) REPEAT
Taking time into account
Y Y Y
10 10 10
X X X UNTIL Waiting =@
10 10 Passed j or
Final is in Waiting
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Forward Rechability Init -> Final ? Forward Rechability Init -> Final ?
/ .\ INITIAL Passed := @; / .\ INITIAL Passed := @;
Waiting Final Waiting := {(n0,Z0)} Waiting Final Waiting := {(n0,Z0)}
O @ REPEAT REPEAT
O~0O O - pick (n,Z) in Waiting - pick (n,Z) in Waiting
- if forsome ' 2 Z -ifforsomeZ' 2 Z
(n,Z’) in Passed then STOP (n,Z’) in Passed then STOP
- else /explore/ add
{(mV): (n,2) =>(mU) }
to Waiting;
UNTIL Waiting = @ UNTIL Waiting =@
k Passed / or Passed / or
Final is in Waiting
DISC Summer School, June 2003 Kim G. Larsen c .' s ﬂ
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Final is in Waiting
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;

Forward Rechability

-

Passed j
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Init -> Final ?

INITIAL Passed := @;
Waiting := {(n0,20)}

REPEAT
- pick (n,Z) in Waiting
-if forsomeZ' 2 Z
(n,Z") in Passed then STOP

- else /explore/ add
{(mU):(n2)=>m\U)}
to Waiting;
Add (n,Z) to Passed

UNTIL Waiting = @
or
Final is in Waiting

C'S§y
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= Canonical Datastructures for Zones
Difference Bounded Matrices

., |

Rescrch
in Conpera Scancn

Bellman 1958, Dill 1989

Closure

Shortest 1 4\2‘
Path 0/:'_’. v

Shortest

Canonical Datastructures for Zones

Difference Bounded Matrices

Inclusion
x<=1 /' \
D1 |yx<=2 Graph y
z-y<=2
2<=9 \ /
?2<?
D2 |x<=2 X
y-x<=3 2/' \3‘
y<=3 , Graph 0 3 y
z-y<=
z<=7 7 ZA/3

Bellman 1958, Dill 1989

Canonical Datastructures for Zones

Difference Bounded Matrices
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Bellman 1958, Dill 1989
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Inclusion
X
x<=1 1/v \2‘
D1 Zj:::; Graph
2<=9 Q\AZ/
?2<?
D2 |x<=2 X
y-X<=3 2/v \3‘
y<=33 Graph 0o—3
z-y<=
2<=7 7 z‘/3

Kim G. Larsen

X

2 3
Path = \
Closure O%\ GA/ 4

Future

//_»x
-IK\/

Shortest
Path
Closure

o
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Canonical Datastructures for Zones
Difference Bounded Matrices

| &
Future D

4 X
/J Remove
p upper
0 3 bounds
‘\ on clocks
1

Kim G. Larsen

X
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Canonical Datastructures for Zones
Difference Bounded Matrices

{y}D

Remove all
bounds
involving y
h and setyto 0

Kim G. Larsen

Emptiness
X
D x<=1 % 3
y>=5 Graph 0
y-x<=3 ~ y
-5
Negative Cycle
i
Compact empty solution set
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Canonical Datastructure for Zones
Difference Bounded Matrices

Bellman’58, Dill'89

4

x1-x2<=4

x2-x1<=10 Shortest
x3-x1<=2 @ @ Path
Xx2-x3<=2 Closure
x0-x1<=3 3 2 2 0(n~3)
x3-x0<=5

DISC Summer School, June 2003
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SPACE PERFORMANCE

@ Minimal Constraint
@ Global Reduction
0 Combination

Percent

i Losen Cisy
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Shortest Path Reduction

1st attempt

Idea

An edge is REDUNDANT if there exists
an alternative path of no greater weight
THUS Remove all redundant edges!

Problem

v and w are both redundant
Removal of one depends on presence
of other.

Observation: If no zero- or negative
cycles then SAFE to remove all
redundancies.

Kim G. Larsen . s ﬂ
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— .. |
= . et .
2=l New Canonical Datastructure
Minimal collection of constraints
RTSS 1997
-4

x1-x2<=4 @Q@

x2-x1<=10 Shortest

x3-x1<=2 Path

X2-x3<=2 Closure N

X0-x1<=3 3 2 o(n~3)

x3-x0<=5

Shortest

orte @ @

Rg‘z:f\t;‘;“ 5 Space worst O(n2)
practice O(n)

w
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TIME PERFORMANCE
25
24
e 15 @ Minimal Constraint
§ m Global Reduction
3
o 14 O Combination
0,5 1
ol N
© > A &
F & & & & &
Al 2 S
&° SN & e
w 2
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Bogpo Resarch
In Compur Schnce.

Shortest Path Reduction

Solution

G: weighted graph

i tarsen Cisy
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Shortest Path Reduction Shortest Path Reduction
Solution Solution
G: weighted graph G: weighted graph
1. Equivalence classes based 1. Equivalence classes based
on 0-cycles. on 0-cycles.
2. Graph based on
representatives.
Safe to remove redundant edges
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Shortest Path Reduction
Solution

~
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G: weighted graph

Canonical given order of clocks

1. Equivalence classes based
on 0-cycles.

2. Graph based on
representatives.

Safe to remove redundant edges

3. Shortest Path Reduction

One cycle pr. class
+

Removal of redundant edges
between classes

Earlier Termination

-

Init -> Final ?

INITIAL Passed := @;
Waiting := {(n0,20)}
REPEAT
- pick (n,Z) in Waiting
-ifforsomeZ' 2 Z

(n,Z’) in Passed then STOP
- else /explore/ add
{(myU):(n2)=>mU)}
to Waiting;
Add (n,Z) to Passed

Fa

C'S§y

-

Earlier Termination

Passed j

Kim G. Larsen
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Init -> Final ?

INITIAL Passed := @;
Waiting := {(n0,20)}
REPEAT
- pick (n,2) jn iting
- if for somem
(n,Z") in Passed then STOP
- else /explore/ add
{(mV): (n2) =>(mU)}
to Waiting;
Add (n,Z) to Passed
UNTIL Waiting = @
or
Final is in Waiting

C'S§y

UNTIL Waiting =@
Passed j or

Final is in Waiting
DISC Summer School, June 2003

Bosio Remerch
in Compu Smca.

Kim G. Larsen
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Fi

Bogpo Resarch
In Compur Schnce.

Earlier Termination

-

Init -> Final ?

INITIAL Passed := @;
Final Waiting := {(n0,20)}
REPEAT
- pick (n,2) jn iting
- if for someﬂ.I
(n,Z48\Passed then STOP
- lore/ add

{(mU):(n2Z)=>mU)}

to Waiting;

UiZ_ D) Z Add (n,Z) to Passed
| =

UNTIL Waiting =@
Passed or

DISC Summer School, June 2003

Final is in Waiting

Kim G. Larsen
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Clock Difference Diagrams

= Binary Decision Diagrams +

(= Nodes labeled with

p differences

Maximal sharing of
substructures (also across
< different CDDs)

I Maximal intervals

x ) 1 Linear-time algorithms for
set-theoretic operations.

.
-
{=p

-

I NDD's Maler et. al
I DDD’s Mgller, Lichtenberg
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TIME PERFORMANCE
6
5 4
= 41 @ CDD
8 34 ® Reduced CDD
& ol 0 CDD+BDD
14
0 N N el EHE AL
. > R Q& & o o
& P& < 004@ S @
N S & FTF &
QC ?°
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SPACE PERFORMANCE
45
) -
35
3]
£ 25| mCDD
o m Reduced CDD
& 2 0 CDD+BDD
1,5 4
14
i
0+

~. 2y

UPPAAL 1995 - 2001

8

BRICS
Bosio Remerch
in Compu Smca.

Every 9 month
10 times better
performance!

.z =
e . —— ]
e
" em e
Dec'96 gt
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