

Clock Valuations and Notation

Definition

The set of clock valuations, \mathbb{R}^C is the set of functions $C \to \mathbb{R}_{\geq 0}$ ranged over by u,v,w,\ldots

Notation

Let $u \in \mathbb{R}^C$, $r \subseteq C$, $d \in \mathbb{R}_{\geq 0}$, and $g \in \mathcal{B}(X)$ then:

- $u+d \in \mathbb{R}^C$ is defined by (u+d)(x)=u(x)+d for any clock x
- $u[r] \in \mathbb{R}^C$ is defined by u[r](x) = 0 when $x \in r$ and u[r](x) = u(x) for $x \not\in r$.
- \bullet $u \models g$ denotes that g is satisfied by u.

3

Timed Automata

Definition

A timed automaton A over clocks C and actions Act is a tuple (L,l_0,E,I) , where:

- L is a finite set of locations
- $l_0 \in L$ is the initial location
- $E \subseteq L \times \mathcal{B}(X) \times Act \times \mathcal{P}(C) \times L$ is the set of edges
- $I:L \to \mathcal{B}(X)$ assigns to each location an invariant

4

Semantics

Definition

The semantics of a timed automaton A is a labelled transition system with state space $L \times \mathbb{R}^C$ with initial state $(l_0, u_0)^*$ and with the following transitions:

- $\bullet \ (l,u) \xrightarrow{\epsilon(d)} (l,u+d) \ \text{iff} \ u \in I(l) \ \text{and} \ u+d \in I(l),$
- ullet $(l,u)\stackrel{a}{
 ightarrow}(l',u')$ iff there exists $(l,g,a,r,l')\in E$ such that
- $-u \models g$.
- -u'=u[r], and
- $-u' \in I(l')$
- $u_0(x) = 0$ for all $x \in C$

5

