
Hybrid I/O Automata

Nancy Lynch, MIT

Roberto Segala, University of Verona

Frits Vaandrager, University of Nijmegen

http://www.cs.kun.nl/~fvaan

I/O Automata (Lynch & Tuttle, ’87; Jonsson ’87)

Purpose

Formal model for specification+verification of distributed algorithms

Characteristics:

• Both system and specification modelled as transition system

• Language inclusion as implementation relation

(⇒ stepwise refinement!)

• Compositionality

• Distinction between input and output actions

• Fairness/liveness

• Assertional reasoning (invariants, simulations, etc)

• Extensions deal with real-time, hybrid, and probabilistic aspects

Stepwise Refinement

S2 S1 S0� � �

implementation preorder
�������

�
�

��

�
�

��

· · ·

Compositionality

S1 S0�

S1 S0�
⇒

Extensions and Restrictions of IOA model
(S= Safe, F=Fair, L=Live, T=Timed, H=Hybrid, P=Probabilistic)

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

	
	

	
	

	
	

	
	

		

	
	

	
	

	
	

	
	

		

	
	

	
	

	
	

	
	

		

	
	

	
	

	
	

	
	

		

	
	

	
	

	
	

	
	

		

�
�

�
�

�
�

�
�

���

�
�

�
�

�
�

�
�

���
�

���

IOA

FIOA
LIOA

LTIOA
SIOA

TIOA

HIOA

SPIOAPA

A

TA

HA

PTA PTIOA

PIOA

I/O Distinction and Input Enabling

Advantages

• helps to avoid mistakes in specifications

• simple semantics in terms of traces
(no need for failure pairs as in CSP)

• fairness/liveness becomes easier

Disadvantages

• less expressive
(handshake needed to encode single CSP synchronization)

• process algebra becomes more difficult

Applications

1. Distributed algorithms!

2. Distributed operating systems

3. Database concurrency control

4. etc. etc.

Background

In a timed automaton, all clocks proceed with the same rate in each

location, i.e. ẋ = 1 for all clocks x in each location.

We may relax this condition and allow for (continuous) variables that

evolve with arbitrary dynamics that may also depend on the location

(see e.g. Maler, Manna & Pnueli, 1990).

The resulting structures are commonly called hybrid automata (HA).

Variables of a HA may represent, a drifting clock, the pressure in a

tank, the speed of a car, the temperature in a room, the position of

a robot hand, the voltage on a wire, etc.

HAs appear to be an appropriate modelling formalism to support de-

sign and analysis of hybrid control systems:

A/D converter

�

Plant

�

D/A converter

�

Controller

ControlMeasurement

Input symbol Output symbol

In this lecture, I will focus on the following fundamental issues:

• What is the observable behavior of a HA? What does it mean for

one HA to implement another?

• Compositionality

• Receptivity

This is all joint work with Nancy Lynch & Roberto Segala, improv-

ing/extending earlier results published in 1996 and 2001.

Stepwise Refinement

S2 S1 S0� � �

implementation preorder
�������

�
�

��

�
�

��

· · ·

Compositionality

S1 S0�

S1 S0�
⇒

Terminology

The issues that I want to address in my talks are best studied at

the semantic level. The objects in the semantic world that we define

and study will be called hybrid automata, even though this leads to

confusion with the syntactic objects with the same name. For the

semantic objects, hybrid transition systems probably would have been

a better name, just like I/O automata should probably have been

called I/O transition systems.

Time

We assume a time axis T, which is a subgroup of (R,+), the real

numbers with addition. We assume that every infinite, monotone,

bounded sequence of elements of T has a limit in T.

Examples: the real numbers, the integers, {0}.

An interval J is a nonempty, convex subset of T.

Types We assume a universal set V of variables.

Each variable v has a static type type(v), which is the set of values it
may take.

In addition we assume a dynamic type dtype(v), which is a set of
functions from left-closed intervals of T to type(v) that is closed under
time shift, subinterval and pasting.

The pasting operations glues together a countable number of func-
tions which all (possibly except for the last one) have a right-closed
domain. At borderpoints value of leftmost function is taken.

Examples: (closure of) constant functions, continuous functions, dif-
ferentiable functions, smooth functions, integrable functions, smooth
functions with range [−1,1]...

Example Element of Dynamic Type

0 4

Alternatives to pasting closure:
“stuttering” events [LSVW96] or superdense computations [Pnueli94].

Trajectories

Let V be a set of variables and J a left-closed interval of T with

left endpoint equal to 0. Then a J-trajectory for V is a function

τ : J → val(V), such that for each v ∈ V , τ ↓ v ∈ dtype(v).

Lemma

The set of trajectories for V together with the prefix ordering ≤, is

an algebraic cpo.

A hybrid automaton (HA) is a tuple A = (W, X, Q,Θ, E, H, D, T) with

• W and X disjoint sets of external resp internal variables.
We call a valuation x for X a state and write V

∆
= W ∪ X.

• Q ⊆ val(X) a set of states and Θ ⊆ Q a nonempty set of start
states.

• E and H sets of external resp internal actions.
We write A

∆
= E ∪ H and let a, a′, a1, a2, . . . range over A.

• D ⊆ Q × A × Q a set of discrete transitions.
We write x

a→A x′ for (x, a, x′) ∈ D.

• A set T of trajectories for V such that τ(t)
X ∈ Q for all τ ∈ T
and t ∈ T. We require that T is closed under prefix, suffix and
countable concatenation.

Notation

In examples, unless specified otherwise, we take the time domain to

be the set of real numbers.

If not specified, we assume the set of states Q equals the set val(X)

of all valuations of internal variables.

Notation
We specify sets of trajectories using differential and algebraic equa-
tions (or inclusions).

A trajectory satisfies algebraic equation v = e if the constraint on
the variables expressed by this equation holds for each point on the
trajectory.

Trajectory τ satisfies differential equation v̇ = e if, for every t ∈
dom(τ),

v(t) = v(0) +
∫ t

0
e(t′)dt′

(cf “weak solutions” of Polderman and Willems).

Algebraic/differential inclusions are dealt with similarly.

Example HA Vehicle follows a suggested acceleration approximately,

to within an error of ε ≥ 0.

acc-in vel-out

Vehicle

acc

vel

W = {acc-in, vel-out}, X = {vel , acc}, Θ assigns 0 to both state vari-

ables, and E, H and D are empty.

Example (cnt) All variables have type R. The dynamic type of the

variables vel , vel-out , and acc-in is the (pasting closure of the) set of

continuous functions. The dynamic type of acc is the set of integrable

functions. Set T consists of all trajectories that satisfy:

˙vel = acc

acc(t) ∈ [acc-in(t) − ε, acc-in(t) + ε] for t > 0

vel-out = vel

(No constraints on values input variables in initial state of trajecto-

ries.)

Example HA Controller suggests accelerations for a vehicle, with the
intention of ensuring that the vehicle’s velocity does not exceed a
pre-specified velocity vmax.

vel-out acc-in

Controller

clock

vel-sensed

acc-suggested

suggest

Q is the set of valuations of X in which clock ≤ d, where d is a constant
satisfying vmax ≥ ε d. Θ assigns 0 to all state variables. E = ∅ and
H = {suggest}.

Example (cnt)

All variables are of type R. The dynamic types of vel-out , vel-sensed ,

acc-in, and clock are the (pasting closure of the) set of continuous

functions, and acc-suggested is a discrete variable.

Set D consists of the suggest steps specified by:

clock = d

vel-sensed + (acc-suggested′ + ε)d ≤ vmax

clock′ = 0

vel-sensed′ = vel-sensed

Example (cnt)

Set T consists of all trajectories that satisfy:

˙acc-suggested = 0

˙clock = 1

vel-sensed(t) = vel-out(t) for t > 0

acc-in = acc-suggested

Executions and traces

An execution fragment of a hybrid automaton A is a sequence α =

τ0 a1 τ1 a2 τ2 . . ., where (1) each τi is a trajectory in T , and (2) if τi is

not the last trajectory in α then τi.lstate
ai+1→ τi+1.fstate.

An execution fragment α is defined to be an execution if its first state

is a start state.

If α is an execution fragment, then the trace of α, denoted by trace(α),

is obtained by (1) first projecting all trajectories of α on the variables in

W , then (2) removing the actions in H, and finally (3) concatenating

all adjacent trajectories.

We define a trace of A to be the trace of an execution of A.

Implementation

Hybrid automata A1 and A2 are comparable if they have the same

external interface, that is, if W1 = W2 and E1 = E2. If A1 and A2 are

comparable then we say that A1 implements A2, denoted by A1 ≤ A2,

if the traces of A1 are included among those of A2.

Example

Denote the Vehicle HA by Vehicle(ε), making the uncertainty parameter

explicit. Assume 0 ≤ ε1 ≤ ε2. We claim that Vehicle(ε1) ≤ Vehicle(ε2).

We can show this by demonstrating that the identity mapping is a

simulation relation.

Hybrid automata A1 and A2 are compatible if H1 ∩A2 = H2 ∩A1 = ∅
and X1 ∩ V2 = X2 ∩ V1 = ∅.
If A1 and A2 are compatible then their composition A1‖A2 is the

structure (a HA in fact) A = (W, X, Q,Θ, E, H, D, T) where

• W = W1 ∪ W2 and X = X1 ∪ X2.

• Q = {x ∈ val(X) | x
X1 ∈ Q1 ∧ x
X2 ∈ Q2}.

• Θ = {x ∈ Q | x
X1 ∈ Θ1 ∧ x
X2 ∈ Θ2}.

• E = E1 ∪ E2 and H = H1 ∪ H2.

• For each x, x′ ∈ Q and each a ∈ A, x
a→A x′ iff for i = 1,2, either

(1) a ∈ Ai and x
Xi
a→i x′
Xi, or (2) a �∈ Ai and x
Xi = x′
Xi.

• T ⊆ trajs(V) is given by τ ∈ T ⇔ τ ↓ V1 ∈ T1 ∧ τ ↓ V2 ∈ T2.

Example

Consider the Vehicle and Controller automata (for the same ε). These

two HAs are compatible.

Controller

clock

vel-sensed

acc-suggested

suggest

vel-out

acc-in
Vehicle

vel

acc

By means of a standard inductive proof one may establish that, for

all reachable states of the composed system, vel ≤ vmax.

Compositionality

Theorem Suppose A1 and A2 are comparable HAs with A1 ≤ A2.

Suppose B is an HA that is compatible with each of A1 and A2.

Then A1‖B and A2‖B are comparable and A1‖B ≤ A2‖B.

Hiding

In [LSV02] we define two hiding operations for hybrid automata,

ActHide(E,A) and VarHide(W,A), which hide actions resp variables.

Both operations behave well wrt the trace implementation relation.

Example In the composition of the Vehicle and Controller HAs, we

may hide the acc-in variable used for communication between the two

components. Thus, we define

A = VarHide({acc-in},Vehicle‖Controller).

In the resulting automaton A, the only external variable is vel-out .

We may express the correctness of A by showing that it implements
an abstract specification automaton VSpec that simply represents the
constraint that the vehicle’s velocity is at most vmax.

vel-out

vel

VSpec

Q is the set of valuations of X in which vel ≤ vmax, Θ = Q, VSpec has
no actions or discrete transitions. The trajectories of VSpec are those
that satisfy vel-out = vel , in each state.

Example: LEGO car

(joint work with Ansgar Fehnker and Miaomiao Zhang)

Operation of LEGO car

����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������

����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������

lengthposition (x1,y1)

position (x2,y2)

right sensor at position (x4, y4)
length L

position (x,y)

a

left sensor at position (x3,y3)

length b

angle

θ

As long as sensor sees black background, opposite caterpillar moves forward.

If it sees white background then opposite caterpillar moves backward.

Verification challenge

If orientation of the car differs too much from orientation of the black

tape it may start bumping back and forth between different sides of

the tape, and as a result even change the direction in which it moves.

Under which assumptions on the initial orientation can we be sure

that the car will always move in a forward direction? (We assume the

tape is infinite)

Network of Hybrid Automata for LEGO car

Caterpillar1

Caterpillar2

Chassis

x1 θ1

x2

x3

y3

x4

y4

y2 θ2

y1

RCX

sensor1

sensor2
Sensor2

Sensor1

control1

control2

Chassis

Internal Variables
x, y, θ: differentiable

External Variables
x1, y1, θ1, x2, y2, θ2, x3, y3, x4, y4: differentiable

Initial States
θ ∈ [−α, α] ∧ y ∈ [−B, B] ∧ PLS ∈ [−B, B] ∧ PRS ∈ [−B, B]

where PLS = y + b sin θ + a cos θ and PRS = y + b sin θ − a cos θ

Equations

θ1 = θ2 = θ

x1 = x − 1

2
L sin θ

y1 = y +
1

2
L cos θ

x2 = x +
1

2
L sin θ

y2 = y − 1

2
L cos θ

x3 = x + b cos θ − a sin θ

y3 = y + b sin θ + a cos θ

x4 = x + b cos θ + a sin θ

y4 = y + b sin θ − a cos θ

Caterpillar Treads

External Variables
x1, y1, θ1: differentiable
control1 : Boolean, discrete

Equations

ẋ1 = if control1 then V cos θ1 else − V cos θ1
ẏ1 = if control1 then V sin θ1 else − V sin θ1

Sensors

External Variables
x3, y3: differentiable
sensor1 : discrete, {black , white}

Equations

sensor1 = if y3 ∈ [−B, B] then black else white

RCX

Internal Variables
c: differentiable, c ≤ tsample

sample1 , sample2 : discrete, enumerated type {black , white}

Initial states

c = 0 ∧ sample1 = sample2 = black

External Variables
sensor1 , sensor2 : discrete, enumerated type {black , white}
control1 , control2 : discrete Boolean variables

Internal transition

c ≥ tsample ∧ c′ = 0 ∧ sample1 ′ = sensor1 ∧ sample2 ′ = sensor2

Variables sample1 and sample2 remain constant along a trajectory.

Equations

ċ = 1
control1 = if sample2 = black then true else false

control2 = if sample1 = black then true else false

Four Modes Depending on Values control1 and control2

control1 ∧ control2 ⇒ ẋ = V cos θ ∧ ẏ = V sin θ ∧ θ̇ = 0

control1 ∧ ¬control2 ⇒ ẋ = 0 ∧ ẏ = 0 ∧ θ̇ =
−2V

L

¬control1 ∧ control2 ⇒ ẋ = 0 ∧ ẏ = 0 ∧ θ̇ =
2V

L
¬control1 ∧ ¬control2 ⇒ ẋ = −V cos θ ∧ ẏ = −V sin θ ∧ θ̇ = 0

Results I

Using a (self written) tool that over approximates the set of reachable

states based on bounded polyhedra, Ansgar Fehnker was able to verify

that, assuming that initially the car moves forward with an angle

between -45 and 45 degrees:

1. The car always stays on the tape and never moves backward.

2. The right sensor gets never closer to the upper boundary of the

tape than 2.1 mm.

3. If the car is in forward mode the car moves in the direction of the

x-axis with at least 8.9 cm/s (speed of car is 13 cm/s).

Experiments with the physical car confirm these results.

Results II

If the following constraints on the parameters hold, the car will never

move backward, and infinitely often be in forward mode:

ϕ1 = a cos(α) + b sin(α) ≥ V sin(α)tsample

ϕ2 = 2a cos(α) ≥ V sin(α)tsample

ϕ3 =
2V

L
tsample + arctan(

a

b
) ≤ α

ϕ4 = a cos(
V

L
tsample) + b sin(

V

L
tsample) ≤ B

Why are constraints ϕ1 and ϕ2 needed?

B
PLS

b

θ
PRS

(x, y)

2 a cos (θ)
a

b sin (θ) + a cos (θ)

Why is constraint ϕ3 needed?

- B

arctan(a/b)
2V/L tsample

Why is constraint ϕ4 needed?

B

- B

θ = V/L t sample

Results III

Extending analysis to include disturbances is easy!!!

Hybrid I/O Automata

A hybrid I/O automaton (HIOA) A is a tuple (H, U, Y, I, O) where

• H = (W, X, Q,Θ, E, H, D, T) is a hybrid automaton.

• U and Y partition W into input and output variables, resp.

Variables in Z
∆
= X ∪ Y are called locally controlled; V

∆
= W ∪ X.

• I and O partition E into input and output actions, resp.

Actions in L
∆
= H ∪ O are called locally controlled; A

∆
= E ∪ H.

such that ...

... the following axioms are satisfied:

E1 (Input action enabling)

For all x ∈ Q and all a ∈ I there exists x′ ∈ Q such that x
a→ x′.

E2 (Input trajectory enabling)

For all x ∈ Q and all υ ∈ trajs(U), there exists τ ∈ T such that

τ.fstate = x, τ ↓ U ≤ υ, and either
1. τ ↓ U = υ, or
2. τ is closed and some l ∈ L is enabled in τ.lstate.

A pre-HIOA is a structure as above, except that it need not to satisfy

E1 and E2.

Example

Chassis and Caterpillers of LEGO car cannot be viewed as HIOAs

However, their composition is a HIOA

Sensors and RCX are also HIOAs

Composition

Pre-HIOAs A1 and A2 are compatible if H1 and H2 are compatible

and Y1 ∩ Y2 = O1 ∩ O2 = ∅.

If A1 and A2 are compatible pre-HIOAs then their composition A1‖A2

is the tuple A = (H, U, Y, I, O) where

• H = H1‖H2,

• Y = Y1 ∪ Y2,

• U = (U1 ∪ U2) − Y ,

• O = O1 ∪ O2, and

• I = (I1 ∪ I2) − O.

Problem The composition of two pre-HIOAs is again a pre-HIOA.
However, the composition of two HIOAs is not always a HIOA: the
resulting structure not always satisfies E2!

Example Suppose A1 has no discrete steps, input variable v1, output
variable v2, and as trajectories all functions that satisfy

v2(t) = v1(t) + 1 for t > 0

Symmetrically, suppose A2 has no discrete steps, input variable v2,
output variable v1, and as trajectories all functions that satisfy

v1(t) = v2(t) + 1 for t > 0

Then the composed system has only point trajectories and does not
satisy E2.

Theorem If A1 and A2 are pre-HIOAs that satisfy E1, then the com-

position A1‖A2 also satisfies E1.

Theorem Let A1 and A2 be two compatible HIOAs such that U1∩Y2 =

∅. Then A1‖A2 is a HIOA.

An HIOA is oblivious if it satisfies:

OBL Let τ ∈ T and υ ∈ trajs(U) such that dom(τ) = dom(υ). Then
there exists τ ′ ∈ T such that:

1. τ ′ ↓ U = υ.

2. τ ′ ↓ Y = τ ↓ Y .

3. If τ is closed and some locally controlled action is enabled in
τ.lstate then some locally controlled action is enabled in τ ′.lstate.

Theorem Let A1 and A2 be two compatible HIOAs and suppose that
A1 is oblivious. Then A1‖A2 is a HIOA.

Example: Hybrid Control System

A

�

¶

�

D

�

C

ControlMeasurement

Input symbol Output symbol

Zeno
An execution fragment is Zeno if it is time-bounded and is either an
infinite sequence, or else a finite sequence ending with a trajectory
whose domain is right open.

An execution fragment is locally-Zeno if it is Zeno and contains in-
finitely many locally controlled actions.

A pre-HIOA is progressive if it has no locally-Zeno execution frag-
ments.

Theorem A progressive HIOA is I/O feasible, i.e. able to follow se-
quence of input trajectories interleaved with input actions.

Theorem The composition of progressive pre-HIOAs is progressive.

Problem

HIOAs involving only upper bounds on timing of events are typically

not progressive. Still, we very much like to use such HIOAs in speci-

fications.

Solution

Introduce notion of receptiveness.

Concept has been studied earlier by e.g. Dill and Abadi & Lamport

in terms of two-player games. We can use a simpler definition since

our model does not involve general liveness properties.

Receptiveness

A strategy for a pre-HIOA A is an HIOA A′ that differs from A only
in that D′ ⊆ D and T ′ ⊆ T .

A pre-HIOA is progressive if it has no locally-Zeno execution frag-
ments.

A pre-HIOA is receptive if it has a progressive strategy.

Theorem Every receptive pre-HIOA is I/O feasible.

Theorem Let A1 and A2 be two compatible receptive HIOAs with
progressive strategies A′

1 and A′
2 such that A′

1‖A′
2 is an HIOA. Then

A1‖A2 is a receptive HIOA with progressive strategy A′
1‖A′

2.

Conclusions / Future Work

• HIOA model is compositional and supports stepwise refinement.

• Model should be tested further by using it to describe and analyze
many more ambitious examples.

• Examples may come from area of embedded systems but for in-
stance also from biology or psychology.

• Probabilities need to be added.

• Need to incorporate additional analysis methods, e.g. Lyapunov
stability analysis and robust control methods.

• Much work required to automate these calculations!

Thank you for listening and for your comments!!!

