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Outline of this mini-course

Lecture 1 : Monday, June 23 
Examples of hybrid systems, modeling formalisms

Lecture 2 : Monday, June 23 
Transitions systems, temporal logic, refinement notions

Lecture 3 : Tuesday, June 24
Discrete abstractions of hybrid systems for verification

Lecture 4 : Tuesday, June 24
Discrete abstractions of continuous systems for control

Lecture 5 : Thursday, June 26
Bisimilar control systems

Continuous to continuous (Lecture 5)
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Lecture 4

Exponential number states
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Lecture 5

Bisimilar control systems

T xt+1 = Axt+But

yt+1 = Fyt +Gvt

yt+1 = Fyt +Gvt

Goal

Abstracted Model

Original Model
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213 xx'x +=

44 x'x =
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Game plan
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Embedding

Construction

Partition

Lossless Embedding

1T∆
kk1k BuAxx +=+

kk Cxy =

) O, ,Σ,Q, (T∆
Σ ⋅→= nRX  Q set State ==

mR U Σ  set Label ==

pR YO   set nObservatio ==

Cxx Map nObservatioLinear =

XUX   Relation Transition ××⊆→

BuAxx  xx 122

u

1 +=⇔→

∆
U T System Transition
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Loose Control…

1T∆
kk1k BuAxx +=+

kk Cxy =

)  O, , Σ, Q,(T∆
Σ ⋅→= nRX Q  set State ==

} 1{  Σ  set Label =

pR Y O   setnObservatio ==

Cxx  Map nObservatio Linear =

X{1}X   Relation Transition ××⊆→

BuAxx  with   u  xx 122

1

1 +=∃⇔→

∆
1  T SystemTransition

Keep time….

1T∆
kk1k BuAxx +=+

kk Cxy =

) O, ,Σ,Q, (T∆
Σ ⋅→= nRX  Q set State ==

+= N Σ  set Label

pR YO   set nObservatio ==

Cxx Map nObservatioLinear =

XNX   Relation Transition ××⊆→ +

  xx 2
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∆
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Loose control and time…

1T∆
kk1k BuAxx +=+

kk Cxy =

)  O, , Σ, Q,(T∆
Σ ⋅→= nRX Q  set State ==

} τ{ Σ set Label =

pR Y O   setnObservatio ==

Cxx  Map nObservatio Linear =

∆
τ T SystemTransition

X} τ{ X   Relation Transition ××⊆→
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  with u,...,u  and k 1-k0∃∃

Finite Observations

1T∆
kk1k BuAxx +=+

kk Cxy =

) O, ,Σ,Q, (T∆
Σ ⋅→=

}o,...,o,{o O  nsObservatio Finite p21=

OX:x  Map  Polyhedral →

 Systems Transition All
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Keep continuous time….

1T∆
BuAxx' +=

Cxy =

)  O, , Σ, Q,(T∆
Σ ⋅→= nRX Q  set State ==

+= R Σ  set Label

pR Y O   setnObservatio ==

Cxx  Map nObservatio Linear =

XRX   Relation Transition ××⊆→ +

  xx 2

t
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∆
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  with  u t][0,∃

u(s)dsBexex 
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Loose continuous time….

1T∆
BuAxx' +=

Cxy =

) O, ,Σ,Q, (T∆
Σ ⋅→= nRX  Q set State ==

} τ{  Σ  set Label =

pR YO   set nObservatio ==

Cxx Map nObservatioLinear =

X}τ{ X   Relation Transition ××⊆→

  xx 2

τ

1 ⇔→

∆
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Partitions

1T

≈/TT

∆ ≈∆/

Embedding

Construction

Partition

Respecting the observations
Two states are equivalent iff

for some surjective map z=Hx.  Simulation S=(x,Hx)

Partition is observation preserving iff
Linear observations : 

Finite, polyhedral observations : 

)H(KerxxHx  Hxxx 212121 ∈−⇔=⇔≈

)C(Ker)H(Ker ⊆

)a(Ker)H(Ker i⊆

Respecting the transitions depends on the embedding. 

Consider the transition system

Proposition : Partition respects the transitions iff

Respecting the controlled transitions

∆
U T

1x BuAx'x 11 +=
u

2x BuAx'x 22 +=u
≈ ≈

)H(Ker)H(AKer ⊆

Consider the control-abstract transition system

Proposition* : Partition respects the transitions iff

Respecting the timed transitions
∆
1  T

1x u some for  BuAx'x 11 +=1

2x u'some for  'BuAx'x 22 +=1
≈ ≈

)B(R)H(Ker)H(AKer +⊆

Consider the control-abstract transition system

Proposition* : Partition respects the transitions iff

Similarly
∆
N  T

+

1x 'x1
k

2x 'x 2
k

≈ ≈

)B(R)H(Ker)H(AKer +⊆

Consider the time-abstract transition system

Proposition* : Partition respects the transitions iff

Respecting the untimed transitions
∆

  τT

1x 'x1
τ

2x 'x 2

≈ ≈

)B,A(R)H(Ker)H(AKer +⊆

τ
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Consider the time-abstract transition system

Proposition* : Partition respects the transitions iff

Timed, continuous transitions
∆

  RT
+

1x 'x1
t

2x 'x 2

≈ ≈

)B,A(R)H(Ker)H(AKer +⊆

t

Consider the time-abstract transition system

Proposition* : Partition respects the transitions iff

Untimed, continuous transitions
∆

  τT

1x 'x1

2x 'x 2

≈ ≈

)B,A(R)H(Ker)H(AKer +⊆

τ

τ

Summary
In addition to preserving the observations…

Embedding Condition

B)R(A,  Ker(H)Ker(H) A +⊆

R(B)  Ker(H)  Ker(H) A +⊆∆
1  T ∆

N  T
+

∆
  τT

∆
  τT

∆
  RT

+

B)R(A,  Ker(H)Ker(H) A +⊆

B)R(A,  Ker(H)Ker(H) A +⊆

Coarsest Bisimulation
Find map z=Hx which abstracts as much as possible.
Thus Ker(H) must be maximal but also…

Preserves observations 

Preserves transitions of 

Other variations for other embeddings…

)C(Ker)H(Ker ⊆

R(B)  Ker(H)  Ker(H) A +⊆

∆
1  T

Coarsest Bisimulation Algorithm

Maximal controlled invariant subspace computation

Then                  is the maximal desired subspace

Once V* is computed, then pick map z=Hx such that 

Ker(H)=V*

)C(Ker   V0 =

))B(RV(AVV 1k
1

1k1k +∩= −
−

−+

nV   *V =

Constructing the abstraction 

1T kk1k BuAxx +=+ kk1k GvFzz +=+

kk Cxy = kk Dzy =
kk Hxz =

∆
1  T ≈/T∆

1  
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Construction of the generator of system

Equivalently, for any x, u, there must exist a v such that 

Construction
≈/T∆

1  

1x usome for  BuAxx 12 +=1

1z vsomefor  GvFzz 12 +=1
11 Hxz = 22 Hxz =

GvFHxHBuHAx +=+

H-related control systems
Consider discrete-time or continuous-time linear systems

(X) x’ =Ax + Bu
(Z)    z’ =Fz + Gv

where z=Hx is surjective. Then (Z) is H-related to (X)  if 
for all x,u there exists v such that 

H(Ax+Bu) = FHx + Gv

Proposition* : Given x’=Ax+Bu and onto map y=Hx choose

G=[ HB   HAKer(H) ]
Then z’=Fz+Gv is H-related to x’=Ax+Bu

+= HAH F

Bisimilar Linear Systems 

1T kk1k BuAxx +=+ kk1k GvFzz +=+

kk Cxy = kk Dzy =
kk Hxz =

∆
1  T ≈/T∆

1  

)C(Ker)H(Ker ⊆
R(B)  Ker(H)  Ker(H) A +⊆

+= HAHF
G=[ HB HAKer(H) ]

+= CH D

Goal achieved

Abstracted Model

Original Model

31 x'x =
uxx'x 422 ++−=

v'z 1 =

42 xz =
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otherwise                                        o
10xx5x5x if     o
10xx5x5xif          o
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44 x'x =

Observations

Observations

22 z'z =

11 xz =
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otherwise                                        o
10zz5z5z if     o
10zz5z5z if           o

z

3
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11 xz =
42 xz =

Preserving Controllability
Theorem* :  Given onto map z=Hx and linear system

x’=Ax+Bu (X) 
construct the canonical H-related system

z’=Fz+Gv (Z)
with                and G=[ HB   HAKer(H) ].  Assume that

Then (X) is controllable if and only if (Z) is controllable.

This leads to a hierarchical controllability algorithm…

 B)R(A,  Ker(H) ⊆

+= HAHF 

*G.J. Pappas, G. Lafferriere, and S. Sastry, Hierarchically Consistent Control Systems,  IEEE Transactions on Automatic Control,  June 2000

) G)R(F, (1-HB)R(A,  satisfy sets Reachable =

Hierarchical Controllability Algorithm

Abstraction

Original Model

Abstraction

x’ = Ax + Bu

z’ = Fz + Gv

y’ = w

z=Hx

Hierarchical Algorithm

0 Initially x’=Ax+Bu,0=<k<n
1 If rank(B) is

0 : System uncontrollable
n : System controllable

2 Find H with
Ker(H) = Im[B AB…A B]

3 Compute
A:=HAH
B:=[HB HAKer(H)]

4 Go to 2

+

k
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Hierarchical Controllability Algorithm
Comparison with Kalman rank test

 
algorithm our of flops

tests other of flops Ratio =

Hierarchical Controllability Algorithm
Comparison with Popov-Belevitch-Hautus (PBH) test

Algorithm with k=0 recovers best known algorithm

Hierarchical Controllability Algorithm
Comparison of our Algorithm with k=0 and k=1

Higher Lie brackets help for underactuated systems

Property Preserving Abstractions
Control is critical for abstraction!

Property Condition

Controllability

Output Controllability

Trajectories

Stabilizability B)R(A,X  Ker(H) - +⊆

R(B)  Ker(H) ⊆

B)R(A,  Ker(H)  Ker(H) A +⊆

 B)R(A, Ker(H) ⊆

Some take home messages

New (hybrid) models, but also new (hybrid) questions
Partial synchronization of continuous systems 

Logic is entering our world
Temporal logic for complicated specifications
First-order logic for syntactically specifying hybrid systems

Algorithmic approaches to analysis and controller design
Is your design method computationally feasible?
Is your design method computationally efficient?
Focus on tool development

Decidability boundary for hybrid problems is mature
Complexity boundary is not

(Bi)simulation relations are very useful 
Theoretically : As a system theoretic concept
Practically : As a complexity reduction mechanism

Some future directions

Stochastic hybrid systems

Equivalence (model reduction) of hybrid systems

Approximate but efficient algorithms for analysis and design

Understanding compositionality and concurrency

Hybrid (heterogeneous) systems in a broader context

A unified systems theory 
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