
1

Identification of Hybrid SystemsIdentification of Hybrid Systems

Alberto BemporadAlberto Bemporad

Dip. di Dip. di IngegneriaIngegneria dell’Informazionedell’Informazione
UniversitàUniversità deglidegli StudiStudi di Sienadi Siena

Università degli Studi di Siena
Facoltà di Ingegneria

bemporad@dii.unisi.itbemporad@dii.unisi.it
http://http://www.dii.unisi.it/~bemporadwww.dii.unisi.it/~bemporad

GoalGoal
• Sometimes a hybrid model of the process (or of a part of it) 

cannot be derived manually from available knowledge.

• Therefore, a model must be either
– Estimated from data (model unknown)

– or hybridized before it can be used for control/analysis (model 
known but nonlinear)

• If a linear model is enough, no problem: several algorithms are 
available (e.g.: use Ljung’s ID TBX)

• If switching modes are known and data can be generated for 
each mode, no problem: we identify one linear model per 
mode (e.g.: use Ljung’s ID TBX)

• If modes & dynamics must be identified together, we need 

hybrid system identification

PWARXPWARX ModelsModels

Consider PieceWise Affine autoRegressive eXogenous (PWARX)
models of the form 

where: 

unknowns:

PWAPWA Identification ProblemIdentification Problem

Estimate from data both the parameters of the 
affine submodels and the partition of the PWA map

Example Let the data be generated by the PWARX system
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PWAPWA Identification ProblemIdentification Problem

A. Known Guardlines (partition Hj known, θj unknown): 
ordinary least-squares problem (or linear/quadratic program if 
linear bounds over θj are given)  EASY PROBLEM

B. Unknown Guardlines (partition Hj and θj unknown):
generally non-convex, local minima  HARD PROBLEM!

- Polynomial factorization (algebraic approach)

- Hyperplane clustering in data space

Approaches to Approaches to PWAPWA IdentificationIdentification

• Mixed-integer linear or quadratic programming

• Bounded error & partition of infeasible set of 
inequalities

• K-means clustering in a feature space

A. Bemporad, A. Garulli, S. Paoletti and A. Vicino, “A Greedy Approach 
to Identification of Piecewise Affine Models”, HSCC’03

G. Ferrari-Trecate, M. Muselli, D. Liberati, and M. Morari, “A clustering 
technique for the identification of piecewise affine systems”, Automatica,
2003

J. Roll, A. Bemporad and L. Ljung, “Identification of hybrid systems via 
mixed-integer programming”, Automatica, to appear.

(R. Vidal, S. Soatto, 
S. Sastry, 2003)

(E. Münz, V. Krebs, 
IFAC 2002)

• Other approaches:  

MixedMixed--Integer ApproachInteger Approach

MixedMixed--Integer ApproachInteger Approach

Hinging Hyperplane

hybrid models

+ +

Example:

(Breiman, 1993)
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MixedMixed--Integer ApproachInteger Approach

one-step ahead
predicted output
(t=0, 1, ..., N-1)

optimization problem:

• Could be solved using numerical methods such as the 
Gauss-Newton method. (Breiman, 1993)

• Problem: Local minima.

• We want to find a method that finds the global 
minimum 

MixedMixed--Integer ApproachInteger Approach
• A general Mixed-Integer Quadratic Program (MIQP) 

can be written as

(if Q=0 the problem is an MILP)

1. If we set                             , we get

the cost function becomes quadratic in (θi,zi(t)):

MixedMixed--Integer ApproachInteger Approach

2. Introduce binary variables

3. Get linear mixed-integer constraints:

(if-then-else condition)

• ε is a small positive scalar (e.g., the machine precision),
• M and m are upper and lower bounds on         (from bounds on θi)

The identification problem is an MIQP !

MixedMixed--Integer ApproachInteger Approach

Example: Identify the following system

MILP: 66 variables (of which 20 integers) and 168 constraints. 
Problem solved using Cplex 6.5 (1014 LP solved in 0.68 s)
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MixedMixed--Integer ApproachInteger Approach

System identified 
using noiseless data

Using data with
Var(e(t))=0.1

Fitting an ARX
model to same data 
(Var(e(t))=0.1)

Problem: Worst-case complexity is exponential in the 
number of hinge functions and in the number of data.

MixedMixed--Integer ApproachInteger Approach

Wiener models:

• Linear system G(z) followed by a one dimensional static 
nonlinearity f.

• Assumptions: f is piecewise affine, continuous, invertible ⇒
the system is piecewise affine.

x yu

• The identification problem can be again solved via MIQP or 
MILP

• Complexity is polynomial in worst-case in the number of data 
and number of max function

• Still the complexity depends heavily on the number of data

Result:

MixedMixed--Integer ApproachInteger Approach

• Global optimal solution can be obtained

• A 1-norm objective function gives an MILP problem
a 2-norm objective function gives an MIQP problem

• Worst-case performance is exponential in the number 
functions and quite bad in the number of data!

Comments:

Need to find methods that are suboptimal 
but computationally more efficient !

BoundedBounded--Error ApproachError Approach
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Bounded Error ConditionBounded Error Condition

Consider again a PWARX model of the form 

Bounded-error: select a bound δ>0 and require that the identified
model satisfies the condition

Problem Given N datapoints (yk,xk), k=1, ..., N, estimate the min  
integer s, a partition            , and params θ1, ... ,θs such that the 
corresponding PWA model satisfies the bounded error condition

Role of δ: trade off between quality of fit and model complexity

MIN MIN PFSPFS ProblemProblem

Given δ>0 and the (possibly infeasible) system of N linear 
complementary inequalities

find a partition of this system of inequalities into a minimum 
number s of feasible subsystems of inequalities

Problem restated as a MIN PFS problem:
(MINimum Partition into Feasible Subsystems)

• The partition of the complementary ineqs provides data 
classification (=clusters)

• Each subsystem of ineqs defines the set of linear models θi

that are compatible with the data in cluster #i

• MIN PFS is an NP-hard problem

A Greedy Algorithm for MIN A Greedy Algorithm for MIN PFSPFS

A. Starting from an infeasible set of inequalities, choose a 
parameter θ that satisfies the largest number of ineqs

(Amaldi & Mattavelli, Disc. Appl. Math., 2002) 

and classify those satisfied ineqs as the first cluster
(MAXimum Feasible Subsystem, MAX FS)

B. Iteratively repeat the MAX FS problem on the remaining ineqs

• The MAX FS problem is still NP-hard

• Amaldi & Mattavelli propose to tackle it using a randomized 
and thermal relaxation method

PWAPWA Identification AlgorithmIdentification Algorithm

1. Initialize: exploit a greedy strategy for partitioning 
an infeasible system of linear inequalities into a 
minimum number of feasible subsystems

2. Refine the estimates: alternate between datapoint
reassignment and parameter update 

3. Reduce the number of submodels: 
a. join clusters whose model θi is similar, or 
b. remove clusters that contain too few points

3. Estimate the partition: compute a separating 
hyperplane for each pair of clusters of regression 
vectors (alternative: use multi-category 
classification techniques)
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Step #1: Greedy Algorithm for MINStep #1: Greedy Algorithm for MIN--PFSPFS

Comments on the greedy algorithm

• The greedy strategy is not guaranteed to yield a minimum
number of partitions (it solves MIN PFS only suboptimally)

• Randomness involved for tackling the MAX FS problem

• The cardinality and the composition of the clusters may
depend on the order in which the feasible subsystems are 
extracted 

• Some datapoints might be consistent with more than one
submodel

The greedy strategy can only be used for initialization
of the clusters. Then we need a procedure for the 
refinement of the estimates

Example (cont’d)Example (cont’d)
Consider again the PWARX system

greedy
algorithm

initial classification 
(6 clusters → quite rough)

Step #2: Refinement ProcedureStep #2: Refinement Procedure

(linear programming)

Step #2: CommentsStep #2: Comments

Comments about the iterative procedure

• Why the projection estimate?

• Why the distinction among infeasible, undecidable, and 
feasible datapoints?

No feasible datapoint at refinement t becomes infeasible at
refinement t+1

- Infeasible datapoints are not consistent with any submodel, and may be 
outliers ⇒ neglecting them helps improving the quality of the fit

- Undecidable datapoints are consistent with more than one submodel
⇒ neglecting them helps to reduce misclassifications
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Step #3: Reduce Number of Step #3: Reduce Number of SubmodelsSubmodels

• Similarity of the parameter vectors

• Cardinality of the clusters

Thresholds α and β should be suitably chosen in order to reduce 
the number of submodels still preserving a good fit of the data

Example (cont’d)Example (cont’d)
Consider again the PWARX system

Classification of the regression
vectors after the refinement 
(3 clusters)

Number of undecidable datapoints
vs number of refinements

Step #4: Estimation of the PartitionStep #4: Estimation of the Partition

Estimation of the partition of the regressor set

• This step can be performed by computing a separating
hyperplane for each pair of final clusters Fi of regression vectors

• If two clusters Fi and Fj are not linearly separable, look for a 
hyperplane that minimizes the number of misclassified points 
(generalized separating hyperplane)

• Linear Support Vector Machines (SVMs) can be used to 
compute the optimal generalized separating hyperplane of two 
clusters

Alternative:

use multi-category classification techniques
(computationally more demanding, but
better results)
(Bennet and Mangasarian, 1992)

Step #4: Estimation of the PartitionStep #4: Estimation of the Partition

• Given two clusters Fi and Fj, a separating hyperplane 'x a+b=0 
is such that

Generalized separating hyperplane and MAX FS

• A solution of the MAX FS problem of the above system of 
ineqs is a hyperplane that minimizes the number of 
misclassified points

• The misclassified points, if any, are removed from Fi and/or Fj

• Then, compute the optimal separating hyperplane of Fi and Fj

via quadratic programming

'x
a+

b=
-1

'x
a+

b=
1
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Example (cont’d)Example (cont’d)
Consider again the PWARX system

Final classification of the 
regression vectors, and true
(dashed lines) and estimated 
(solid lines) partition of the 
regressor set

Example 2: Nonlinear Example 2: Nonlinear FncFnc Approx.Approx.
We want to hybridize the nonlinear function

N=1000 datapoints, δ=0.05, α=10%, β=1%

s=6 submodels
(CPU time: 5.7 s, PIII 1GHz)

Feature Space Clustering ApproachFeature Space Clustering Approach

(thanks to G.Ferrari-Trecate for providing this material)

Assumptions (Assumptions (PWARXPWARX Model)Model)

• Model orders     ,     fixedna nb

The switching law is assumed unknown: Both the submodels and the
shape of the regions must be estimated from the dataset

• The number    of submodels is knowns

Dataset: S = {(x(k), y(k)), k = 1, . . ., N}
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Hybrid Identification AlgorithmHybrid Identification Algorithm

Regression Pattern Recognition
Clustering

f :Rn7→R f :Rn7→{0 1 ... p}

Learning from a finite dataset

Reconstruction
of continuous
behaviors
(dynamics)

Reconstruction
of discrete
behaviors

(switching)

Hybrid Identification

Toy ExampleToy Example

• datapointsN = 50

ïk ø N (0 , 0 .01) X3X2X1

y(k) =
u(kà 1) + 2 + ï(k)
à u(kà 1) + ï(k)
u(kà 1) + 2 + ï(k)




u(kà1)∈X1

u(kà1)∈X2

u(kà1)∈X3if

if
if

•

Dataset

The first and the third submodel
have the same coefficients (but they
are defined on different regions)

C2

C1

Step #1: Build Local DatasetsStep #1: Build Local Datasets

The PWARX model is locally linear:
Small sets of datapoints that are close to each other are 

likely to belong to the same submodel

For each datapoint x (j ) , y (j )( ) build a set C j collecting x(j), y(j)( )
and the first           neighboring points (                    )c>na+nb+1c à 1

There is a one-to-one map between each

Sets collecting points belonging to a
single subsystem: Pure sets (e.g.     ) C1

Sets collecting points belonging to 
different subsystems: Mixed sets (e.g.     ) C2

C j x(j), y(j)( )and the datapointset

x(1)

Step #2: Identification of Local ModelsStep #2: Identification of Local Models

For each local dataset      identify an affine model through least squares 
(vector of coefficients:       )

C 2

C 1

C j

• Mixed sets should give isolated vectors of coefficients òLS,j

"High" S/N ratio and few mixed sets  ⇒ Clusters of vectors       + few outliers

Outlier

Clusters

òLS,j

òLS,j

• Pure sets collecting datapoints belonging to the same submodel should
produce similar òLS,j

C 3
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The Feature VectorsThe Feature Vectors

Problem: The same vector of coefficients can characterize submodels
defined on different regions (Ferrari-Trecate et. al, HSCC 2001)

Consider the feature vectors mj = c
1 P

(x,y)∈Cj
xøj =

òLS,j

mj

ô õ

The vector    takes into account the spatial localization of the -th local modeløj j

Outlier

3 Clusters

Exploit such measures in a "K-means like" algorithm that divides the
feature vectors in subsets     , 

Step #3: Clustering the feature vectorsStep #3: Clustering the feature vectors

Outlier

3 ClustersNext problem: find the clusters in the 
feature space 

The accuracy must not be spoiled 
by the outliers

Introduce measures of the confidence one
should have about the fact that     is based 
on a mixed local dataset

øj

D i i=1, . . .,s

The clustering algorithm proposed in (Ferrari-Trecate et. al, HSCC 2001) guarantees
convergence to a (possibly suboptimal) set of clusters 

in a finite number of iterations

Clustering Step (Toy Example)Clustering Step (Toy Example)

D 1

D 2

D 3
Outlier

Unclassified feature vectors Classified feature vectors

Step #4: Classification of the Step #4: Classification of the DatapointsDatapoints

Build the sets                     of classified datapoints according to the ruleF i i=1, . . .,s

if           , then  øj ∈Di x(j), y(j)( ) ∈ Fi

F 1

F 2

F 3
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Step #5: Identification of the Step #5: Identification of the SubmodelsSubmodels

Use the data in each set      for estimating both the affine submodels
and the regions

F i

F 1

F 2

F 3

Submodel coefficients:

Weighted Least Squares exploiting the confidence measures

• Linear Support Vector Machines 

• Multicategory Robust Linear Programming 
(Bennet & Mangasarian, 1992)

(Vapnik, 1998)

- solved via linear/quadratic programming

Shape of the polyhedral regions:

Toy Problem: Identification ResultsToy Problem: Identification Results

Computational time: 1.26 s. (on a Pentium 600 Mhz running Matlab 5.3)

True model Identified model

y(k)=
u(kà1)+2+ï(k)
àu(kà1)+ï(k)
u(kà1)+2+ï(k)




u(kà1)∈ [à4,à1)
u(kà1)∈ [à1,2]
u(kà1)∈ [2,4]

y(k)=
u(kà1)+1.99+ï(k)
à1.05u(kà1)+0.01+ï(k)
1.02u(kà1)+1.92+ï(k)




u(kà1)∈[à4,à0.8]
u(kà1)∈[à0.8,1.8]
u(kà1)∈[1.8,4]

Example: Industrial TransformerExample: Industrial Transformer

Industrial transformers used in a protection system:

• The measurement of          is difficult and costly

• The measurement of         is easy

i1(t)
i2(t)

Goal: Estimate         from      i1(t) i2(t)

Problems:
- Hysteresis and saturations occur for currents of high intensity
- Derive a model for simulation
- Sampling time: 5.0000e-005 s. 

(S. Bittanti et al., 2001)

Identified PWARX modelIdentified PWARX model

i1(k)=aj,1i2(kà1)+aj,24i2(kà1) [i2(kà1) ∆i2(kà1)]∈Xj

j=1,. . .,5

Identified submodels and
classified datapoints
(440 measurements)

PWARX model (five regions)

Computational time: 15.76 s.
(Pentium 600 Mhz, Matlab 5.3)

Local datasets     of 50 pointsC j
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Validation ResultsValidation Results

Predicted (--) and true primary current

• There are nonlinear (ad hoc) simulators for industrial transformers
(S. Bittanti et al., 2001)

Advantage of PWARX models: Simple enough for on-line implementation

ConclusionsConclusions

• Main goal of hybrid systems identification:
– Develop simple switching models from data (or from 

more complex models) to be used for control/analysis 
purposes

• Hybrid system identification is a hard problem

• Theory is still in its infancy

• Some algorithms are already available

• Applications: 
– Biomedical (Analysis of the EEG ⇒ Brain-Computer 

interface; Dialysis: early assessment of the therapy duration)

– Ecological (trophic, oxygen and nutrient dynamics in 
aquatic systems)

– ... (many others !)


