Identification of Hybrid Systems

Alberto Bemporad

Dip. di Ingegneria dell Informazione
Universita degli Studi di Siena

bemporad@dii.unisi.it
http://www.dii.unisi.it/~bemporad

N Undscnsit gl Siods & Sicma
Facolta di Ingegneri

Goal

« Sometimes a hybrid model of the process (or of a part of it)
cannot be derived manually from available knowledge.

* Therefore, a model must be either
— Estimated from data (model unknown)

— or hybridized before it can be used for control/analysis (model
known but nonlinear)

« If a linear model is enough, no problem: several algorithms are
available (e.g.: use Ljung’'s ID TBX)

« If switching modes are known and data can be generated for
each mode, no problem: we identify one linear model per
mode (e.g.: use Ljung's ID TBX)

« If modes & dynamics must be identified together, we need

hybrid system identification

PWARX Models

Consider PieceWise Affine autoRegressive eXogenous (PWARX)
models of the form

'1 ‘ +e. ifx.e X forsomei=1,..., s
2

yp = 0

where:
e . € R is the system output

e 1; € R" is the regression vector,
— I
eg. xp = [?:lrk—l R . uk—uh]
e ¢, € R is the error

o {X;}i_, X;={z: H;z <0}, is a polyhedral partition
of the regressor set X' C R"

PWA Identification Problem

Estimate from data both the parameters of the
affine submodels and the partition of the PWA map

Example Let the data be generated by the PWARX system
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PWA Identification Problem Approaches to PWA Identification

N " 2 — 7, i . . . . .
min = 3 (3 —-To;ﬂ_',-”jj(:,;,)) iz v Euclidean norm « Mixed-integer linear or quadratic programming
0;.5; 2N (5 \ 3 [v]lsc = max|v]| oco-norm J. Roll, A. Bemporad and L. Ljung, “Identification of hybrid systems via

1 ifH;p <0 Jvll1 = Xlvl 1-norm mixed-integer programming”, Automatica, to appear.
subj. to J;(pr) = e
| 0 orhenwee Bounded & partition of infeasible set of
: . ounded error artition ot Inteasible set O
+ linear bounds over 8;, H; . iy P
inequalities

A. Bemporad, A. Garulli, S. Paoletti and A. Vicino, “A Greedy Approach

A. Known Guardlines (partition H; known, 6; unknown): to Identification of Piecewise Affine Models’, HSCC'03

ordinary least-squares problem (or linear/quadratic program if

linear bounds over 6. are given) EASY PROBLEM . .
7 9 ) S o « K-means clustering in a feature space
G. Ferrari-Trecate, M. Muselli, D. Liberati, and M. Morari, “A clustering

N L technique for the identification of piecewise affine systems', Automatica,
B. Unknown Guardlines (partition H; and 6; unknown): 2003

generally non-convex, local minima HARD PROBLEM!

Other approaches:
- Polynomial factorization (algebraic approach)(R. Vidal, S. Soatto,
S. Sastry, 2003)

- Hyperplane clustering in data space (E. Minz, V. Krebs,
IFAC 2002)

Mixed-Integer Approach

s Hinging Hyperplane
—— + max{¢}8;,0
Yt = ¢t 0+i; {901, 0} + e hybrid models
(Breiman, 1993)

Example:
y(t) = y(t — 1) + 0.2u(t — 1) + max{—y(t — 1) + 2u(t — 1),0} + max{2y(t — 1) + u(t — 1),0}

Mixed-Integer Approach : 2




Mixed-Integer Approach

S one-step ahead
§(t10) = ¢' ()00 + > £max{¢/(t)6;,0}| predicted output

i=1 (t=0, 1, ..., N-1)
1 N-1
optimization problem: |min— " [y — #(t|0)]?
# 2N =

» Could be solved using numerical methods such as the
Gauss-Newton method. (Breiman, 1993)

* Problem: Local minima.

* We want to find a method that finds the global
minimum

Mixed-Integer Approach

» A general Mixed-Integer Quadratic Program (MIQP)
can be written as

T

min, s [z’ 5’}@{5} +p’[$

5
st. C “’g <d
de{o,1}m (z € R™)

(if Q=0 the problem is an MILP)

1. If we set z{(t) = max{¢'()6;,0}, we get

S
G(t0) = o' ()00 + > +2;(1)
=1

the cost function becomes quadratic in (6,,2,(t)):

N-1 N-1 s
S [y — GNP = Y Iy — ¢ (000 — > +z:(0)]?
(=0 =0 i=1

Mixed-Integer Approach

1 if /(£)6; >0

2. Introduce binary variables &;(t) = { 0 otherwise

2 (t) = max{¢'(¢)8;,0} = ©'(¢)'8;5;(t)  (if-then-else condition)
3. Get linear mixed-integer constraints:

&' (1)0; < M§;(t)
& (#)0; > e+ (m —e)(1 — 5;())

—Mo;(t) + z(t) <0

mé;(t) —z{(t) <0

M1 = 8;(8) — z(t) < —p(t)'6;
m (1 —6;(1)) + z(t) < o(1)'6;

¢ is a small positive scalar (e.g., the machine precision),
« M and m are upper and lower bounds on ¢'(¢)8; (from bounds on 6,)

The identification problem is an MIQP !

Mixed-Integer Approach

Example: Identify the following system
v = 0.8y;_1 + 0.4u;_1 — 0.1 + max{—0.3y,_1 + 0.6u,_; + 0.3,0}

Estrnaton data and identhed HH model

ult=1) ¥it-1}

MILP: 66 variables (of which 20 integers) and 168 constraints.
Problem solved using Cplex 6.5 (1014 LP solved in 0.68 s)




Mixed-Integer Approach
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Problem: Worst-case complexity is exponential in the
number of hinge functions and in the number of data.

Mixed-Integer Approach

Wiener models:

u biz b ™ X y
l+rarz 1 b fapz®

* Linear system G(z) followed by a one dimensional static
nonlinearity f.

« Assumptions: fis piecewise affine, continuous, invertible =
the system is piecewise affine.

Result:

* The identification problem can be again solved via MIQP or
MILP

« Complexity is polynomial in worst-case in the number of data
and number of max function

» Still the complexity depends heavily on the number of data

Mixed-Integer Approach

Comments:
» Global optimal solution can be obtained

« A 1-norm objective function gives an MILP problem
a 2-norm objective function gives an MIQP problem

* Worst-case performance is exponential in the number
functions and quite bad in the number of data!

Need to find methods that are suboptimal
but computationally more efficient !

Bounded-Error Approach




Bounded Error Condition

Consider again a PWARX model of the form
yp = flzg) +e(k)
flz) = 0 [I"’} if 2, € X; for somei=1,...,s

1

Lo
P

Bounded-error: select a bound &0 and require that the identified
model satisfies the condition

lyp = flap)| <6, Ye=1,...,] N

Role of &: trade off between quality of fit and model complexity

Problem Given N datapoints (y,,z;), k=1, ..., N, estimate the min
integer s, a partition &1,...,&s, and params 0,, ... ,6, such that the
corresponding PWA model satisfies the bounded error condition

MIN PFS Problem

Problem restated as a MIN PFS problem:
(MINimum Partition into Feasible Subsystems)

Given >0 and the (possibly infeasible) system of N linear
complementary inequalities

find a partition of this system of inequalities into a minimum
number s of feasible subsystems of inequalities

* The partition of the complementary inegs provides data
classification (=clusters)

» Each subsystem of ineqgs defines the set of linear models 6,
that are compatible with the data in cluster #:i

* MIN PFS is an NP-hard problem

A Greedy Algorithm for MIN PFS

A. Starting from an infeasible set of inequalities, choose a
parameter 0 that satisfies the largest number of ineqgs

=k <8, k=1,....N,

and classify those satisfied inegs as the first cluster
(MAXimum Feasible Subsystem, MAX FS)

B. Iteratively repeat the MAX FS problem on the remaining ineqgs

« The MAX FS problem is still NP-hard

« Amaldi & Mattavelli propose to tackle it using a randomized
and thermal relaxation method
(Amaldi & Mattavelli, Disc. Appl. Math., 2002)

PWA Identification Algorithm

1. Initialize: exploit a greedy strategy for partitioning
an infeasible system of linear inequalities into a
minimum number of feasible subsystems

2. Refine the estimates: alternate between datapoint
reassignment and parameter update

3. Reduce the number of submodels:
a. join clusters whose model 0, is similar, or
b. remove clusters that contain too few points

3. Estimate the partition: compute a separating
hyperplane for each pair of clusters of regression
vectors (alternative: use multi-category
classification techniques)




Step #1: Greedy Algorithm for MIN-PFS

Comments on the greedy algorithm

* The greedy strategy is not guaranteed to yield a minimum
number of partitions (it solves MIN PFS only suboptimally)

« Randomness involved for tackling the MAX FS problem

* The cardinality and the composition of the clusters may
depend on the order in which the feasible subsystems are
extracted

*« Some datapoints might be consistent with more than one
submodel

The greedy strategy can only be used for initialization
of the clusters. Then we need a procedure for the
refinement of the estimates

Example (cont'd)

Consider again the PWARX system
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initial classification
(6 clusters — quite rough)

Step #2: Refinement Procedure

1. Parameter update. For all i, compute 4"' "% as:

(1 ) N .
a8t = argmin - max ) [ = 40 projection estimate
(w21 JED; (linear programming)

2. Datapoint reassignment. For each datapoint (y;.x.):
o If |y — p;‘ﬁf"” < 4 for only one i, then assign (y.x;) to cluster DE')
o If [y — gjﬁf’” = § for all i, then mark (y,z;) as infeasible

o Otherwise, mark (y, ) as undecidable

3. Termination

1f 88+ — 9] /|8 <+ for all i = 1,...,5, then exit. Otherwise, set
t=1t+1 and go to step 1 (v > 0 is a given termination threshold)

Step #2: Comments

Comments about the iterative procedure

« Why the projection estimate?

No feasible datapoint at refinement ¢t becomes infeasible at
refinement t+1

max Y — p;ﬁfH—l) < max Y — -p;'_éﬂ?r-(') <4
(ypz)eD? (g ) e
« Why the distinction among infeasible, undecidable, and

feasible datapoints?

- Infeasible datapoints are not consistent with any submodel, and may be
outliers = neglecting them helps improving the quality of the fit

- Undecidable datapoints are consistent with more than one submodel
= neglecting them helps to reduce misclassifications




Step #3: Reduce Number of Submodels

- Similarity of the parameter vectors (7! ~ ")

If ap jo = . min{_;:(ﬁf”.ﬁf}r)) < a, then merge submodels i* and j*
<i< <’

(e.g.: n(@0, 80 2 a0 _a§f>|gmin{|a§”|.|r;j”||})

« Cardinality of the clusters (D! has too few points)
card(Df-(r))

If 3 = min
1<i<s N

i

< 3, then discard the i*-th submodel

Thresholds a and B should be suitably chosen in order to reduce
the number of submodels still preserving a good fit of the data

Example (cont'd)

Consider again the PWARX system

[-04 1 15]pp+e if [4 -1 10]g,<0 with ¢, = [yp_1 up_1 1),
- -4 1 -10 lug| <5
vi=) [05 -1 -05]p+ep if { 5 1 -6 }W‘S and e < 0.1

[-03 05 —17]pp+ep if [-5 -1 6]pp <0
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Number of refinements
Classification of the regression
vectors after the refinement
(3 clusters)

Number of undecidable datapoints
vs number of refinements

Step #4: Estimation of the Partition

Estimation of the partition of the regressor set

* This step can be performed by computing a separating
hyperplane for each pair of final clusters F; of regression vectors

« If two clusters F, and F; are not linearly separable, look for a
hyperplane that minimizes the number of misclassified points
(generalized separating hyperplane)

» Linear Support Vector Machines (SVMs) can be used to

compute the optimal generalized separating hyperplane of two
clusters

Alternative: : )//

use multi-category classification techniques £ }_/’»

(computationally more demanding, but /
better results) . .

(Bennet and Mangasarian, 1992) // v s !

Step #4: Estimation of the Partition
Generalized separating hyperplane and MAX FS

* Given two clusters F; and F}, a separating hyperplane z'a+4b=0
is such that

{x}ca—‘rbﬁ—l Vi, € F;

w%a—l—bZl VszFj

* A solution of the MAX FS problem of the above system of
inegs is a hyperplane that minimizes the number of
misclassified points

+ The misclassified points, if any, are removed from F, and/or F;

* Then, compute the optimal separating hyperplane of F; and F;
via quadratic programming




Example (cont'd)

Consider again the PWARX system

[-04 1 15]|pu4e, if [4 -1 10]g,<0 with ¢, = [yp_1 up_1 1),
- -4 1 -10 lug| <5
v =) [05 -1 ~05]gtep if { 5 1 -6 }W‘S and e < 0.1

[-03 05 —17]pp+e if [-5 -1 6]pp<C

Final classification of the
regression vectors, and true
(dashed lines) and estimated
(solid lines) partition of the
regressor set

Example 2: Nonlinear Fnc Approx.

We want to hybridize the nonlinear function y = \/|z1| — z»
N=1000 datapoints, §=0.05, a=10%, B=1%

Nonlinear function
PWA appromimation

s=6 submodels
10 (CPU time: 5.7 s, PIII 1GHz)

Feature Space Clustering Approach

(thanks to G.Ferrari-Trecate for providing this material)

Assumptions (PWARX Model)

Dataset: S = {(z(k),y(k)), k=1,...,N}

* Model orders n,, n; fixed

e The number s of submodels is known

ufk-1) oA . yik-1)

The switching law is assumed unknown: Both the submodels and the
shape of the regions must be estimated from the dataset




Hybrid Identification Algorithm

Learning from a finite dataset

Regression
[ R'—R

Clustering

Reconstruction

of continuous of discrete

behaviors
(switching)

behaviors
(dynamics)

% 1%

Hybrid Identification

Pattern Recognition

[R—{01...p}

Reconstruction

Toy Example

wk—1)+24€ek) if uk-1)eX
yk) = —ulk—1) +ek) I ulk-1) €,
(uk—1) +2+ek) if uk-1)cX

The first and the third submode/

have the same coefficients (but they °
are defined on different regions)

Dataset B
¢ N = 50 datapoints 0/\\
o €~ N(0,0.01) T X, X,

Step #1: Build Local Datasets

The PWARX model is locally linear:

Small sets of datapoints that are close to each other are

likely to belong to the same submodel

For each datapoint (= (7). y(4)) build a set C; collecting ((j), ¥ (j))

and the first ¢ — 1 neighboring points ( ¢ >n, +n,+1)

There is a one-to-one map between each
set C; and the datapoint (z(j),y(j))

&l

Sets collecting points belonging to a z,
single subsystem: Pure sets (e.g. C )

Sets collecting points belonging to
different subsystems: Mixed sets (e.g. C,)

et vm(lf

Step #2: Identification of Local Models

For each local dataset C ; identify an affine model through least squares
(vector of coefficients: §*5-i)

* Pure sets collecting datapoints belonging to the same submodel should
produce similar 6>
« Mixed sets should give isolated vectors of coefficients ¢~

"High" S/N ratio and few mixed sets = Clusters of vectors 6“5+ few outliers

i
C, . " ™ Clusters
—

2 o u

4

£z C ] 3 .
ob # % R Outlier
63

R R S N
uik-1} (=,




The Feature Vectors

Problem: The same vector of coefficients can characterize submodels
defined on different regions (Ferrari-Trecate et. a/, HSCC 2001)

. G- 1
Consider the feature vectors &= mj = ;Z(w)ec T
m R J

Yy

» *+=—_3 Clusters

1 - / Outlier
e ¥ (©)

i

kb &

o
5 G
. []
s R
? oy,

The vector &; takes into account the spatial localization of the j-th local model

Step #3: Clustering the feature vectors

Next problem: find the clusters in the <«—_3 Clusters

feature space 4 .
iy " - Outlier
—0\ \g O
The accuracy must not be spoiled &1y %
-2y £l
3

by the outliers

Introduce measures of the confidence one o
should have about the fact that &; is based s _ AR
on a mixed local dataset @y s

2 [‘}LS. IP.

Exploit such measures in a "K-means like" algorithm that divides the
feature vectors in subsets D;, i =1,...,s

The clustering algorithm proposed in (Ferrari-Trecate et. a4, HSCC 2001) guarantees
convergence to a (possibly suboptimal) set of clusters
in a finite number of iterations

Clustering Step (Toy Example)

Unclassified feature vectors Classified feature vectors
3 3, .
2 # 2. *# D 3
1 1] Outlier
0 i o
g x < F ©)
" D
2 E HH 2y & 2
3 o 3
i :
4. 44
D,
Y Y
0, 0,
5\\\ P 5 . -5\\\ s 1
s ‘ﬂs o . 0> o
@ [C @ o),

Step #4: Classification of the Datapoints

Build the sets F; i=1,...,s of classified datapoints according to the rule

if & €D, then (2(5), y(j)) € F

E o
ufk-1}




Step #5: Identification of the Submodels

Use the data in each set F ; for estimating both the affine submodels
and the regions

Submodel coefficients:
Weighted Least Squares exploiting the confidence measures

Shape of the polyhedral regions: .
e Linear Support Vector Machines (vapnik, 1998) =
- solved via linear/quadratic programming -« #° Fs
« Multicategory Robust Linear Programming =
(Bennet & Mangasarian, 1992) o Lt e g Fy
AT ",

Toy Problem: Identification Results

True model
uk—1)+2+ek) ulk—1)e[-4,-1)

yk) =S —ulk—1)+ek) uk—-1)e[-1,2
(ulk—1) +2+ek) uk-1)e24]

El o 1
ufk1)

Identified model

u(k —1) +1.99 +€(k)
(k) :{

FEEE]

EREN
ufk1)

Computational time: 1.26 s. (on a Pentium 600 Mhz running Matlab 5.3)

ufk—1)€[-4,-08
~L05u(k — 1) + 001 + (k) uk—1)€[-08 1§
(L02u(k —1) + 1.92+e(k)  wk—1)€[l84)

Example: Industrial Transformer

Industrial transformers used in a protection system.
(S. Bittanti et al,, 2001)

in

» The measurement of 4,(¢) is difficult and costly l

* The measurement of 4,(t) is easy =
=

Goal: Estimate ¢, (¢) from i,(t) f_"‘t’

Problems:

- Hysteresis and saturations occur for currents of high intensity
- Derive a model for simulation
- Sampling time: 5.0000e-005 s.

Identified

PWARX model (five regions)
i1(k) = ajia(k — 1) +a;200(k —
j=1,...5

Identified submodels and
classified datapoints ||
(440 measurements)

Local datasets C ;0f 50 points

Computational time: 15.76 s.
(Pentium 600 Mhz, Matlab 5.3)

PWARX model

) lik—1) Aik-1] €

=100
200

A (k1)




Validation Results

Predicted (--) and true primary current
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» There are nonlinear (ad hoc) simulators for industrial transformers
(S. Bittanti et a/,, 2001)

Advantage of PWARX models: Simple enough for on-line implementation

Conclusions

Main goal of hybrid systems identification:

— Develop simple switching models from data (or from
more complex models) to be used for control/analysis
purposes

Hybrid system identification is a hard problem
Theory is still in its infancy
Some algorithms are already available

Applications:

— Biomedical (Analysis of the EEG = Brain-Computer
interface; Dialysis: early assessment of the therapy duration)

— Ecological (trophic, oxygen and nutrient dynamics in
aquatic systems)

— ... (many others !)




