

Identification of Hybrid Systems

Alberto Bemporad

Dip. di Ingegneria dell'Informazione Università degli Studi di Siena

bemporad@dii.unisi.it http://www.dii.unisi.it/~bemporad

rsità degli Studi di Siena Facoltà di Ingegneria

Goal

- Sometimes a *hybrid model* of the process (or of a part of it) cannot be derived manually from available knowledge.
- Therefore, a model must be either
 - Estimated from data (model unknown)
 - or *hybridized* before it can be used for control/analysis (model known but nonlinear)
- If a linear model is enough, no problem: several algorithms are available (e.g.: use Ljung's ID TBX)
- If switching modes are known and data can be generated for each mode, no problem: we identify one linear model per mode (e.g.: use Ljung's ID TBX)
- If modes & dynamics must be identified together, we need

hybrid system identification

PWARX Models

Consider PieceWise Affine autoRegressive eXogenous (PWARX) models of the form

$$u_k = \theta'_i \begin{bmatrix} x_k \\ 1 \\ \varphi_k \end{bmatrix} + e_k \quad \text{if } x_k \in \mathcal{X}_i \text{ for some } i = 1, \dots, s$$

where:

- $y_k \in \mathbb{R}$ is the system output
- $x_k \in \mathbb{R}^n$ is the regression vector,

e.g.
$$x_k = [y_{k-1} \dots y_{k-n_a} u_{k-1} \dots u_{k-n_b}]^{t}$$

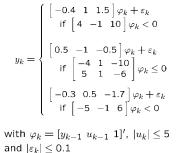
- $e_k \in \mathbb{R}$ is the error
- $\{\mathcal{X}_i\}_{i=1}^s$, $\mathcal{X}_i = \{x : H_i x \leq 0\}$, is a polyhedral partition of the regressor set $\mathcal{X} \subseteq \mathbb{R}^n$

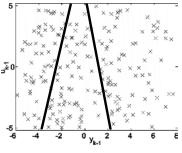
unknowns: $\{H_i, \ heta_i, \ s\}, \ i=1,\ldots,s$

PWA Identification Problem

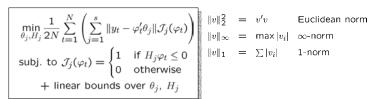
Estimate from data **both** the parameters of the affine submodels **and** the partition of the PWA map

Example Let the data be generated by the PWARX system





PWA Identification Problem



A. Known Guardlines (partition H_j known, θ_j unknown): ordinary least-squares problem (or linear/quadratic program if linear bounds over θ_i are given) **EASY PROBLEM**

B. Unknown Guardlines (partition H_j and θ_j unknown): generally non-convex, local minima **HARD PROBLEM!**



Approaches to PWA Identification

Mixed-integer linear or quadratic programming

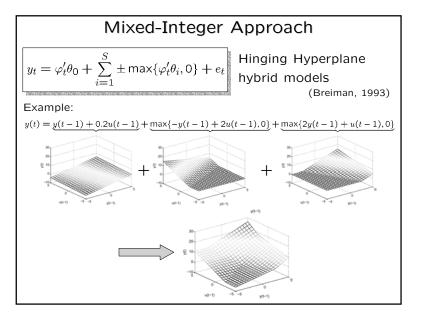
J. Roll, A. Bemporad and L. Ljung, "Identification of hybrid systems via mixed-integer programming", Automatica, to appear.

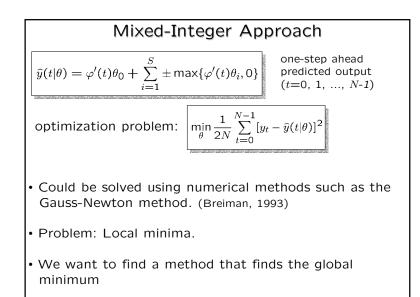
Bounded error & partition of infeasible set of inequalities

A. Bemporad, A. Garulli, S. Paoletti and A. Vicino, "A Greedy Approach to Identification of Piecewise Affine Models", ${\sf HSCC'03}$

- K-means clustering in a feature space G. Ferrari-Trecate, M. Muselli, D. Liberati, and M. Morari, "A clustering technique for the identification of piecewise affine systems", Automatica, 2003
- Other approaches:
- Polynomial factorization (algebraic approach) (R. Vidal, S. Soatto, S. Sastry, 2003)

- Hyperplane clustering in data space	(E. Münz, V. Krebs IFAC 2002)
---------------------------------------	----------------------------------

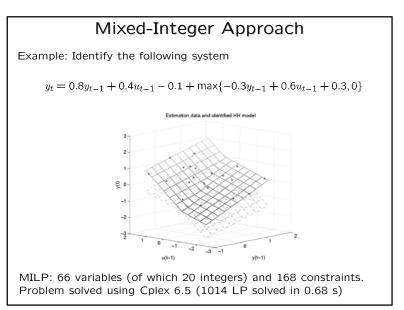


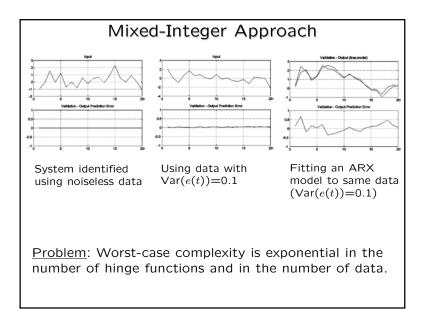


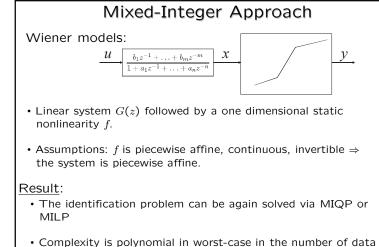
Mixed-Integer Approach	
2. Introduce binary variables $\delta_i(t) = \begin{cases} 1 & \text{if } \varphi'(t)\theta_i \geq 0 \\ 0 & \text{otherwise} \end{cases}$	
$z_i(t) = \max\{\phi'(t)\theta_i, 0\} = \varphi'(t)'\theta_i\delta_i(t)$ (if-then-else condition)	
3. Get linear mixed-integer constraints:	
$arphi'(t) heta_i \leq M\delta_i(t)$	
$arphi'(t) heta_i\geq arepsilon+(m-arepsilon)(1-\delta_i(t))$	
$-M\delta_i(t) + z_i(t) \le 0$	
$m\delta_i(t)-z_i(t)\leq 0$	
$-M(1-\delta_i(t))-z_i(t)\leq -arphi(t)' heta_i$	
$m(1-\delta_i(t))+z_i(t)\leq arphi(t)' heta_i$	
• ε is a small positive scalar (e.g., the machine precision), • M and m are upper and lower bounds on $\varphi'(t)\theta_i$ (from bounds on θ_i)	

The identification problem is an MIQP !

Mixed-Integer Approach	
• A general Mixed-Integer Quadratic Program (MIQP) can be written as	
$ \begin{array}{ c c c c c } \min_{x,\delta} & \left[\begin{array}{c} x' & \delta' \end{array} \right] Q \left[\begin{array}{c} x\\ \delta \end{array} \right] + p' \left[\begin{array}{c} x\\ \delta \end{array} \right] \\ \text{s.t.} & C \left[\begin{array}{c} x\\ \delta \end{array} \right] \leq d \\ & \delta \in \{0,1\}^m \qquad (x \in \mathbb{R}^n) \end{array} \end{array} $	
(if Q=0 the problem is an MILP)	
1. If we set $z_i(t) = \max\{ \varphi'(t) heta_i, 0 \}$, we get	
$\hat{y}(t heta) = \varphi'(t) heta_0 + \sum_{i=1}^{S} \pm z_i(t)$	
the cost function becomes quadratic in $(\theta_i, z_i(t))$:	
$\sum_{t=0}^{N-1} [y_t - \hat{y}(t \theta)]^2 = \sum_{t=0}^{N-1} [y_t - \varphi'(t)\theta_0 - \sum_{i=1}^{S} \pm z_i(t)]^2$	







- Complexity is polynomial in worst-case in the number of data and number of max function
- Still the complexity depends heavily on the number of data

Mixed-Integer Approach

Comments:

- Global optimal solution can be obtained
- A 1-norm objective function gives an MILP problem a 2-norm objective function gives an MIQP problem
- Worst-case performance is exponential in the number functions and quite bad in the number of data!

Need to find methods that are suboptimal but computationally more efficient !

Bounded-Error Approach

Bounded Error Condition

Consider again a PWARX model of the form

$$\begin{array}{rcl} y_k &=& f(x_k) + e(k) \\ f(x_k) &=& \theta_i' \underbrace{\begin{bmatrix} x_k \\ 1 \\ \varphi_k \end{bmatrix}} & \text{if } x_k \in \mathcal{X}_i \text{ for some } i = 1, \dots, s \end{array}$$

Bounded-error: select a bound $\delta\!\!\!>\!\!0$ and require that the identified model satisfies the condition

$$|y_k - f(x_k)| \le \delta$$
, $\forall k = 1, \dots, N$

Role of δ : trade off between *quality of fit* and *model complexity*

Problem Given *N* datapoints (y_k, x_k) , $k=1, \ldots, N$, estimate the min integer *s*, a partition $\mathcal{X}_1, \ldots, \mathcal{X}_s$, and params $\theta_1, \ldots, \theta_s$ such that the corresponding PWA model satisfies the bounded error condition

A Greedy Algorithm for MIN PFS

A. Starting from an infeasible set of inequalities, choose a parameter θ that satisfies the largest number of ineqs

$$\left|y_k - \varphi'_k \theta\right| \le \delta, \quad k = 1, \dots, N,$$

and classify those satisfied ineqs as the first cluster (MAXimum Feasible Subsystem, MAX FS)

- B. Iteratively repeat the MAX FS problem on the remaining ineqs
- The MAX FS problem is still NP-hard
- Amaldi & Mattavelli propose to tackle it using a randomized and thermal relaxation method

(Amaldi & Mattavelli, Disc. Appl. Math., 2002)

MIN PFS Problem

Problem restated as a MIN PFS problem: (*MINimum Partition into Feasible Subsystems*)

Given δ >0 and the (possibly infeasible) system of N linear complementary inequalities

$$|y_k - \varphi'_k \theta| \le \delta$$
, $k = 1, \dots, N$,

find a partition of this system of inequalities into a minimum number s of feasible subsystems of inequalities

- The partition of the complementary ineqs provides data classification (=clusters)
- Each subsystem of ineqs defines the set of linear models θ_i that are compatible with the data in cluster #i

• MIN PFS is an NP-hard problem

PWA Identification Algorithm

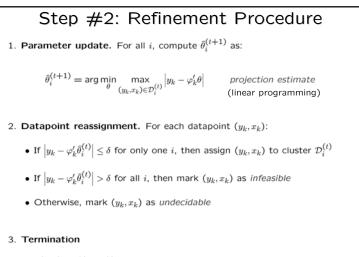
- 1. Initialize: exploit a greedy strategy for partitioning an infeasible system of linear inequalities into a minimum number of feasible subsystems
- 2. Refine the estimates: alternate between datapoint reassignment and parameter update
- 3. Reduce the number of submodels:
 - a. join clusters whose model θ_i is similar, or
 - b. remove clusters that contain too few points
- 3. Estimate the partition: compute a separating hyperplane for each pair of clusters of regression vectors (alternative: use multi-category classification techniques)

Step #1: Greedy Algorithm for MIN-PFS

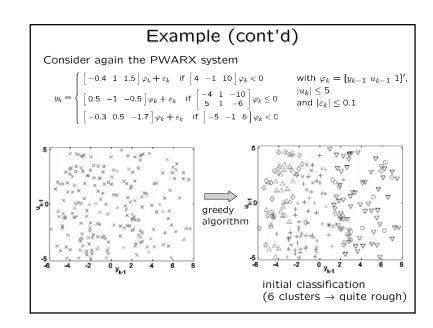
Comments on the greedy algorithm

- The greedy strategy is not guaranteed to yield a minimum number of partitions (it solves MIN PFS only suboptimally)
- Randomness involved for tackling the MAX FS problem
- The cardinality and the composition of the clusters may depend on the order in which the feasible subsystems are extracted
- Some datapoints might be consistent with more than one submodel

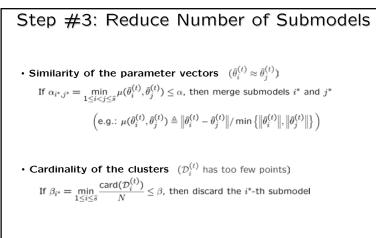
The greedy strategy can only be used for **initialization** of the clusters. Then we need a procedure for the **refinement** of the estimates



If $\|\hat{\theta}_i^{(t+1)} - \hat{\theta}_i^{(t)}\| / \|\hat{\theta}_i^{(t)}\| \le \gamma$ for all $i = 1, \dots, \hat{s}$, then exit. Otherwise, set t = t + 1 and go to step 1 ($\gamma > 0$ is a given termination threshold)



Step #2: Comments
Comments about the iterative procedure
 Why the projection estimate? No feasible datapoint at refinement t becomes infeasible at refinement t+1
$\max_{(y_k,x_k)\in\mathcal{D}_i^{(t)}}\left y_k-\varphi_k'\widehat{\theta}_i^{(t+1)}\right \leq \max_{(y_k,x_k)\in\mathcal{D}_i^{(t)}}\left y_k-\varphi_k'\widehat{\theta}_i^{(t)}\right \leq \delta$
• Why the distinction among <i>infeasible</i> , <i>undecidable</i> , and <i>feasible</i> datapoints?
- Infeasible datapoints are not consistent with any submodel, and may be $outliers \Rightarrow$ neglecting them helps improving the quality of the fit
- Undecidable datapoints are consistent with more than one submodel \Rightarrow neglecting them helps to reduce misclassifications



Thresholds α and β should be suitably chosen in order to reduce the number of submodels still preserving a good fit of the data

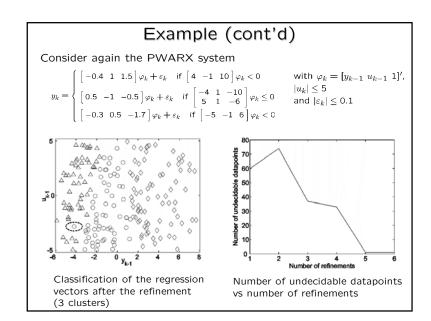
Step #4: Estimation of the Partition

Estimation of the partition of the regressor set

- This step can be performed by computing a *separating* hyperplane for each pair of final clusters F_i of regression vectors
- If two clusters F_i and F_j are not linearly separable, look for a hyperplane that minimizes the number of misclassified points (generalized separating hyperplane)
- Linear Support Vector Machines (SVMs) can be used to compute the *optimal generalized separating hyperplane* of two clusters

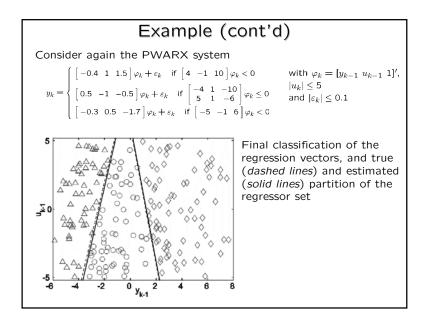
Alternative:

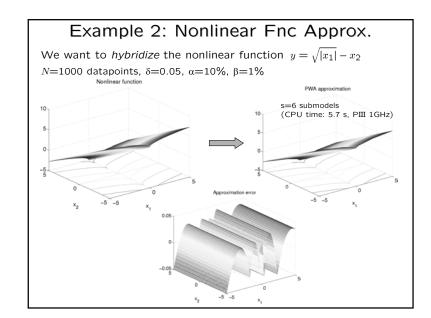
use multi-category classification techniques (computationally more demanding, but better results) (Bennet and Mangasarian, 1992)

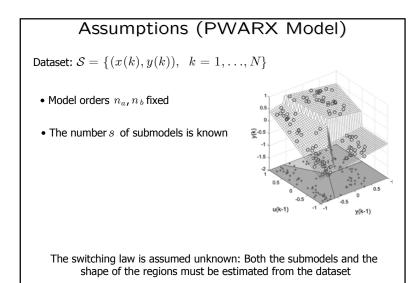


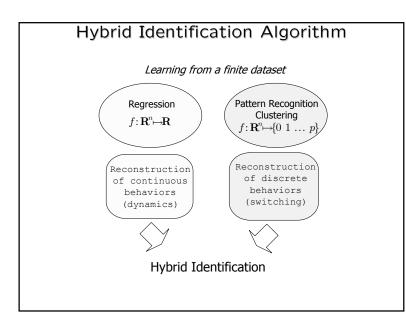
Step #4: Estimation of the Partition Generalized separating hyperplane and MAX FS • Given two clusters F_i and F_j , a separating hyperplane $x \cdot a + b = 0$ is such that $\begin{cases} x'_k a + b \le -1 \quad \forall x_k \in F_i \\ x'_k a + b \ge 1 \quad \forall x_k \in F_j \end{cases}$ • A solution of the MAX FS problem of the above system of ineqs is a hyperplane that minimizes the number of misclassified points, if any, are removed from F_i and/or F_j

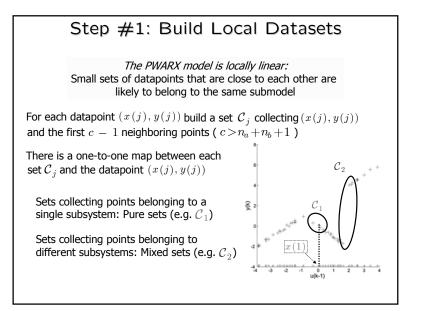
- Then, compute the optimal separating hyperplane of ${\cal F}_i$ and ${\cal F}_j$ via quadratic programming

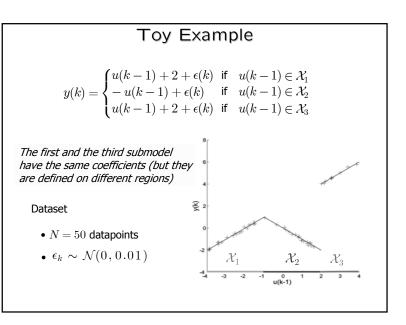


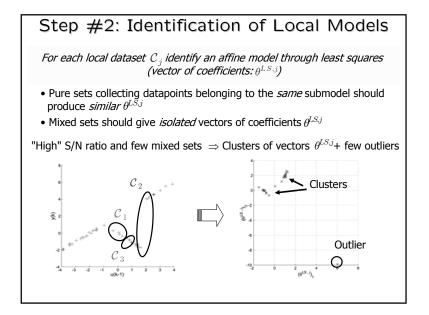


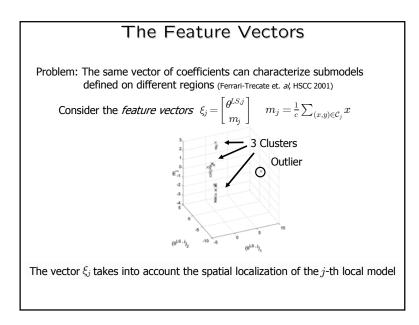


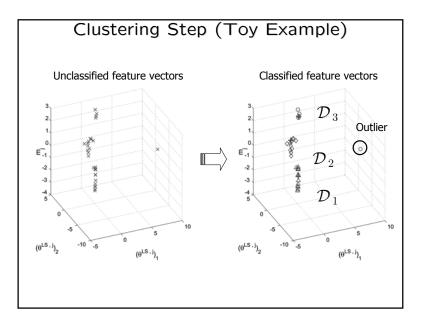


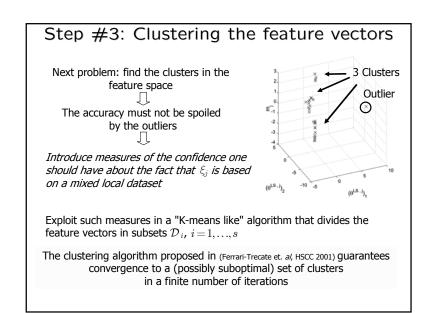


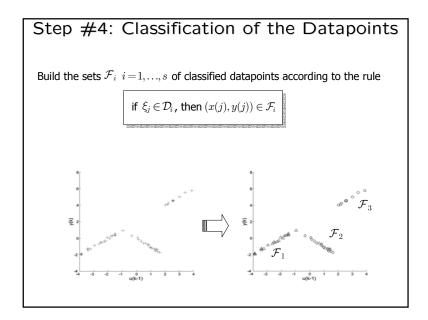


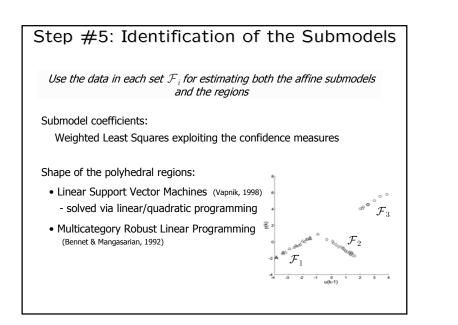


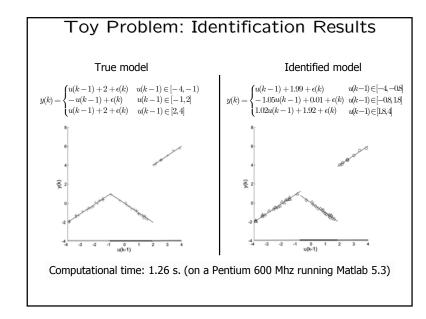


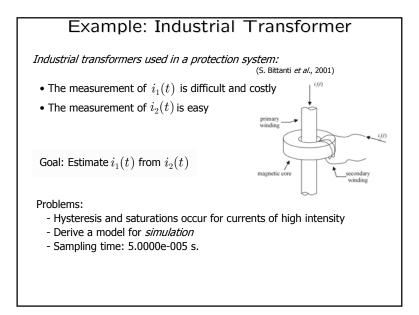


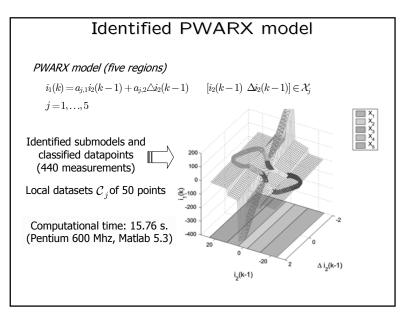


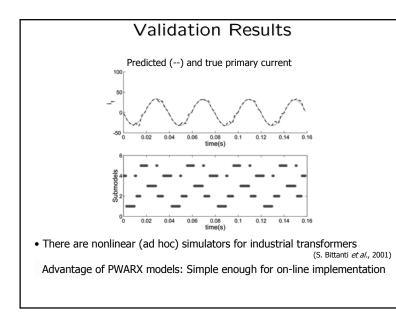












Conclusions Main goal of hybrid systems identification: Develop simple switching models from data (or from more complex models) to be used for control/analysis purposes Hybrid system identification is a hard problem Theory is still in its infancy Some algorithms are already available Applications: Biomedical (Analysis of the EEG ⇒ Brain-Computer interface; Dialysis: early assessment of the therapy duration) Ecological (trophic, oxygen and nutrient dynamics in aquatic systems) ... (many others !)