An introduction to hybrid systems theory and applications

George J. Pappas

DISC Summer School on

Departments of ESE and CIS

Modeling and Control of Hybrid Systems

University of Pennsylvania

Veldhoven, The Netherlands

pappasg@ee.upenn.edu

June 23-26, 2003 http://www.seas.upenn.edu/~pappasg http://lcewww.et.tudelft.nl/~disc_hs/

Thanks to

School Organizers

Maurice Heemels

Bart De Schutter

Alberto Bemporad

Agnes van Regteren

and DISC

⊼Penn

Acknowledgments

Postdocs

Paulo Tabuada

Herbert Tanner

Ph.D Students

Ali Ahmazadeh

George Fainekos

Hadas Kress Gazit

Hakan Yazarel Michael Zavlanos

M.S. students

Selcuk Bayraktar

Pranav Srivastava

A Penn

Collaborators

Conaborators Rajeev Alur, Datta Godbole, Tom Henzinger, Ali Jadbabaie, John Koo, Vijay Kumar, Gerardo Lafferierre, Insup Lee, John Lygeros, Shankar Sastry, Omid Shakernia, Claire Tomlin, Sergio Yovine

Support

NSF Career **NSFITR** ARO MURI

DARPA MoBIES

Honeywell

Microsoft

Goals for this mini-course

Why hybrid systems?

Emphasis on engineering and biological examples

Modeling of hybrid systems

Emphasis on abstraction and refinement

Analysis of hybrid systems

Emphasis on algorithmic verification

Synthesis of hybrid controllers

Emphasis on temporal logic synthesis

Warning: All questions and answers are biased and incomplete!

Some references

Bisimilar linear systems George J. Pappas Automatica, To appear in 2003,

Model checking LTL over controllable linear systems is decidable
Paulo Tabuada and George J. Pappas
Hybrid Systems : Computation and Control , Lecture Notes in Computer Science, Prague, Czech Republic, April 2003

Modeling and analyzing biomolecular networks
Rajeev Alur, Calin Belta, Vijay Kumar, Max Mintz, George J. Pappas, Harvey Rubin, and Jonathan Schug
Computing in Science and Engineering, 4(1):20-31, January 2002.

Symbolic reachability computations for families of linear vector fields G. Lafferriere, G. J. Pappas, and S. Yovine Journal of Symbolic Computation, 32(3):231-253, September 2001.

screte abstractions of hybrid systems Alur, T. Henzinger, G. Lafferriere, G. Pappas oceedings of the IEEE, 88(2):971-984, July 2000

chically consistent control systems J. Pappas, Gerardo Lafferriere, and Shankar Sastry ransactions on Automatic Control, 45(6):1144-1160, June 2000.

P-minimal hybrid systems Lafferriere, 6, J. Pappas, and S. Sastry lathematics of Control, Signals, and Systems, 13(1):1-21, March 2000.

Decidable controller synthesis for classes of linear systems
Omid Shakernia, George J. Pappas, and Shankar Sastry
Hybrid Systems Computation and Control, Lecture Notes in Computer Science, volume 1790, Springer, 2000

⊼ Penn

Outline of this mini-course

Lecture 1 : Monday, June 23

Examples of hybrid systems, modeling formalisms

Lecture 2: Monday, June 23

Transitions systems, temporal logic, refinement notions

Lecture 3: Tuesday, June 24

Discrete abstractions of hybrid systems for verification

Lecture 4: Tuesday, June 24

Discrete abstractions of continuous systems for control

Lecture 5: Thursday, June 26 Bisimilar control systems

Hybrid behavior arises in

Hybrid dynamics
Hybrid model is a simplification of a larger nonlinear model
Quantized control of continuous systems
Input and observation sets are finite
Logic based switching
Software is designed to supervise various dynamics/controllers
Partial synchronization of many continuous systems
Resource allocation for competing multi-agent systems
Hybrid specifications of continuous systems
Plant is continuous, but specification is discrete or hybrid...

Research Issues

Modeling Issues

• Well posedness, robustness, zenoness

Analysis
Stability issues, qualitative theory, parametric analysis

Verification

Algorithmic methods that verify system performance

Controller Synthesis

Algorithmic methods that design hybrid controllers

Simulation

• Mixed signal simulation, event detection, modularity

Code generation

From hybrid models to embedded code

Complexity

• Compositionality and hierarchies

 $\textcolor{red}{\textbf{Tools}}: \textbf{HyTech, Checkmate, d/dt, HYSDEL, Stateflow, Charon}$

