Transition systems, femporal logic,
refinement notions

George J. Pappas DISC Summer School on
Departments of ESE and CIS Modeling and Control of Hybrid Systems
Veldhoven, The Netherlands

pappasg@ee.upenn.edu June 23-26, 2003
http://uw B /L cewsu 16t n1/7di

University of Pennsylvania

&Penn

Outline of this mini-course

Lecture 1: Monday, June 23

Examples of hybrid systems, modeling formalisms
Lecture 2 : Monday, June 23

Transitions systems, temporal logic, refinement notions
Lecture 3 : Tuesday, June 24

Discrete abstractions of hybrid systems for verification
Lecture 4 : Tuesday, June 24

Discrete abstractions of continuous systems for control
Lecture 5 : Thursday, June 26
Bisimilar control systems

& Penn

Transition Systems

A transition system
T = (lel _)'O'<m)
consists of
A set of states Q
A set of events T
A set of observations O
The fransition relation G — @,
The observation map (g;) =0,

Initial or final states may be incorporated o o
The sets Q, ¥, and O may be infinite

Language of T is all sequences of observations e 0
o 0,

&Penn

A painful example

The parking meter

5p

)

tick tick '

tick 5p

States Q ={0,1,2,..,60}

Events {tick,5p}
Observations {exp,act}
A possible string of observations (exp,act,act,act,actact,exp,..)

A familiar example

Transition System T
TA=(Q.Z, -, 0.(N) Stateset Q=X =R"

Labelset Z=U=R"

Observationset O =Y =RP

Linear Observation Map (x) = Cx

Transition Relation - O XxUxX
X = AX, +Bu,

_ “
i = 0, X, — X, = X, = Ax, +Bu

&Penn

Transition Systems

A region is a subset of states P 0 Q

We define the following operators

Pre,(P)={q0Q|CpOP qip}
Pre(P)={qUQ| 0% C[pOP q--p}

Post,(P)={q0QIPOP p q)
Post(P)={q0Q| 00X pIP p-q)




Transition Systems

We can recursively define

Prel(P) =Pre,(P)

Prel(P) = Pre,(Pre}" (P))

Similarly for the other operators. Also
Pre’(P) = [ JPre"(P)
ntN
Post™(P) = | JPost"(P)
nCN

®Penn

Basic safety problems

Given transition system T and regions P, S determine

Forward Reachability
Post*(P) N S£0

Backward Reachability
PN Pre*(S)#£0

®Penn

Forward reachability algorithm

Forward Reachability Algorithm

initialize R:=P

whil e TRUE do
i f RN S#£D return UNSAFE ; end if;
i f Post(R) € R return SAFE ; end if;
R := RU Post(R)

end while

If Tis finite, then algorithm terminates (decidability).
Complexity : O(n;+mpg)
!

%I)enn initial reachable

tafes transition

Backward reachability algorithm

Backward Reachability Algorithm

initialize R:=S

whi l e TRUE do
if RN P£D return UNSAFE ; end if;
i f Pre(R) C R return SAFE ; end if;
R:= RU Pre(R)

end while

If Tis infinite, then there is no guarantee of termination.

Algorithmic issues

Representation issues
Enumeration for finite sets
Symbolic representation for infinite (or finite) sets

Operations on sets

Boolean operations
Pre and Post computations (closure?)

Algorithmic termination (decidability)

Guaranteed for finite transition systems
No guarantee for infinite transition systems

More complicated problems

More sophisticated properties can be expressed using
Linear Temporal Logic (LTL)
Computation Tree Logic (CTL)
CTL*
mu-calculus




The basic verification problem

Given transition system T, and temporal logic formula ¢

Basic verification problem

Ty

Two main approaches

Model checking : Algorithmic, restrictive
Deductive methods : Semi-automated, general

Another verification problem

Given transition system T, and specification system S

Another verification problem

L(T) < L(S)

Language inclusion problems

The basic synthesis problem

Given transition system T, and temporal logic formula ¢

Basic synthesis problem

T | Clke

Synthesis in computer science assumes disturbances
Deep relationship between synthesis and game theory

Linear temporal logic (informally)

Express temporal specifications along sequences

Informally Syntax Semantics
Eventually p Op 499999999999pP
Always p tp pppppppPPPPPPPP

If p then next q p = Og¢ 999999999

p until q pUg pPpppppPprpPPPPPRPPrPq

Linear temporal logic (formally)

Linear temporal logic syntax

The LTL formulas are defined inductively as follows

Atomic propositions
All observation symbols p are formulas

Boolean operators
If ¥1 and ¥2 are formulas then

P1V g 1
Temporal operators
If ¢1 and > are formulas then
o1 U Ow

Linear temporal logic semantics

The LTL formulas are interpreted over infinite (omega) words

W =DPoP1P2P3Pa---

(w,9) Ep iff pi=p

(w, i) =1 Vpy iff (w,i) [=@1 or (w,i) =2
(w, 1) ==y iff (w,1) f=¢

(w,i) = Q¢ iff (w,i+1)=¢1

(w

3> (w,g) ewe and Vi<k<j (w,k) e

wl¢ iff (w,0)F¢
b Tl=¢ iff Ywe L(T) wl= ¢




Linear temporal logic
Syntactic boolean abbreviations
Conjunction P1 A pr = (701 V 7ps)

Implication P1= P2 = Tp1V gy
Equivalence 015 pa= (1= P2) N (2= 1)

Syntactic temporal abbreviations
Eventually Ce=TUp

Always Qe =709
In 3 steps O3 ¢=000¢

LTL examples

Two processors want to access a critical section. Each processor can has three
observable states

p1={inCS, outCS, reqCS}
p2={inCS, outCS, reqCS}

Mutual exclusion
Both processors are not in the critical section at the same time.

[]—(p1 = inCS A py = inCS)

Starvation freedom
If process 1 requests entry, then it eventually enters the critical section.

[ ] p1 =reqCS = $p; = inCS

&lenn

LTL Model Checking

Given fransition system and LTL formula we have

LTL model checking

/Sysfem verified
Determine if T' |=¢ <

Counterexample

LTL model checking is decidable for finite T

Complexity :  O((n+m)(k+ 1)200))

- states transitions formula
&Penn length

Computation tree logic (informally)

Express specifications in computation trees (branching time)

Informally Syntax Semantics
Inevitably next p VOp /

® % ®
Possibly always p J0p

)

Comparing logics

#Penn

Dealing with complexity

Bisimulation

Simulation

Language Inclusion




Language Equivalence

Consider two transition systems T, and T, over same X and O

0, 0,
T 10 ® 1

Languanges are equivalent L(T,)=L(T,)

&Penn

LTL equivalence

Consider two fransition systems T, and T, and an LTL formula

Language equivalence

If L(Tl) = L(TQ) then Tl |ZQO <:>T2 |ZQO

Language inclusion

If L(T) CL(T) then Ty =y =T =g

Language equivalence and inclusion are difficult to check
&

Simulation Relations

Consider two fransition systems
T=(Q.Z,-.,0,(0])
T, =(Q.Z,-,.0,(})

over the same set of labels and observations. A relation S 0 Q; X Q,
is called a simulation relation if it
1. Respects observations

if (q.p)0S then(q), = (p),
2. Respects fransitions

if (q,p)0S and qiq', thenpip' for some (q',p')0S

If a simulation relation exists, then T, < T,
==
F

Game theoretic semantics

Simulation is a matching game between the systems

Check that T, < T, but it is not true that T, < T,

&Penn

The parking example

The parking meter

p 5p
P @_@_ @ (& (9
tick tick tick tick tick  tick '
tick 5p

tick 5p

5={(0,0),(1,many)...., (60, many)}

Simulation relations

Consider two transition systems T, and T,

Simulation implies language inclusion

If T1 STQ then L(Tl) gL(Tz)

Complexity of L(T}) C L(Tz) O((ng +m4)2")

Complexity of 11 < T

O((ny +my)(n2 +my))




Two important cases Bisimulation
Consider two fransition systems T, and T,
Abstraction Refinement
Bisimulation
- E\ =T, if 1 <Ty N TL<T,
3
T=T T<T, - - o .
v Bisimulation is a symmetric simulation
T T Strong hotion of equivalence for transition systems
1 2 CTL* (and LTL) equivalence
If T, =15 then T |:(,0 STy |I§0
If Ty, =T, then L(T}) = L(Ty)
Special quotients Quotient Transition Systems
Given a transition system
Abstraction T=(QZ, -,0, <|:;|)
and an observation preserving partition = 0 QX Q , define
)= T/ ==(Q/=Z,-.0,(0)
1 naturally using
T<T/= 1. Observation Map
T (P). = o iff there exists pOPwith (p)=o
2. Transition Relation
P % _P' iff there exists pOP,p'OP with p 2 p'
When is the quotient language equivalent or bisimilar to T ?
Bisimulation Algorithm Bisimulation Algorithm
Quotient system T/ = always simulates the original system T Quotient system T/ = always simulates the original system T
When does original system T simulate the quotient system T/ = ? When does original system T simulate the quotient system T/ = ?
— o ™ —tre =
»®

[
— o— 10
o —) o




Bisimulation algorithm

Bisimulation Algorithm

initialize Q/.={p~q iff <g>=<p>}

while 3P, P € Q/. such that (0 C PN Pre(P)£C P
P, := PN Pre(P)
P, :=P)\ Pre(P)
Q/~:= @/ \{PHU{P, P}

end while

If Tis finite, then algorithm computes coarsest quotient.

If Tis infinite, there is no guarantee of termination

&Penn

Relationships

Bisimulation

Strongest, more properties, easiest to check

U

Simulation

Weaker, less properties, easy to check

il

Language Inclusion

Weakest, less properties, difficult to check

Complexity comparisons

Bisimulation
O(m - 1og(n))

Il

Simulation
O(m - n)

4

Language Equivalence
O(m - 2")

#Penn

Discrete to discrete
Abstraction
Discrete —— T/=
y
T=T/=
Discrete —— T

Goal : Complexity reduction, theoretical guarantees

Continuous to discrete (Lectures 3 & 4)

Abstraction

Discrete —— T/ =
4
T=T/=
Continuous
Hybrid — [ T

Goal : Algorithmic feasibility, decidability,
%Pepg property dependent quantization

Continuous to continuous (Lecture 5)

Abstraction

Continuous—— T/ =

Continuous—t— T

Goal : Property dependent reduction, hierarchical control,
% Penn search for a unified systems theory




