
1

Transition systems, temporal logic,
refinement notions

George J. Pappas

Departments of ESE and CIS

University of Pennsylvania

pappasg@ee.upenn.edu

http://www.seas.upenn.edu/~pappasg

DISC Summer School on

Modeling and Control of Hybrid Systems

Veldhoven, The Netherlands

June 23-26, 2003

http://lcewww.et.tudelft.nl/~disc˙hs/

Outline of this mini-course

Lecture 1 : Monday, June 23
Examples of hybrid systems, modeling formalisms

Lecture 2 : Monday, June 23
Transitions systems, temporal logic, refinement notions

Lecture 3 : Tuesday, June 24
Discrete abstractions of hybrid systems for verification

Lecture 4 : Tuesday, June 24
Discrete abstractions of continuous systems for control

Lecture 5 : Thursday, June 26
Bisimilar control systems

Transition Systems
A transition system

consists of
A set of states Q
A set of events
A set of observations O
The transition relation
The observation map

Initial or final states may be incorporated
The sets Q, , and O may be infinite
Language of T is all sequences of observations

) O, , Σ, Q, (T ⋅→=

0o

2

σ

1 qq →

Σ

Σ

0q

1q 2q

3q 4q

0o0o

1o 2o

01 oq =

σσ

σσ

A painful example
The parking meter

0 1 2 3 604 5
tick tick tick tick tick tick tick

tick

5p
5p

5p

5p

States Q ={0,1,2,…,60}

Events {tick,5p}

Observations {exp,act}

A possible string of observations (exp,act,act,act,act,act,exp,…)

exp act actactact actact

A familiar example

1T∆
kk1k BuAxx +=+

kk Cxy =

) O, , Σ, Q,(T∆
 ⋅→= nRX Q set State ==

mR UΣ set Label ==

pR Y O setnObservatio ==

Cxx Map nObservatio Linear =

XUX Relation Transition ××⊆→

BuAxx xx 122

u

1 +=⇔→

∆
 T SystemTransition

Transition Systems
A region is a subset of states

We define the following operators

Q P ⊆

p}q Pp|Q{q(P)Pre
σ

σ →∈∃∈=

p}q Pp Σσ|Q{qPre(P)
σ

→∈∃∈∃∈=

q}p Pp|Q{q(P)Post
σ

σ →∈∃∈=

q}p Pp Σσ|Q{qPost(P)
σ

→∈∃∈∃∈=

2

Transition Systems
We can recursively define

Similarly for the other operators. Also

(P))(PrePre(P)Pre 1-n
σσ

n
σ =

(P)Pre(P)Pre σ
1
σ =

U
Nn

n* (P)Pre(P)Pre
∈

=

U
Nn

n* (P)Post(P)Post
∈

=

Basic safety problems
Given transition system T and regions P, S determine

Forward Forward ReachabilityReachability

Backward Backward ReachabilityReachability

Postã(P)∩ S6=∅

P ∩ Preã(S)6=∅

If T is finite, then algorithm terminates (decidability).
Complexity :

Forward reachability algorithm

Forward Forward Reachability Reachability AlgorithmAlgorithm

initialize

while TRUE do

if return UNSAFE ; end if;

if return SAFE ; end if;

end while

R := P

R ∩ S6=∅

R := R∪ Post(R)

Post(R) ò R

O(nI+mR)

reachable
transitions

initial
states

If T is infinite, then there is no guarantee of termination.

Backward reachability algorithm

Backward Backward Reachability Reachability AlgorithmAlgorithm

initialize

while TRUE do

if return UNSAFE ; end if;

if return SAFE ; end if;

end while

R := S

R ∩ P 6=∅

R := R∪ Pre(R)

Pre(R) ò R

Representation issues
Enumeration for finite sets
Symbolic representation for infinite (or finite) sets

Operations on sets
Boolean operations
Pre and Post computations (closure?)

Algorithmic termination (decidability)
Guaranteed for finite transition systems
No guarantee for infinite transition systems

Algorithmic issues

More sophisticated properties can be expressed using
Linear Temporal Logic (LTL)
Computation Tree Logic (CTL)
CTL*
mu-calculus

More complicated problems

3

The basic verification problem

Basic verification problemBasic verification problem

T |=ϕ

Given transition system T, and temporal logic formula ϕ

Two main approaches

Model checking : Algorithmic, restrictive
Deductive methods : Semi-automated, general

Another verification problem

Another verification problemAnother verification problem

L(T) ò L(S)

Given transition system T, and specification system S

Language inclusion problems

The basic synthesis problem

Basic synthesis problemBasic synthesis problem

T k C |=ϕ

Given transition system T, and temporal logic formula ϕ

Synthesis in computer science assumes disturbances

Deep relationship between synthesis and game theory

Express temporal specifications along sequences

Informally Syntax Semantics

Eventually p

Always p

If p then next q

p until q

Linear temporal logic (informally)

♦p

p ⇒ í q

p U q

qqqqqqqqqqqqp

qqqqqqqqpq

pppppppppppppppq

p pppppppppppppp

Linear temporal logic syntax

The LTL formulas are defined inductively as follows

Atomic propositions
All observation symbols p are formulas

Boolean operators
If and are formulas then

Temporal operators
If and are formulas then

Linear temporal logic (formally)

ϕ1 ϕ2

ϕ1 ϕ2

ϕ1 ∨ ϕ2 ¬ϕ1

ϕ1 U ϕ2 íϕ1

The LTL formulas are interpreted over infinite (omega) words

w = p0 p1 p2 p3 p4. . .

(w, i) |=p iff pi = p

(w, i) |=ϕ1 ∨ ϕ2 iff (w, i) |=ϕ1

(w, i) |=ϕ1 U ϕ2

(w, i) |= íϕ1 iff (w, i +1)|=ϕ1

or (w, i) |=ϕ2

(w, i) |=¬ϕ1 iff (w, i) 6 |=ϕ1

Linear temporal logic semantics

∃j õ i (w, j) |=ϕ2 and ∀ i ô k ô j (w, k) |=ϕ2

w |=þ iff (w, 0) |= ϕ

T |=þ iff ∀w ∈ L(T) w |= ϕ

4

Syntactic boolean abbreviations

Conjunction
Implication
Equivalence

Syntactic temporal abbreviations

Eventually
Always
In 3 steps

Linear temporal logic

♦ ϕ = > U ϕ
ϕ = ¬♦ ¬ϕ

ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2)
ϕ1 ⇒ ϕ2 = ¬ϕ1 ∨ ϕ2

ϕ1 ⇔ ϕ2 = (ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1)

í3 ϕ = ííí ϕ

Two processors want to access a critical section. Each processor can has three
observable states

p1={inCS, outCS, reqCS}
p2={inCS, outCS, reqCS}

Mutual exclusion
Both processors are not in the critical section at the same time.

Starvation freedom
If process 1 requests entry, then it eventually enters the critical section.

LTL examples

¬(p1 = inCS ∧ p2 = inCS)

p1 = reqCS⇒♦p1 = inCS

LTL Model Checking

LTL model checkingLTL model checking

T |=ϕ

Given transition system and LTL formula we have

LTL model checking is decidable for finite T

Complexity :

Determine if

O((n+m)(k+ l)2O(k))

states transitions formula
length

System verified

Counterexample

Express specifications in computation trees (branching time)

Informally Syntax Semantics

Inevitably next p

Possibly always p

Computation tree logic (informally)

∀í p

∃ p

ppp

pq

p

q

Comparing logics

LTLCTL

CTL*

Dealing with complexity

Bisimulation

Simulation

Language Inclusion

5

Language Equivalence
Consider two transition systems and over same and O

Languanges are equivalent L()=L()

0o 0p

3p 4p

0o

1o 2o

 1T 2T Σ

 2T0o 0q

1q 2q

3q 4q

0o0o

1o 2o

 1T
σσ σ

σ σ σσ

1p

 1T 2T

LTL equivalence
Consider two transition systems and and an LTL formula

Language equivalence and inclusion are difficult to check

 1T 2T

Language equivalenceLanguage equivalence

If L(T1) = L(T2) then T1 |=ϕ ⇔ T2 |=ϕ

Language inclusionLanguage inclusion

If L(T1) ò L(T2) then T2 |=ϕ ⇒ T1 |=ϕ

Simulation Relations
Consider two transition systems

over the same set of labels and observations. A relation
is called a simulation relation if it

1. Respects observations

2. Respects transitions

If a simulation relation exists, then

)O, , Σ, ,Q (T 1111 ⋅→=
) O, , Σ, ,Q (T 2222 ⋅→=

 21 QQS ×⊆

21 pq then Sp)(q, if =∈

S)p',(q' some for p'p then ,q'q and Sp)(q, if
σσ

∈→→∈

21 TT ≤

Game theoretic semantics
Simulation is a matching game between the systems

Check that but it is not true that

0o 0p

3p 4p

0o

1o 2o

 2T0o 0q

1q 2q

3q 4q

0o0o

1o 2o

 1T
σσ σ

σ σ σσ

1p

21 TT ≤ 12 TT ≤

The parking example
The parking meter

A coarser model

0 1 2 3 604 5
tick tick tick tick tick tick tick

tick

5p
5p

5p

5p

exp act actactact actact

5p

0
tick

tick

exp
many

5p

act

tick

many)}(60,many),...,(1,{(0,0), S =

Simulation relations
Consider two transition systems and

Complexity of

Complexity of

 1T 2T

Simulation implies language inclusionSimulation implies language inclusion

If T1 ô T2 then L(T1) ò L(T2)

L(T1) ò L(T2) O((n1 +m1)2
n2)

T1 ô T2 O((n1 +m1)(n2 +m2))

6

Two important cases

Abstraction Refinement

21 TT ≤

1T

2T

21 TT ≤

1T

2T

Bisimulation
Consider two transition systems and

Bisimulation is a symmetric simulation
Strong notion of equivalence for transition systems

 1T 2T

BisimulationBisimulation

T1 ñ T2 if T1 ô T2 ∧ T2 ô T1

CTL* (and LTL) equivalenceCTL* (and LTL) equivalence
If T1 ñ T2 then T1 |=ϕ ⇔ T2 |=ϕ

If T1 ñ T2 then L(T1) = L(T2)

≈≤ /TT

T

≈/T

Special quotients

Abstraction

When is the quotient language equivalent or bisimilar to T ?

Quotient Transition Systems
Given a transition system

and an observation preserving partition , define

naturally using
1. Observation Map

2. Transition Relation

) O, , Σ, Q,(T ⋅→=
QQ ×⊆≈

) O, , Σ, ,Q/(T/ ≈≈ ⋅→≈=≈

o pwith Pp existsthere iff o P =∈=≈

p' p with P'p'P,p exists there iff P' P
σσ

→∈∈→ ≈

Bisimulation Algorithm
Quotient system always simulates the original system

When does original system simulate the quotient system ?

≈/T T

T ≈/T

1o

2oσ

σ

Bisimulation Algorithm
Quotient system always simulates the original system

When does original system simulate the quotient system ?

≈/T T

T ≈/T

1o

2oσ

σ

7

If T is finite, then algorithm computes coarsest quotient.
If T is infinite, there is no guarantee of termination

Bisimulation algorithm

BisimulationBisimulation AlgorithmAlgorithm

initialize

while such that

end while

Q/ø = {p ø q iff < q >=< p >}
∅ 6= ò P ∩ Pre(P0)6= ò P0

P1 := P ∩ Pre(P0)
∃P,P0 ∈ Q/ø

P2 := P \ Pre(P0)
Q/ø := (Q/ø \ {P}) ∪ {P1, P2}

Relationships

Bisimulation

Simulation

Language Inclusion

Strongest, more properties, easiest to check

Weaker, less properties, easy to check

Weakest, less properties, difficult to check

Complexity comparisons

Bisimulation

Simulation

Language Equivalence

O(m á log(n))

O(m á n)

O(m á 2n)

≈≡ /TT

T

≈/T

Discrete to discrete

Abstraction

Goal : Complexity reduction, theoretical guarantees

Discrete

Discrete

≈≡ /TT

T

≈/T

Continuous to discrete (Lectures 3 & 4)

Abstraction

Goal : Algorithmic feasibility, decidability,
property dependent quantization

Continuous
Hybrid

Discrete

≈≡ /TT

T

≈/T

Continuous to continuous (Lecture 5)

Abstraction

Goal : Property dependent reduction, hierarchical control,
search for a unified systems theory

Continuous

Continuous

