
1

Discrete abstractions of
continuous systems for control

George J. Pappas

Departments of ESE and CIS

University of Pennsylvania

pappasg@ee.upenn.edu

http://www.seas.upenn.edu/~pappasg

DISC Summer School on

Modeling and Control of Hybrid Systems

Veldhoven, The Netherlands

June 23-26, 2003

http://lcewww.et.tudelft.nl/~disc˙hs/

Outline of this mini-course

Lecture 1 : Monday, June 23
Examples of hybrid systems, modeling formalisms

Lecture 2 : Monday, June 23
Transitions systems, temporal logic, refinement notions

Lecture 3 : Tuesday, June 24
Discrete abstractions of hybrid systems for verification

Lecture 4 : Tuesday, June 24
Discrete abstractions of continuous systems for control

Lecture 5 : Thursday, June 26
Bisimilar control systems

≈≡ /TT

≈/T

Continuous to discrete (Lectures 3 & 4)

Lecture 3

Restricted dynamical systems
Semi-algebraic partitions
Verification semantics

≈≡ /TT

≈/T

Lecture 4

Linear control systems
Restricted partitions
Synthesis semantics

dt
dx=AxT T xt+1 = Axt+But

Control abstract transitions

1T∆ kk1k BuAxx +=+

) O, ,Σ,Q, (T∆
 ⋅→=

nRX Q set State ==

} 1{ Σ set Label =

X{1}X Relation Transition ××⊆→

BuAxx with u xx 122

1

1 +=∃⇔→

∆
 T System Transition

Transitions maintain time but abstract away control
We can safely remove the unique label from all transitions

Finite observations

1T∆ kk1k BuAxx +=+

) O, , Σ, Q,(T∆
 ⋅→=

}o,...,o,{o O nsObservatio Finite p21=

OX:x map nObservatio →

1o 2o

5o

3o

4o

6o
7o

0bxa ii =+

∆
 T SystemTransition

Observation symbols are atomic propositions of LTL formulas

Temporal logic (LTL) examples

Specification for UAV:

- (Periodicity) Cycle between and .
- (Coverage) Stay in for two time steps.
- (Temporal) No more than 4 steps from to and vice versa.

o1 o2
o1

o1 o2

à
o1 ⇒ ♦4o2 ∧ o2 ⇒

o1

o2

♦4(o1 ∧í o1)
á

2

LTL synthesis for control systems

Basic synthesis problemBasic synthesis problem

∆ k C |=ϕ

Given linear control system , and temporal formula ϕ

Solution for continuous systems can be lifted to hybrid systems.

Composition semantics still undefined.

∆

The modern feedback loop

D/A A/D

Software

Continuous
System

Discrete

Continuous

Signals

Symbols

Control design problem : Given formula, design A/D, D/A, softwareControl design problem : Given formula, design A/D, D/A, software

Software perspective

Software

Discrete
abstraction

SymbolsSymbols

Problem : Extract equivalent (bisimilar) discrete abstractionProblem : Extract equivalent (bisimilar) discrete abstraction

LTL synthesis for control systems

TC
ϕTϕ

T∆

ϕLogic

Automata

Dynamics

LTL formula

Buchi automaton Discrete controller Discrete abstraction

Hybrid controller

C

Continuous plant

T∆/ ø

LTL synthesis for control systems

TC
ϕTϕ

T∆

ϕLogic

Automata

Dynamics

LTL formula

Buchi automaton Discrete controller Discrete abstraction

Hybrid controller

C

Continuous plant

T∆/ ø

Once more

BisimulationBisimulation AlgorithmAlgorithm

initialize

while such that

end while

Q/ø = {p ø q iff < q >=< p >}
∅ 6= ò P ∩ Pre(P0)6= ò P0

P1 := P ∩ Pre(P0)
∃P,P0 ∈ Q/ø

P2 := P \ Pre(P0)
Q/ø := (Q/ø \ {P}) ∪ {P1, P2}

Given boolean algebra of sets, Pre is an endomorphism.

3

Boolean algebras

Trivial examples of boolean algebras include

Nontrivial examples of boolean algebras include

Rectangular sets: Boolean algebra generated by

Semi-linear sets: Boolean algebra generated by

Semi-algebraic sets: Boolean algebra generated by

A Boolean algebra of subsets of is a collection of subsets where
A,B ∈ B ⇒ A ∪B ∈ B

B(<n)

A ∈ B ⇒ A ∈ B

<n

2<n {∅,<n}

xi ø ci ci ∈ Q, ø∈ {>,=,<}

aTx ø c a ∈ Q 1ân c ∈ Q ,

p(x) ø 0 ø∈ {<, = , >}

Boolean algebra endomorphisms

A Boolean algebra endomorphism is a map satisfying

A Boolean endomorphism is eventually idempotent if for some k.

F(A ∪ B) = F(A) ∪ F(B)

F : B(<n) → B(<n)

F(A) = F(A)

Fk+1 = Fk

Stable partitions

A partition of is stable under ifΠ ò B(<n) F : B(<n) → B(<n)

∀Si ∈ Π F(Si) = ∪j∈J Sj, Sj ∈ Π
Rn

Bisimulation is a partition that refines observational equivalence and is

stable under Pre.

Existence of bisimulations

Let be a Boolean algebra endomorphism and

a finite partition of . If is eventually idempotent,

then a finite and stable refinement of exists.

Π ò B(<n)

Π

F : B(<n) → B(<n)

<n F

Therefore in order to obtain a finite bisimulation we must search for

1. A Boolean algebra of the reals

2. A Pre operator which is endomorphic for the boolean algebra

3. A Pre operator which is eventually idempotent

Controllability implies idempotency
Assume the linear system is completely controllable

Then by definition

and since the system is controllable

and therefore this Pre operator is eventually idempotent.

Controllability of linear systems can be decided using rank conditions

xt+1 = Axt+But

Pre(Y) = Pre1(Y) = {x ∈ <n | ∃y ∈ Y ∃u y = Ax +Bu}

∃k ô n Prek(Y) = <n

rank[B AB A2B ... Anà1B] = n

Searching for the right boolean algebra

First attempt : Semi-linear sets
Boolean algebra generated by sets of the form

Given semi-linear set Y, Pre(Y) is also a semi-linear set

It is also true that

However it is NOT true that

Therefore the Pre is NOT an endomorphism of this Boolean algebra

aTx ø c a ∈ Q 1ân c ∈ Q ,

F : B(<n) → B(<n)

Pre(A ∪B) = Pre(A) ∪ Pre(B)

Pre(A) = Pre(A)

4

Searching for the right boolean algebra

Better attempt : Rectangular sets but in Brunovsky coordinates
Boolean algebra generated by sets of the form

yi ø ci ci ∈ Q, ø∈ {>,=,<}

For any completely controllable linear system, there exist invertible linear
transformations and , and a feedback such that the resulting
system is in Brunovsky normal form.

F GH

y1(t+ 1) = y2(t)
y2(t+ 1) = y3(t)
y3(t+ 1) = v1(t)

 = k1

y4(t +1) = y5(t)
y5(t +1) = v2(t)

û
= k2

x(t + 1) = Ax(t) +Bu(t)

y
v

ô õ
= U x

u

ô õOriginal coordinates Brunovsky coordinates

U = F 0nâm

G H

ô õ

Brunovsky boolean algebra

y1(t+ 1) = y2(t)
y2(t+ 1) = y3(t)
y3(t+ 1) = v1(t)

 = k1

y4(t +1) = y5(t)
y5(t +1) = v2(t)

û
= k2

x(t + 1) = Ax(t) +Bu(t)

y
v

ô õ
= U x

u

ô õOriginal coordinates Brunovsky coordinates

U = F 0nâm

G H

ô õ

Fà1y = x

Fx = y

Brunovsky boolean algebra
Brunovksy Boolean Algebra Algebra in Brunovsky coordinates

Fà1y = x

Fx = y

y = Fx

x = Fà1y

wTyi ø ci ci ∈ Q, ø∈ {>,=, <}

w ∈ è 1
0...
0


 , æ

0
1...
0


 , ...,æ 0

0...
1


}

fTx ø ci ci ∈ Q, ø∈ {>,=, <}

fT ∈ rows(F)

Subalgebra of semi-linear sets Rectangular sets in y coordinates

Brunovsky boolean algebra
Brunovsky Boolean Algebra Algebra in Brunovsky coordinates

y = Fx

x = Fà1y

wTyi ø ci ci ∈ Q, ø∈ {>,=, <}

w ∈ è 1
0...
0


 , æ

0
1...
0


 , ...,æ 0

0...
1


}

fTx ø ci ci ∈ Q, ø∈ {>,=, <}

fT ∈ rows(F)

Subalgebra of semi-linear sets Rectangular sets in y coordinates

Consider a discrete time controllable linear system in Brunovsky normal
form. Then, the Pre operator is a Boolean algebra endomorphism for the
Boolean algebra generated by rectangular sets in Bruvonsky coordinates.

Every controllable linear system comes equipped with a Brunovsky boolean algebra

Let be a transition system associated with a discrete time, controllable
linear system. For any initial finite partition contained in the Boolean
algebra of Brunovsky sets, there exits a finite bisimulation of refining
partition .

Finite bisimulations of control systems

Consider any discrete time controllable linear system. Then, Pre is a
Boolean algebra endomorphism for the Boolean algebra of Brunovsky sets.

Consider any discrete time controllable system. Then the Pre operator
is eventually idempotent.

+

=

T∆
Π

Π
T∆

Example

A = 0 1
0 0

ô õ
B = 0

1

ô õ

F = 1 0
0 1

ô õ
f1 = 1 0[]

f2 = 0 1[]

Control system:

Change of coordinates:

Initial partition: Π = {S1, S2, S3}

S1 = {x ∈ R2 : f1xà 3 > 0 ∧ f2xà 3 > 0}
S2 = {x ∈ R2 : f1x+2 < 0}
S3 = S1 ∪ S2

S2

S1

S3

5

Example

Refined (bisimulation) partition: Π = {S1, S21, S221, S222, S31, S321, S322}

S1 S21

S222 S221

S221

S222

S21 S1S31

S322

S321

S321 S322S31

LTL synthesis for control systems

TC
ϕTϕ

T∆

ϕLogic

Automata

Dynamics

LTL formula

Buchi automaton Discrete controller Discrete abstraction

Hybrid controller

C

Continuous plant

T∆/ ø

LTL synthesis for control systems

TC
ϕTϕ

T∆

ϕLogic

Automata

Dynamics

LTL formula

Buchi automaton Discrete controller Discrete abstraction

Hybrid controller

C

Continuous plant

T∆/ ø

Buchi automata
A Buchi automaton is a finite transition system recognizing infinite strings:

The final states have to be visited infinitely often by any recognized string.

A string is recognized by the Buchi automaton
if there exits a string such that:

where is the set of states visited infinitely often by string .

T = (Q,Q0,à→ , O, < á >, F)

s = o1, o2, o3, . . . ∈ Oω

ú = q1, q2, q3, . . . ∈ Qω

< qi >= oi ∀i ∈ N

q1 ∈ Q0

qià→ qi+1, ∀i ∈ N

inf(ú) ∩ F 6=∅

F ò Q

inf(ú)

From LTL to Buchi
Buchi automata recognize every infinite string satisfying LTL formula .

Examples:

Translation from LTL formulas to Buchi automata is automatic

ϕ

å p {∅} {p} {∅}

å p
{∅} {p}

Safety versus liveness
LTL allows to express two different kinds of properties: Safety and Liveness.

Safety properties require that bad things will never happen. We can therefore check if
a safety property is violated in finite time. Safety properties can also be modeled by
transition systems on finite strings.

Liveness properties require that good things will eventually happen. We cannot
determine if a liveness property is violated in finite time, since it may hold at some
later time in the future. Liveness properties require infinite strings.

Safety properties are closed under union which ensures that maximally permissive
controllers for safety properties exist.

Liveness properties are not closed under union which precludes the existence of
maximally permissive controllers. However, arbitrarily close approximations can always
be found.

6

LTL synthesis for control systems

TC
ϕTϕ

T∆

ϕLogic

Automata

Dynamics

LTL formula

Buchi automaton Discrete controller Discrete abstraction

Hybrid controller

C

Continuous plant

T∆/ ø

Supervisor synthesis

Given a LTL specification formula and the finite bisimulation of a discrete time
controllable linear system, we can use standard supervisory control techniques to
obtain a controller for ensuring that

Recall that every transition in is controllable.

We can, therefore, (naively) define a controller as the Buchi automaton satisfying:

If is blocking, search for a non-blocking subsystem of .

ϕ T∆

TC
ϕ T∆

TC
ϕ
k T∆|=ϕ

Lω(T
C
ϕ) = Lω(Tϕ) ∩ Lω(T

∆)

T∆

TC
ϕ

TC
ϕ TC

ϕ

Consider the following (Buchi) plant:

and the LTL specification which can be translated to the automaton:

The intersection of the plant and specification behaviors is captured by:

Any supervisor allowing an arbitrary but finite number of occurrences of
also allows an infinite number of such occurrences. However, for any fixed

the language can be achieved by control:

Safety versus liveness

å b

a b

a b

a b

a

aω + a+bω

aãbω

a+bω

n > 1 +n

i=1
aibω

a b abω + aabωa

LTL synthesis for control systems

TC
ϕTϕ

T∆

ϕLogic

Automata

Dynamics

LTL formula

Buchi automaton Discrete controller Discrete abstraction

Hybrid controller

C

Continuous plant

T∆/ ø

Consider a discrete time, controllable linear system and an LTL specification
formula whose atomic propositions denote sets in the Brunovsky Boolean
algebra. Then, the existence of an LTL controller can be decided.

Recall that: iff .

for any .

We can thus show that a controller for is also a controller for :

Since we can decide the existence of we immediately conclude the following

From discrete to continuous
T1 ñ T2 ⇒ T1|=ϕ T2|=ϕ

T1 ñ T2 ⇒ T1 k T ñ T2 k T T

T∆/ ø T∆

T∆ ñ (T∆/ ø) ⇒ TC
ϕ
||T∆ ñ

TC
ϕ
||(T∆/ ø)|=ϕ ⇒

TC

TC
ϕ
||(T∆/ ø)

TC
ϕ
||T∆|=ϕ

TC
ϕ
||(T∆/ ø)|=ϕ

The modern feedback loop

D/A A/D

Software

Continuous
System

Discrete

Continuous

Signals

Symbols

Control design problem : Given formula, design A/D, D/A, softwareControl design problem : Given formula, design A/D, D/A, software

Formula
Dependent
Quantization

Supervisory control

Controller
Refinement

7

Specifications for mobile sensor:

- Cycle between and .
- Stay in for two time steps.
- Take no more than 4 steps to
move from to and vice versa.

p1 p2
p1

p1 p2

p1

p2

p1 p1 p2

, p2

, p2, p2 , p2

, p2 , p2

, p1

, p1 , p1

Mobile sensor model:

[p1] ↔ (0, 0)

[p2] ↔ (3, 0)

p1 p2 x1

x2

x1(t + 1) = x2(t)
x2(t + 1) = u(t)

A Simple Example

p1 p1 p2

Finite controller (supervisor)
à
p1 ⇒ å4 p2 ∧ p2 ⇒ å4 (p1 ∧ î p1)

á
(p1 ∨ p2) ∧

Specifications for mobile sensor:

- Cycle between and .
- Stay in for two time steps.
- Take no more than 4 steps to
move from to and vice versa.

p1 p2
p1

p1 p2

p1 ⇒ å4 p2 ∧ p2 ⇒ å4 (p1 ∧ î p1)(p1 ∨ p2) ∧

p1

p2

p1 p1 p2

, p2

, p2, p2 , p2

, p2 , p2

, p1

, p1 , p1

Mobile sensor model:

[p1] ↔ (0, 0)

[p2] ↔ (3, 0)

p1 p2 x1

x2

x1(t + 1) = x2(t)
x2(t + 1) = u(t)

A Simple Example

p1 p2

Finite controller (supervisor)

p1

Specifications for mobile sensor:

- Cycle between and .
- Stay in for two time steps.
- Take no more than 4 steps to
move from to and vice versa.

p1 p2
p1

p1 p2

p1 ⇒ å4 p2 ∧ p2 ⇒ å4 (p1 ∧ î p1)(p1 ∨ p2) ∧

p1

p2

p1 p1 p2

, p2

, p2, p2 , p2

, p2 , p2

, p1

, p1 , p1

Mobile sensor model:

[p1] ↔ (0, 0)

[p2] ↔ (3, 0)

p1 p2 x1

x2

x1(t + 1) = x2(t)
x2(t + 1) = u(t)

A Simple Example

p2

Finite controller (supervisor)

p1 p1

Specifications for mobile sensor:

- Cycle between and .
- Stay in for two time steps.
- Take no more than 4 steps to
move from to and vice versa.

p1 p2
p1

p1 p2

p1 ⇒ å4 p2 ∧ p2 ⇒ å4 (p1 ∧ î p1)(p1 ∨ p2) ∧

p1

p2

p1 p1 p2

, p2

, p2, p2 , p2

, p2 , p2

, p1

, p1 , p1

Mobile sensor model:

[p1] ↔ (0, 0)

[p2] ↔ (3, 0)

p1 p2 x1

x2

x1(t + 1) = x2(t)
x2(t + 1) = u(t)

A Simple Example

p1 p2

Finite controller (supervisor)

p1

Specifications for mobile sensor:

- Cycle between and .
- Stay in for two time steps.
- Take no more than 4 steps to
move from to and vice versa.

p1 p2
p1

p1 p2

p1 ⇒ å4 p2 ∧ p2 ⇒ å4 (p1 ∧ î p1)(p1 ∨ p2) ∧

p1
p1 p1 p2

, p2

, p2, p2 , p2

, p2 , p2

, p1

, p1 , p1

Mobile sensor model:

[p1] ↔ (0, 0)

[p2] ↔ (3, 0)

p1 p2 x1

x2

x1(t + 1) = x2(t)
x2(t + 1) = u(t)

A Simple Example

p1

Finite controller (supervisor)

p1

p2

p2

Complexity barriers

TC
ϕTϕ

T∆

ϕLogic

Automata

Dynamics

LTL formula

Buchi automaton Discrete controller Discrete abstraction

Hybrid controller

C

Continuous plant

T∆/ ø

8

Continuous to continuous (Lecture 5)

≈≡ /TT

≈/T

Lecture 4

Exponential number states

T

≈≡ /TT

≈/T

Lecture 5

Bisimilar control systems

T xt+1 = Axt+But

yt+1 = Fyt +Gvt

yt+1 = Fyt +Gvt

