Discrete abstractions of continuous systems for control

E NUE

George J. Pappas

Departments of ESE and CIS

University of Pennsylvania

DISC Summer School on Modeling and Control of Hybrid Systems Veldhoven, The Netherlands

pappasg@ee.upenn.edu
http://www.seas.upenn.edu/~pappasg

June 23-26, 2003
http://lcewww.et.tudelft.nl/~disc_hs/

⊼ Penn

Outline of this mini-course

Lecture 1: Monday, June 23

Examples of hybrid systems, modeling formalisms

Lecture 2 : Monday, June 23

Transitions systems, temporal logic, refinement notions

Lecture 3 : Tuesday, June 24

Discrete abstractions of hybrid systems for verification

Lecture 4: Tuesday, June 24

Discrete abstractions of continuous systems for control

Lecture 5 : Thursday, June 26
Bisimilar control systems

₹Penn

Boolean algebras

A Boolean algebra of subsets of $\,\Re^n$ is a collection $\,\mathcal{B}(\Re^n)$ of subsets where $A,B\in\mathcal{B}\Rightarrow A\cup B\in\mathcal{B}$

 $A \in \mathcal{B} \Rightarrow \overline{A} \in \mathcal{B}$

Trivial examples of boolean algebras include 2^{\Re^n} $\{\emptyset, \Re^n\}$

Nontrivial examples of boolean algebras include

Rectangular sets: Boolean algebra generated by $x_i \sim c_i \quad c_i \in Q, \quad {\sim}{\in} \{>,=,<\}$

Semi-linear sets: Boolean algebra generated by $a^Tx \sim c$ $a \in Q^{1 \times n}$ $c \in Q$,

Semi-algebraic sets: Boolean algebra generated by $p(x) \sim 0 \sim \in \{<, =, >\}$

⊼ Penn

Boolean algebra endomorphisms

A Boolean algebra endomorphism $F:\mathcal{B}(\Re^n)\to\mathcal{B}(\Re^n)$ is a map satisfying $F(A\cup B)=F(A)\cup F(B)$ $F(\overline{A})=\overline{F(A)}$

A Boolean endomorphism is eventually idempotent if $F^{k+1} = F^k$ for some k.

⊼ Penn

Stable partitions

A partition $\Pi\subseteq\mathcal{B}(\Re^n)$ of \mathbf{R}^n is stable under $F:\mathcal{B}(\Re^n)\to\mathcal{B}(\Re^n)$ if $\forall S_i\in\Pi\quad F(S_i)=\cup_{j\in J}S_j,\quad S_j\in\Pi$

Bisimulation is a partition that refines observational equivalence and is stable under Pre.

A Penn

Existence of bisimulations

Let $F:\mathcal{B}(\Re^n)\to\mathcal{B}(\Re^n)$ be a Boolean algebra endomorphism and $\Pi\subseteq\mathcal{B}(\Re^n)$ a finite partition of $\ \Re^n$. If F is eventually idempotent, then a finite and stable refinement of Π exists.

Therefore in order to obtain a finite bisimulation we must search for

- 1. A Boolean algebra of the reals
- 2. A Pre operator which is endomorphic for the boolean algebra
- 3. A Pre operator which is eventually idempotent

Controllability implies idempotency

Assume the linear system is completely controllable

$$x_{t+1} = Ax_t + Bu_t$$

Then by definition

$$Pre(Y) = Pre_1(Y) = \{x \in \Re^n \mid \exists y \in Y \exists u \quad y = Ax + Bu\}$$

and since the system is controllable

$$\exists k \leq n \qquad Pre^k(Y) = \Re^n$$

and therefore this $\mbox{\it Pre}$ operator is $\mbox{\it eventually}$ $\mbox{\it idempotent}.$

Controllability of linear systems can be decided using rank conditions

$$rank[B\ AB\ A^2B\ ...\ A^{n-1}B]=n$$

₹ Penn

Searching for the right boolean algebra

First attempt : Semi-linear sets

Boolean algebra generated by sets of the form

$$a^T x \sim c \quad a \in Q^{1 \times n} \quad c \in Q$$

Given semi-linear set Y, Pre(Y) is also a semi-linear set

$$F: \mathcal{B}(\Re^n) \to \mathcal{B}(\Re^n)$$

It is also true that $Pre(A \cup B) = Pre(A) \cup Pre(B)$

However it is NOT true that $Pre(\overline{A}) = \overline{Pre(A)}$

Therefore the Pre is NOT an endomorphism of this Boolean algebra

