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Outline of this mini-course

Lecture 1 : Monday, June 23 
Examples of hybrid systems, modeling formalisms

Lecture 2 : Monday, June 23 
Transitions systems, temporal logic, refinement notions

Lecture 3 : Tuesday, June 24
Discrete abstractions of hybrid systems for verification

Lecture 4 : Tuesday, June 24
Discrete abstractions of continuous systems for control

Lecture 5 : Thursday, June 26
Bisimilar control systems

≈≡ /TT

≈/T

Continuous to discrete (Lectures 3 & 4)

Lecture 3

Restricted dynamical systems
Semi-algebraic partitions
Verification semantics

≈≡ /TT

≈/T

Lecture 4

Linear control systems
Restricted partitions
Synthesis semantics
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Transitions maintain time but abstract away control
We can safely remove the unique label from all transitions

Finite observations
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Observation symbols are atomic propositions of LTL formulas

Temporal logic (LTL) examples

Specification for UAV:

- (Periodicity) Cycle between      and     .
- (Coverage) Stay in      for two time steps.
- (Temporal) No more than 4 steps from      to       and vice versa.
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LTL synthesis for control systems

Basic synthesis problemBasic synthesis problem

∆ k C |=ϕ

Given linear control system    , and temporal formula  ϕ

Solution for continuous systems can be lifted to hybrid systems.

Composition semantics still undefined.

∆

The modern feedback loop

D/A A/D

Software

Continuous 
System

Discrete

Continuous

Signals

Symbols

Control design problem : Given formula, design A/D, D/A, softwareControl design problem : Given formula, design A/D, D/A, software

Software perspective

Software

Discrete 
abstraction

SymbolsSymbols

Problem : Extract equivalent (bisimilar) discrete abstractionProblem : Extract equivalent (bisimilar) discrete abstraction

LTL synthesis for control systems

TC
ϕTϕ

T∆

ϕLogic

Automata

Dynamics

LTL formula

Buchi automaton Discrete controller Discrete abstraction

Hybrid controller

C

Continuous plant

T∆/ ø

LTL synthesis for control systems

TC
ϕTϕ

T∆

ϕLogic

Automata

Dynamics

LTL formula

Buchi automaton Discrete controller Discrete abstraction

Hybrid controller

C

Continuous plant

T∆/ ø

Once more

BisimulationBisimulation AlgorithmAlgorithm

initialize

while such that

end while

Q/ø = {p ø q iff < q >=< p >}
∅ 6= ò P ∩ Pre(P0)6= ò P0

P1 := P ∩ Pre(P0)
∃P,P0 ∈ Q/ø

P2 := P \ Pre(P0)
Q/ø := (Q/ø \ {P}) ∪ {P1, P2}

Given boolean algebra of sets, Pre is an endomorphism.
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Boolean algebras

Trivial examples of boolean algebras include

Nontrivial examples of boolean algebras include 

Rectangular sets:      Boolean algebra generated by 

Semi-linear sets:       Boolean algebra generated by 

Semi-algebraic sets: Boolean algebra generated by 

A Boolean algebra of subsets of       is a collection           of subsets where
A,B ∈ B ⇒ A ∪B ∈ B

B(<n)

A ∈ B ⇒ A ∈ B

<n

2<n {∅,<n}

xi ø ci ci ∈ Q, ø∈ {>,=,<}

aTx ø c a ∈ Q 1ân c ∈ Q ,

p(x ) ø 0 ø∈ {<, = , >}

Boolean algebra endomorphisms

A Boolean algebra endomorphism                                  is a map satisfying

A Boolean endomorphism is eventually idempotent if                 for some k.         

F(A ∪ B) = F(A) ∪ F(B)

F : B(<n) → B(<n)

F(A) = F(A)

Fk+1 = Fk

Stable partitions

A partition                   of         is stable under        ifΠ ò B(<n) F : B(<n) → B(<n)

∀Si ∈ Π F(Si) = ∪j∈J Sj, Sj ∈ Π
Rn

Bisimulation is a partition that refines observational equivalence and is

stable under Pre.

Existence of bisimulations

Let                                  be a Boolean algebra endomorphism and   

a finite partition of      .  If       is eventually idempotent,   

then a finite and stable refinement of      exists.

Π ò B(<n)

Π

F : B(<n) → B(<n)

<n F

Therefore in order to obtain a finite bisimulation we must search for

1. A Boolean algebra of the reals

2. A Pre operator which is endomorphic for the boolean algebra

3. A Pre operator which is eventually idempotent

Controllability implies idempotency
Assume the linear system is completely controllable

Then by definition

and since the system is controllable

and therefore this Pre operator is eventually idempotent.

Controllability of linear systems can be decided using rank conditions 

xt+1 = Axt+But

Pre(Y) = Pre1(Y) = {x ∈ <n | ∃y ∈ Y ∃u y = Ax +Bu}

∃k ô n Prek(Y) = <n

rank[B AB A2B ... Anà1B] = n

Searching for the right boolean algebra

First attempt  : Semi-linear sets
Boolean algebra generated by sets of the form

Given semi-linear set Y, Pre(Y) is also a semi-linear set

It is also true that

However it is NOT true that

Therefore the Pre is NOT an endomorphism of this Boolean algebra

aTx ø c a ∈ Q 1ân c ∈ Q ,

F : B(<n) → B(<n)

Pre(A ∪B) = Pre(A) ∪ Pre(B)

Pre(A) = Pre(A)
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Searching for the right boolean algebra

Better attempt  : Rectangular sets but in Brunovsky coordinates
Boolean algebra generated by sets of the form

yi ø ci ci ∈ Q, ø∈ {>,=,<}

For any completely controllable linear system, there exist invertible linear 
transformations     and    , and a feedback such that the resulting 
system is in Brunovsky normal form.

F GH

y1(t+ 1) = y2(t)
y2(t+ 1) = y3(t)
y3(t+ 1) = v1(t)

 = k1

y4(t +1) = y5(t)
y5(t +1) = v2(t)

û
= k2

x(t + 1) = Ax(t) +Bu(t)

y
v

ô õ
= U x

u

ô õOriginal coordinates Brunovsky coordinates

U = F 0nâm

G H

ô õ

Brunovsky boolean algebra

y1(t+ 1) = y2(t)
y2(t+ 1) = y3(t)
y3(t+ 1) = v1(t)

 = k1

y4(t +1) = y5(t)
y5(t +1) = v2(t)

û
= k2

x(t + 1) = Ax(t) +Bu(t)

y
v

ô õ
= U x

u

ô õOriginal coordinates Brunovsky coordinates

U = F 0nâm

G H

ô õ

Fà1y = x

Fx = y

Brunovsky boolean algebra
Brunovksy Boolean Algebra Algebra in Brunovsky coordinates

Fà1y = x

Fx = y

y = Fx

x = Fà1y

wTyi ø ci ci ∈ Q, ø∈ {>,=, <}

w ∈ è 1
0...
0


 , æ

0
1...
0


 , ...,æ 0

0...
1


}

fTx ø ci ci ∈ Q, ø∈ {>,=, <}

fT ∈ rows(F)

Subalgebra of semi-linear sets Rectangular sets in y coordinates

Brunovsky boolean algebra
Brunovsky Boolean Algebra Algebra in Brunovsky coordinates

y = Fx

x = Fà1y

wTyi ø ci ci ∈ Q, ø∈ {>,=, <}

w ∈ è 1
0...
0


 , æ

0
1...
0


 , ...,æ 0

0...
1


}

fTx ø ci ci ∈ Q, ø∈ {>,=, <}

fT ∈ rows(F)

Subalgebra of semi-linear sets Rectangular sets in y coordinates

Consider a discrete time controllable linear system in Brunovsky normal 
form. Then,  the Pre operator is a Boolean algebra endomorphism for the 
Boolean algebra generated by rectangular sets in Bruvonsky coordinates.

Every controllable linear system comes equipped with a Brunovsky boolean algebra

Let       be a transition system associated with a discrete time, controllable 
linear system.   For any initial finite partition     contained in the Boolean 
algebra of Brunovsky sets, there exits a finite bisimulation of       refining 
partition    .

Finite bisimulations of control systems

Consider any discrete time controllable linear system.   Then, Pre is a 
Boolean algebra endomorphism for the Boolean algebra of Brunovsky sets.

Consider any discrete time controllable system.   Then the Pre operator 
is eventually idempotent.

+

=

T∆
Π

Π
T∆

Example

A = 0 1
0 0

ô õ
B = 0

1

ô õ

F = 1 0
0 1

ô õ
f1 = 1 0[ ]

f2 = 0 1[ ]

Control system:

Change of coordinates:

Initial partition: Π = {S1, S2, S3}

S1 = {x ∈ R2 : f1xà 3 > 0 ∧ f2xà 3 > 0}
S2 = {x ∈ R2 : f1x+2 < 0}
S3 = S1 ∪ S2

S2

S1

S3
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Example

Refined (bisimulation) partition: Π = {S1, S21, S221, S222, S31, S321, S322}

S1 S21

S222 S221

S221

S222

S21 S1S31

S322

S321

S321 S322S31

LTL synthesis for control systems

TC
ϕTϕ

T∆

ϕLogic

Automata

Dynamics

LTL formula

Buchi automaton Discrete controller Discrete abstraction

Hybrid controller

C

Continuous plant

T∆/ ø

LTL synthesis for control systems

TC
ϕTϕ

T∆

ϕLogic

Automata

Dynamics

LTL formula

Buchi automaton Discrete controller Discrete abstraction

Hybrid controller

C

Continuous plant

T∆/ ø

Buchi automata
A Buchi automaton is a finite transition system recognizing infinite strings:

The final states               have to be visited infinitely often by any recognized string.

A string               is recognized by the Buchi automaton 
if there exits a string                such that:

where               is the set of states visited infinitely often by string    .

T = (Q,Q0,à→ , O, < á >, F)

s = o1, o2, o3, . . . ∈ Oω

ú = q1, q2, q3, . . . ∈ Qω

< qi >= oi ∀i ∈ N

q1 ∈ Q0

qià→ qi+1, ∀i ∈ N

inf(ú) ∩ F 6=∅

F ò Q

inf(ú)

From LTL to Buchi
Buchi automata recognize every infinite string satisfying LTL formula .

Examples:

Translation from LTL formulas to Buchi automata is automatic

ϕ

å p {∅} {p} {∅}

å p
{∅} {p}

Safety versus liveness
LTL allows to express two different kinds of properties: Safety and Liveness.

Safety properties require that bad things will never happen. We can therefore check if
a safety property is violated in finite time. Safety properties can also be modeled by 
transition systems on finite strings.

Liveness properties require that good things will eventually happen. We cannot 
determine if a liveness property is violated in finite time, since it may hold at some 
later time in the future. Liveness properties require infinite strings.

Safety properties are closed under union which ensures that maximally permissive 
controllers for safety properties exist.

Liveness properties are not closed under union which precludes the existence of 
maximally permissive controllers. However, arbitrarily close approximations can always 
be found.
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LTL synthesis for control systems

TC
ϕTϕ

T∆

ϕLogic

Automata

Dynamics

LTL formula

Buchi automaton Discrete controller Discrete abstraction

Hybrid controller

C

Continuous plant

T∆/ ø

Supervisor synthesis

Given a LTL specification formula     and the finite bisimulation       of a discrete time 
controllable linear system, we can use standard supervisory control techniques to 
obtain a controller         for          ensuring that          

Recall that every transition in        is controllable. 

We can, therefore, (naively) define a controller as the Buchi automaton        satisfying:

If        is blocking, search for a non-blocking subsystem of       .

ϕ T∆

TC
ϕ T∆

TC
ϕ
k T∆|=ϕ

Lω(T
C
ϕ) = Lω(Tϕ) ∩ Lω(T

∆)

T∆

TC
ϕ

TC
ϕ TC

ϕ

Consider the following (Buchi) plant:

and the LTL specification            which can be translated to the automaton:

The intersection of the plant and specification behaviors is captured by:

Any supervisor allowing an arbitrary but finite number of occurrences of  
also allows an infinite number of such occurrences. However, for any fixed            

the language       can be achieved by control:

Safety versus liveness

å b

a b

a b

a b

a

aω + a+bω

aãbω

a+bω

n > 1 +n

i=1
aibω

a b abω + aabωa

LTL synthesis for control systems

TC
ϕTϕ

T∆

ϕLogic

Automata

Dynamics

LTL formula

Buchi automaton Discrete controller Discrete abstraction

Hybrid controller

C

Continuous plant

T∆/ ø

Consider a discrete time, controllable linear system and an LTL specification 
formula whose atomic propositions denote sets in the Brunovsky Boolean 
algebra. Then, the existence of an LTL controller can be decided.

Recall that: iff             . 

for any    .

We can thus show that a controller for        is also a controller for      :

Since we can decide the existence of        we immediately conclude the following

From discrete to continuous
T1 ñ T2 ⇒ T1|=ϕ T2|=ϕ

T1 ñ T2 ⇒ T1 k T ñ T2 k T T

T∆/ ø T∆

T∆ ñ (T∆/ ø) ⇒ TC
ϕ
||T∆ ñ

TC
ϕ
||(T∆/ ø)|=ϕ ⇒

TC

TC
ϕ
||(T∆/ ø)

TC
ϕ
||T∆|=ϕ

TC
ϕ
||(T∆/ ø)|=ϕ

The modern feedback loop

D/A A/D

Software

Continuous 
System

Discrete

Continuous

Signals

Symbols

Control design problem : Given formula, design A/D, D/A, softwareControl design problem : Given formula, design A/D, D/A, software

Formula
Dependent
Quantization

Supervisory control

Controller
Refinement
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Specifications for mobile sensor:

- Cycle between     and     .
- Stay in     for two time steps.
- Take no more than 4 steps to 
move from      to      and vice versa.

p1 p2
p1

p1 p2

p1

p2

p1 p1 p2

, p2

, p2, p2 , p2

, p2 , p2

, p1

, p1 , p1

Mobile sensor model:

[p1] ↔ (0, 0)

[p2] ↔ (3, 0)

p1 p2 x1

x2

x1(t + 1) = x2(t)
x2(t + 1) = u(t)

A Simple Example

p1 p1 p2

Finite controller (supervisor)
à
p1 ⇒ å4 p2 ∧ p2 ⇒ å4 (p1 ∧ î p1)

á
(p1 ∨ p2) ∧

Specifications for mobile sensor:

- Cycle between     and     .
- Stay in     for two time steps.
- Take no more than 4 steps to 
move from      to      and vice versa.

p1 p2
p1

p1 p2

p1 ⇒ å4 p2 ∧ p2 ⇒ å4 (p1 ∧ î p1)(p1 ∨ p2) ∧

p1

p2

p1 p1 p2

, p2

, p2, p2 , p2

, p2 , p2

, p1

, p1 , p1

Mobile sensor model:

[p1] ↔ (0, 0)

[p2] ↔ (3, 0)

p1 p2 x1

x2

x1(t + 1) = x2(t)
x2(t + 1) = u(t)

A Simple Example

p1 p2

Finite controller (supervisor)

p1

Specifications for mobile sensor:

- Cycle between     and     .
- Stay in     for two time steps.
- Take no more than 4 steps to 
move from      to      and vice versa.

p1 p2
p1

p1 p2

p1 ⇒ å4 p2 ∧ p2 ⇒ å4 (p1 ∧ î p1)(p1 ∨ p2) ∧

p1

p2

p1 p1 p2

, p2

, p2, p2 , p2

, p2 , p2

, p1

, p1 , p1

Mobile sensor model:

[p1] ↔ (0, 0)

[p2] ↔ (3, 0)

p1 p2 x1

x2

x1(t + 1) = x2(t)
x2(t + 1) = u(t)

A Simple Example

p2

Finite controller (supervisor)

p1 p1

Specifications for mobile sensor:

- Cycle between     and     .
- Stay in     for two time steps.
- Take no more than 4 steps to 
move from      to      and vice versa.

p1 p2
p1

p1 p2

p1 ⇒ å4 p2 ∧ p2 ⇒ å4 (p1 ∧ î p1)(p1 ∨ p2) ∧

p1

p2

p1 p1 p2

, p2

, p2, p2 , p2

, p2 , p2

, p1

, p1 , p1

Mobile sensor model:

[p1] ↔ (0, 0)

[p2] ↔ (3, 0)

p1 p2 x1

x2

x1(t + 1) = x2(t)
x2(t + 1) = u(t)

A Simple Example

p1 p2

Finite controller (supervisor)

p1

Specifications for mobile sensor:

- Cycle between     and     .
- Stay in     for two time steps.
- Take no more than 4 steps to 
move from      to      and vice versa.

p1 p2
p1

p1 p2

p1 ⇒ å4 p2 ∧ p2 ⇒ å4 (p1 ∧ î p1)(p1 ∨ p2) ∧

p1
p1 p1 p2

, p2

, p2, p2 , p2

, p2 , p2

, p1

, p1 , p1

Mobile sensor model:

[p1] ↔ (0, 0)

[p2] ↔ (3, 0)

p1 p2 x1

x2

x1(t + 1) = x2(t)
x2(t + 1) = u(t)

A Simple Example

p1

Finite controller (supervisor)

p1

p2

p2

Complexity barriers
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Continuous to continuous (Lecture 5)

≈≡ /TT

≈/T

Lecture 4

Exponential number states

T

≈≡ /TT

≈/T

Lecture 5

Bisimilar control systems

T xt+1 = Axt+But

yt+1 = Fyt +Gvt

yt+1 = Fyt +Gvt


