

Two states are equivalent iff

$$X_1 \approx X_2 \Leftrightarrow HX_1 = HX_2 \Leftrightarrow X_1 - X_2 \in Ker(H)$$

for some surjective map z=Hx. Simulation S=(x,Hx)

Partition is observation preserving iff

Linear observations:

 $Ker(H) \subseteq Ker(C)$

Finite, polyhedral observations:

 $Ker(H) \subseteq Ker(a_i)$

⊼ Penn

Respecting the controlled transitions

Respecting the transitions depends on the embedding.

Consider the transition system T_{ij}^{Δ}

$$x_1 \xrightarrow{u} x_1' = Ax_1 + Bu$$

$$x_2 \xrightarrow{u} x_2' = Ax_2 + Bu$$

Proposition: Partition respects the transitions iff

 $AKer(H) \subseteq Ker(H)$

7 Penn

Respecting the timed transitions

Consider the control-abstract transition system T_1^{Δ}

$$x_1 \xrightarrow{1} x_1' = Ax_1 + Bu$$
 for some u

$$x_2 \xrightarrow{x_2} x_2' = Ax_2 + Bu'$$
 for some u'

Proposition*: Partition respects the transitions iff

 $AKer(H) \subseteq Ker(H) + R(B)$

7 Penn

Similarly

Consider the control-abstract transition system T_{N}^{Δ}

$$x_1 \xrightarrow{k} x_1'$$

$$x_2 \xrightarrow{k} x_3$$

Proposition*: Partition respects the transitions iff

$$AKer(H) \subseteq Ker(H) + R(B)$$

A Penn

Respecting the untimed transitions

Consider the time-abstract transition system $\mathsf{T}^{\Delta}_{\mathtt{T}}$

$$x_1 \xrightarrow{T} x_1$$

$$X_2 \xrightarrow{T} X_2$$

Proposition*: Partition respects the transitions iff

$$AKer(H) \subseteq Ker(H) + R(A,B)$$

A Penn

Timed, continuous transitions

Consider the time-abstract transition system $\mathsf{T}_{\mathsf{R}}^{\Delta}$

$$\begin{array}{ccc} X_1 & \xrightarrow{\dagger} & X_1 \\ & & \\ & & \\ X_2 & \xrightarrow{\dagger} & & \\ \end{array}$$

Proposition*: Partition respects the transitions iff

$$AKer(H) \subseteq Ker(H) + R(A,B)$$

₹ Penn

Untimed, continuous transitions

Consider the time-abstract transition system $\,T_{\,\,\tau}^{\Delta}$

$$\begin{array}{cccc} X_1 & & & & \\ & & & & \\ & & & & \\ X_2 & & & & \\ \end{array}$$

Proposition*: Partition respects the transitions iff

$$AKer(H) \subseteq Ker(H) + R(A,B)$$

⊼ Penn

Summary

In addition to preserving the observations...

Embedding	Condition
T^{Δ}_1 $T^{\Delta}_{N_{\!\scriptscriptstyle{+}}}$	$A \operatorname{Ker}(H) \subseteq \operatorname{Ker}(H) + \operatorname{R}(B)$
$T^{\Delta}_{{}_{T}}$	$A \operatorname{Ker}(H) \subseteq \operatorname{Ker}(H) + \operatorname{R}(A,B)$
$T^\Delta_{R_+}$	$A \operatorname{Ker}(H) \subseteq \operatorname{Ker}(H) + \operatorname{R}(A,B)$
$T^\Delta_{_{T}}$	$A \operatorname{Ker}(H) \subseteq \operatorname{Ker}(H) + \operatorname{R}(A,B)$

≈ Penn

Coarsest Bisimulation

Find map z=Hx which abstracts as much as possible. Thus Ker(H) must be maximal but also...

Preserves observations

 $Ker(H) \subseteq Ker(C)$

Preserves transitions of T_1^Δ

 $A \operatorname{Ker}(H) \subseteq \operatorname{Ker}(H) + R(B)$

Other variations for other embeddings...

7 Penn

Coarsest Bisimulation Algorithm

Maximal controlled invariant subspace computation

$$V_0 = Ker(C)$$

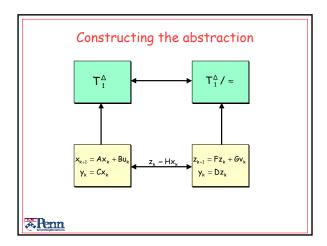
$$V_{k+1} = V_{k-1} \cap A^{-1}(V_{k-1} + R(B))$$

Then $V^* = V_n$ is the maximal desired subspace

Once V* is computed, then pick map z=Hx such that

Ker(H)=V*

A Renn



Construction

Construction of the generator of system T_1^{\triangle}/\approx

$$x_1 \xrightarrow{1} x_2 = Ax_1 + Bu$$
 for some u

$$\begin{vmatrix} x_1 & \cdots & x_2 \\ z_1 & \cdots & x_2 \end{vmatrix} = Ax_1 + Bu$$
 for some u

$$\begin{vmatrix} x_1 & \cdots & x_2 \\ z_2 & \cdots & x_2 \end{vmatrix} = Fx_1 + Gv$$
 for some v

Equivalently, for any x, u, there must exist a v such that

$$HAx + HBu = FHx + Gv$$

⊼ Penn

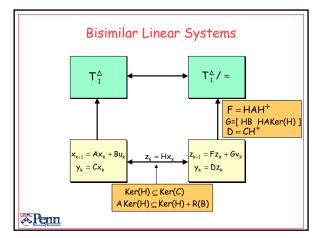
H-related control systems Consider discrete-time or continuous-time linear systems (X) x' = Ax + Bu(Z) z' = Fz + Gvwhere z=Hx is surjective. Then (Z) is H-related to (X) if for all x,u there exists v such that H(Ax+Bu) = FHx + GvProposition*: Given x'=Ax+Bu and onto map y=Hx choose

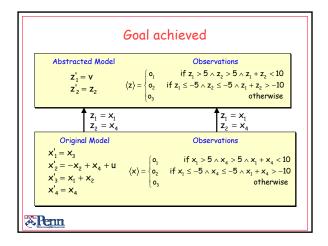
 $F = HAH^{+}$

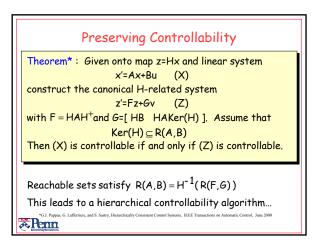
G=[HB HAKer(H)]

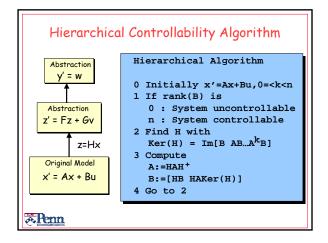
Then z'=Fz+Gv is H-related to x'=Ax+Bu

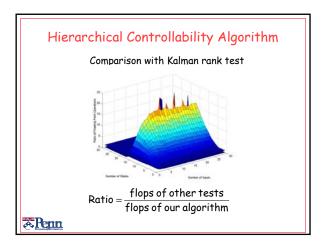
A Penn

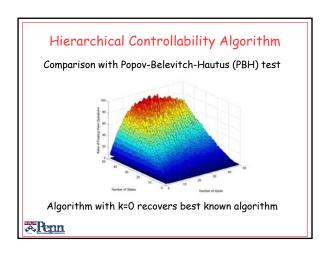


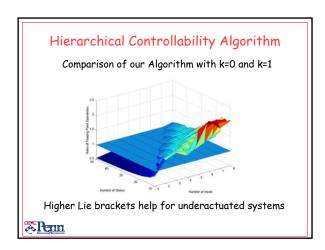


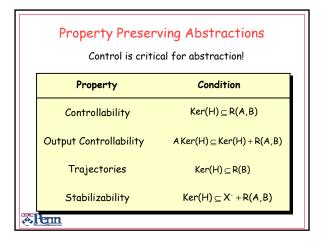












Some take home messages

New (hybrid) models, but also new (hybrid) questions

Partial synchronization of continuous systems

Logic is entering our world

Temporal logic for complicated specifications
 First-order logic for syntactically specifying hybrid systems

Algorithmic approaches to analysis and controller design

- Is your design method computationally feasible?
 Is your design method computationally efficient?
 Focus on tool development

Decidability boundary for hybrid problems is mature

(Bi)simulation relations are very useful

- Theoretically: As a system theoretic concept
- Practically : As a complexity reduction mechanism

Some future directions

Stochastic hybrid systems

Equivalence (model reduction) of hybrid systems

Approximate but efficient algorithms for analysis and design

Understanding compositionality and concurrency

Hybrid (heterogeneous) systems in a broader context

A unified systems theory

An invitation

Hybrid Systems : Computation and Control University of Pennsylvania March 25-27, 2004

http://www.seas.upenn.edu/hybrid/HSCC04/

