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Outline of this mini-course

Lecture 1: Monday, June 23

Examples of hybrid systems, modeling formalisms
Lecture 2 : Monday, June 23

Transitions systems, temporal logic, refinement notions
Lecture 3 : Tuesday, June 24

Discrete abstractions of hybrid systems for verification
Lecture 4 : Tuesday, June 24

Discrete abstractions of continuous systems for control
Lecture 5 : Thursday, June 26
Bisimilar control systems

Continuous to continuous (Lecture 5)

Lecture 4 Lecture 5
T/= T/ =| v =Fy+Gu
3 3
T=T/= T=T/=

T Y1 = Fyi + Guy

T z¢ = Az, + Bu,

Exponential number states Bisimilar control systems

Goal
Abstracted Model Observations
Z\=v o ifzy>50z, >50z +z, <10
z,=1z, (z)=40, ifzy<-50z,<-50z +z,>-10
0y otherwise
Z =X Z =X,
Z, =X, z, =X,
Original Model Observations
X\ =X
X‘ _3x - o, if x, >50x, >50x, +x, <10
2 2+ 4 (x)=40, ifx;<-50x,<-50x, +x,>-10
Xf =X X o, otherwise
X'y =X,
=~ =4
#Penn

Game plan
Partition
T < > T/=
3 4
Embedding —»
A < > A=

Construction
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Lossless Embedding

Transition System T,
T: =(Q.Z, -0, Stateset Q=X =R"

Labelset Z=U=R"

Observationset O =Y =RP

Linear Observation Map (x) = Cx

Transition Relation — O XxUxX
X1 = Ax, +Bu,

_ “
Yie =X, X, — X, = X, =Ax, +Bu

&Penn




=~

s

Loose Control...

T2 =(Q.Z, -0,

Transition System T4

A X1 i Ax, +Bu,
Yio = CX,

State set Q=X =R"

Labelset Z={1}
Observationset O=Y =RP
Linear Observation Map (x) = Cx

Transition Relation - O Xx{1}xX

1
X, - X, = (U with x, = Ax, +Bu
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Keep time....

T2 =(Q.Z,-,0,(M

A Xt iAxk +Bu,
Yie = CX

Penn

Transition System T}

Stateset Q=X =R"

Labelset Z =N,

Observationset O=Y =RP

Linear Observation Map (x) = Cx

Transition Relation - O XxN, xX
P Oty ... Uy With

X =X, = k-1
X, = Afx + Y A“By
i=0

Loose control and time...

T:=(QZ, -, 0,()

Transition System T2

A X1 iAxk +Buy
Yie = €,

State set Q=X =R"

Labelset Z={1}

Observationset O=Y =R?

Linear Observation Map (x) = Cx
Transition Relation - O Xx{T1}xX

. Ok and Ou,,...,u,; with
X X, = et
X, = A'x, + Y ARy,

i=0

Finite Observations

T =(QZ, -0,

A Xt iAxk +Bu,
Yie = Cx,

All Transition Systems

Finite Observations O ={o,,0;,...,0,}

Polyhedral Map (x): X - O

©,

o

0
ax+b =0

05

07
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Keep continuous time....

T: =(Q.Z, -0,

Transition System Ty

x'= Ax +Bu
y =Cx
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State set Q=X =R"

Labelset =R,

Observationset O=Y =RP
Linear Observation Map (x) = Cx
Transition Relation - O XxR, xX

R Oy, with

X, =X, N

X, = e*'x, + J'e“"s’Bu(s)ds
Q
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Loose continuous time....

T: =(Q.Z, -0,

x'= Ax +Bu
y =Cx

Penn

Transition System T2

Stateset Q=X=R"

Labelset Z={T1}
Observationset O=Y =RP
Linear Observation Map (x) = Cx

Transition Relation — 0 Xx{1}xX
OF and Ouy,, with

T

X| =X, =

1
X, = e*'x, + _|' e"(-9By(s)ds
Q




Partitions
Partition
T < > T/ =
3 4
Embedding —»
A ‘ » A/=
Construction

Respecting the controlled transitions

Respecting the transitions depends on the embedding.

Consider the transition system T,

Proposition : Partition respects the transitions iff

AKer(H) O Ker(H)

Similarly
Consider the control-abstract transition system T4,

k

X, ———— x,'

Proposition* : Partition respects the transitions iff

AKer(H) O Ker(H) +R(B)

Respecting the observations

Two states are equivalent iff

X, =X, = Hx, =Hx, = x; —x, OKer(H)

for some surjective map z=Hx. Simulation S=(x,Hx)

Partition is observation preserving iff
Linear observations :

Ker(H) O Ker(C)
Finite, polyhedral observations :

Ker(H) O Ker(q,)

Respecting the timed transitions

Consider the control-abstract transition system T}

1 '
X, ————>X,'= AX,; + Bu for some u

x, —Ll — x,'= Ax, + Bu' for some u'

Proposition* : Partition respects the transitions iff

AKer(H) O Ker(H) +R(B)

Respecting the untimed transitions

Consider the fime-abstract transition system T2

X, —— X,

Proposition* : Partition respects the transitions iff

AKer(H) O Ker(H) +R(A,B)




Timed, continuous transitions

Consider the time-abstract transition system T4,

Proposition* : Partition respects the transitions iff

AKer(H) O Ker(H) +R(A,B)

&Penn

Summary
In addition to preserving the observations...
Embedding Condition
T TR AKer(H) OKer(H) +R(B)
TS AKer(H) OKer(H) +R(A,B)
Ta AKer(H) OKer(H) + R(A,B)
T AKer(H) OKer(H) +R(A,B)
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Coarsest Bisimulation Algorithm

Untimed, continuous transitions
Consider the time-abstract transition system T4

T

X, ——— X,

Proposition* : Partition respects the transitions iff

AKer(H) OKer(H) +R(A,B)

Coarsest Bisimulation

Find map z=Hx which abstracts as much as possible.
Thus Ker(H) must be maximal but also...

Preserves observations

Ker(H) O Ker(C)
Preserves transitions of T4

AKer(H) O Ker(H) +R(B)

Other variations for other embeddings...

Maximal controlled invariant subspace computation
V, =Ker(C)
Visr =M 0 A_I(VH +R(B))

Then V* =V, is the maximal desired subspace

Once V* is computed, then pick map z=Hx such that

Ker(H)=Vv*

Constructing the abstraction

T) > TY/=

[

A

X = AX, +Bu, z, = Hx, 2.1 =Fz, +6v,
< Kk K 5

7| v =Dz,

i = X,




Construction

Construction of the generator of system T4/ =

1
X, ———> X, = Ax, + Bu for some u

z, :Hxl{ {zz =Hx,

21—1—>z2 =Fz, +6v for some v

Equivalently, for any x, u, there must exist a v such that

HAx +HBu = FHx +6v

H-related control systems

Consider discrete-time or continuous-time linear systems
(X) x =Ax+Bu
(Z2) z'=Fz +6v
where z=Hx is surjective. Then (Z) is H-related to (X) if
for all x,u there exists v such that
H(Ax+Bu) = FHx + 6v

Proposition* : Given x'=Ax+Bu and onto map y=Hx choose
F=HAH"
6=[ HB HAKer(H) 1]

Then z'=Fz+Gv is H-related to x'=Ax+Bu

Bisimilar Linear Systems

L » Ti/=

A A +
F =HAH

G=[ HB HAKer(H) ]
D=CH"

X = AX, +Bu, |z, =Hx, |Bs T Fz, +6v,
Yie = €%, T Y =Dz,

Ker(H) O Ker(C)
AKer(H) OKer(H) +R(B)

=25
Goal achieved
Abstracted Model Observations
zi=v o, ifzy>50z,>50z +2, <10
Z0=l7 (z)=40, ifzy<-50z,<-50z +z,>-10
BT R .
05 otherwise
Z =X Z =X,
Z, =X, z, =X,
Original Model Observations
X\ = Xy .
o Sy @5z, B0 o if x, >50x, >50x, +x, <10
g e (x)=40, ifx,<-50x,<-50x, +x, >-10
Xf =X X o, otherwise
X'y =X,
==

Preserving Controllability

Theorem™ : Given onto map z=Hx and linear system

x'=Ax+Bu  (X)
construct the canonical H-related system
Z=Fz+6v  (2Z)

with F =HAHand 6=[ HB HAKer(H) ]. Assume that
Ker(H) OR(A,B)
Then (X) is controllable if and only if (Z) is controllable.

Reachable sets satisfy R(A,B)=H 1(R(F,6))
This leads to a hierarchical controllability algorithm...

*GJ. Pappas, G. Laflerriere, and S. Sastry, Hierarchically Consistent Control Systems, IEEE Transactions on Automatie Control, June 2000
==

Hierarchical Controllability Algorithm

Abstraction Hi erarchical Al gorithm
y=w o
0 Initially x" =Ax+Bu, 0=<k<n
1 1f rank(B) is
Abstraction 0 : Systemuncontroll abl e
Z=Fz+6v n : System controllable
v 2 Find Hwith
2=Hx Ker (H) = In[B AB.AKB|
3 Conpute
Original Model A =HAH*
x'= Ax +Bu B: =[ HB HAKer (H)]
4 Go to 2




Hierarchical Controllability Algorithm

Comparison with Kalman rank test

e P R s

flops of other tests

Ratio =

flops of our algorithm
=R

Hierarchical Controllability Algorithm

Comparison with Popov-Belevitch-Hautus (PBH) test

[Py sy —

Algorithm with k=0 recovers best known algorithm

=R

Hierarchical Controllability Algorithm

Comparison of our Algorithm with k=0 and k=1

Higher Lie brackets help for underactuated systems
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Property Preserving Abstractions

Control is critical for abstraction!

Property Condition
Controllability Ker(H) OR(A,B)
Output Controllability AKer(H) OKer(H) +R(A,B)

Trajectories Ker(H) OR(B)
Stabilizability Ker(H) O X +R(A,B)
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Some take home messages

New (hybrid) models, but also new (hybrid) questions
e Partial synchronization of continuous systems
Logic is entering our world
o Temporal logic for complicated specifications
o First-order logic for syntactically specifying hybrid systems
Algorithmic approaches to analysis and controller design
e Is your design method computationally feasible?
e Ts your design method computationally efficient?
e Focus on tool development
Decidability boundary for hybrid problems is mature
e Complexity boundary is not
(Bi)simulation relations are very useful
o Theoretically : As a system theoretic concept
e Practically : As a complexity reduction mechanism
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Some future directions

Stochastic hybrid systems

Equivalence (model reduction) of hybrid systems
Approximate but efficient algorithms for analysis and design
Understanding compositionality and concurrency

Hybrid (heterogeneous) systems in a broader context

A unified systems theory

#Penn




An invitation

Hybrid Systems : Computation and Control
University of Pennsylvania
March 25-27, 2004
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http://www.seas.upenn.edu/hybrid/HSCC04/
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