Reachability and Observability
Analysis of Hybrid Systems

Alberto Bemporad g

Dip. di Ingegneria dell’Informazione
Universita degli Studi di Siena

bemporad@dii.unisi.it
http://www.dii.unisi.it/~bemporad

Facolta di Ingegrenia *5 ','.-"

Reachability Analysis

Verification

* GIVEN: an embedded system (continuous dynamical
system —+ logic controller = hybrid system)

« CERTIFY that such combination behaves as desired
e for ALL initial conditions within a given set
e for ALL disturbances within a given class

« or PROVIDE a counterexample.

Simulation: provides a partial answer (not all possibilities
can be tested!)

Reachability Analysis: provides the answer

Reachability Analysis/Verification

(Bemporad, Torrisi, Morari, 2000)

X(0

[X0

* Given: « A hybrid system Y
+ A set of initial conditions X(0)
+ Target sets Z;, Z9, ..., Zr (disjoint)
* Time horizon { < T, .

Target Set
> Zr

* Problem:. |s Z; reachable from X(0) in t steps ?
« If yes, from which subset X’z (0) of X(0) ?
+ Disturbance/input sequences driving Xz (0) to Z; .

Complexity of Reachability Analysis
» Tiax < 00, discrete-time model — Decidable ! N
BUT

» Mixed-integer linear feasibility test: for all t < T, for
all Z;, j=1,...,L, solve:

z(k+1) = ABz(t) + BEu(k) + f®
HOL(E) < K

i(k) €{0,...,s—1}

2(0) € A0)

wlk)yeU, k=0,..,t—1

.%‘(t) S Z]'

* NP-hard ! because of free integer variables i(k) (worst case: s”)

Verification Algorithm via MILP

» Simple solution: Solve VT>0 the mixed-integer linear feasibility test

z(0) € X(0)
z(T) € Z;
u(t ceU,0<t<T

x(t+1) = Az(t) + Byu(t) + B2d(t) + Bsz(t)

—— T

with respect to 2(0), {u(t), 5(t), 2(t)}/

+ Only practical for small problems ! because number of free
integer variables 6(0),d(1),...,(T) grows with 7

« Efficient Solution: Exploit the special structure of the problem.

(Bemporad, Torrisi, Morari, 2000)
(Torrisi, Bemporad, Giovanardi, 2003)

Reachability Analysis Algorithm

— Compute the polyhedral reach set A(?)
(affine dynamics)

— Detect switching

— Describe new intersections &{(t) N C;

— Stopping criteria for a single exploration
— Organize the search

X(0)

]
X(1)

Reach Set Computation

Reach set implicitly defined by linear inequalities

xz € X(0)

-1
K7 <A§m+ Y AlBu(t—1—k)+ fi]> +
k=0
+ Kru(t) <H, k=1,...,t

Umin L u(k) < umax, k=0,...,t—1

where X; = {(z,u) : Kjz+ Kju < H} is the current region

* Simple to compute
* Number of constraints grows linearly with time

* Explicit form also possible via projection
methods (e.g. coD by K. Fukuda)

Approximation of Intersections

v Simple to compute via Linear Programming (LP)
v Can approximate with arbitrary precision

v Trade off between conservativeness and complexity
v' Both inner and outer approximations in one shot

v Approximate computation of projections

Stopping Criteria

Reach set has left the current region 0 C1| C2
—

X(1,2(0))

X (3.2 fo))

Reach set is all inside a target Zi MM

5.2 (0))

t>T

max

(to guarantee termination)

R

Graph of Evolution
@ 4 \ﬂ
1
., ®

The graph is initialized with all the finitiallsubsets X;=X(0) N C;
and all the ftarget|sets

A node is added for each initial region of a new exploration

If a set can reach another set, an oriented arc is drawn

The time needed to reach the set is a weight associated with
the arc

Removing Nodes
®)

4

4

2

3

4 / @ R B
J

Unexplored @ Cy| Cs

STACK

« Before starting a new exploration, if the initial

set associated with the node is included in
another set, the node is removed and the arcs
are redirected

Switching Sequences

All switching admissible switching sequences {i(0),i(1),...,¢(T)}
of the system are paths in the graph

The converse is not true in general

(the graph is only a simulation)

Path Refinement

Cs|Cy

A fake path from C;
to C; has appeared
x Conservativeness introduced by
+ hyper-rectangular approximation
+ redirection of arcs (for set inclusion)
v' Each path of the graph can be validated by a Linear Program
(LP)

Conservativeness vs Graph Complexity

O—0O

o Less conservative o Graph less complicate
o Graph more complicate o More conservative

LP determines if a switching sequence is feasible

Verification Algorithm: Features

* Discrete-time, affine dynamics

o(t +1) = Aiz(t) + Biu(t) + fi

Process

Logic-, threshold-, and time-
based switching

Hysdel | + Inputs (e.g.: disturbances,
Source references)

Hysdel « Finite-time reachability analysis

Text

=1 R
% 1~] Cs * Logic-, threshold-, and time-
= . &> based ificati)
*g | L gy e & & | ased verification queries
MLD PWA

Software: shortly on the web

Applications

Safety (Z1, 2, ..., Zj = unsafe sets) ==

Stability (Z; = invariant set around the origin)

Optimal control (u(0),...,u(Tm.x) = optimal strategy,
Z1 = reference set) (Bemporad, Giovanardi, Torrisi, CDC 2000)

(practical) Liveness (Z; = set to be reached within a finite time)

Robust Simulation

—
—

3
T
m

TTTTT
a

il

S
£3
&
o
1
—

Verification Example:
Cruise Control System

Verify if a given switching
controller satisfies certain
specifications

(Torrisi, Bemporad, 2001)

Cruise Control System
y 2B

Gear selector:

w = Wy w = wy w = wy w = Wy
w < wy w < Wy w < Wy w < wy

Speed controller:

e(t+1) = e(t)+ Te(vp(t) —v(t)) (4 saturation)
we(t) { ke(ve(t) —v(t)) Fiee(t) if v(t) <wvr+1
' 0 otherwise
o kp(ve(t) —v(t)) if v(t) >vr+1
u(t) = { Ob otherwise

Verification Problem

Question: Will the L seey

cruise control reach

the desired speed £

reference within 10 s gm

without exceeding the i

speed limit? e N
Safety Zy={v:io> v+ reon}
Liveness Zo = {v,t v <vp —2rion,t > 10/Ts}

Ttoll = 5 km/h

HySdeI MOdeI (HYbrid Systems DEscription Language)

SYSTEM car {
INTERFACE {

{ REAL speed, err, vr; BOOL gearl, gear?, gear3, geard, gearS;)
ARAMETER (..}]
IMPLEMENTATION (
AUX {
23, Fed, FeS, w Cel, DCe2, 2ub, ierr, torque, ¥_brake;
)

St W2t W3+ owS) <= 0;
St W2t w3 b+ ws) <= 0;

S WL kw2t w3t
0; sat

= {IF gear? THEN speed / speed_factor * Rgear2];
= {IF geard THEN speed / speed_factor * Rgeardl;

d / speed_factor *
d / speed_factor *
d / speed_factor *

DCel = (IF dPWLL THEN (aPWL2) + (BPWL2) * (wl + w2 + w b (BBWLL) * (Wl + w2 + w3+ wh +wS));
DCe2 = (IF dPWL2 THEN (aPWL3 - aPWL2) + (bPW bEWL2) *
DCe3 = {IF dPWL3 THEN (al aBWL3) + (bBW bEWL3) *

DCed = (IF APWL4 THEN apuLe) +

- bPHLE

- speed) - ib *

speed) + it * err}; err);
+ + SE zut); F_brake = {IF sat_F_brake THEN max_brake_force ELSE zub);

DCe2

* (Fel + Fe2 + Fed + Fed + Fes e - beta_friction * speed); err = ierr; vr = vr;}

(gear2 & sd) | (gearl & ~su); gear? = (gearl & su) | (gear3 & sd) | (gear & ~sd & ~su);
2 & su) | (geard & sd) | (gear3 & ~sd & ~su); geard = (gear3 & su) | (gearS & sd) | (geard & ~sd & ~su);
& su) | (gears & ~sd);

1; dPWLZ -> dBWLL;}}

* MLD model ﬂ

Hybrid Model

2' (k) Ax(k) + Byu(k) 4 Bos(k) + Baz(k) + Bs
y(k) = Cx(k) + Diulk) + D26(k) + D3z(k) + Ds
Ex0(k) + B3z(k) < Eiu(k) + Baz(k) + Es

3 continuous states:v, v, € (speed, reference and tracking error)

5 binary states: g1, 92, 93, 94, g5 (gears)

19 auxiliary continuous vars: (5 traction force, 5 engine speed,
5 reset/saturation, 4 PWL max engine torque)

15 auxiliary binary vars:
(4 PWL max torque breakpoints, 4 saturations
5 logic updates, 2 gear switching conditions)

* 173 mixed-integer inequalities

Verification Results

« For all vy €[30,70] km/h the controller satisfies
both liveness & safety properties

+ CPU time: ~2.5h (Matlab 5.3, PC650MHz)

« For v, €[30,120] km/h
the verification algorithm
finds the first
counterexample after ~7m

Speed (Km/h)

Time (s)

Observability Analysis and
State Estimation/Fault Detection

Observability of Hybrid Systems

(Bemporad, Ferrari-Trecate, Morari , IEEE TAC, 2000)

Motivation: can we estimate states from a
certain set of output measurements ?

State-space

Complexity of Observability

Consider the PWA system:

z(t+ 1) = Axz(t)+ Biu(t) + f; z (t)
y(t) = Ciz(t) + i) for {u(t)] <

i-th component (A, B;, Ci, fi, gi)

Possible conjectures:

1. PWA systems with observable components are observable
2. PWA systems with unobservable components are unobservable

All these conjectures are false !

Observability is undecidable
(Sontag, 1996)

Output
1% y
O o B .
[m}
O . w o D
ST S RS
®X1,0 *2
[}
Example

An observable PWL system with unobservable components.

o T
,2

l[l 1] [m] (t) if @a(t) < 2a(t)

0 1 T

oy = JEat) i @i(t) > @a(t)
y(t> B {:L‘Z(t) if fvl(t) < .’L’Q(t)

X(0) C Sector 1 U Sector 2
is observable

X(0) C Sector 3 Sector 4
is unobservable

t
i
t
!
t
t
i
t
t
t

-1 -0.5 0 05 1 15

. " . , Observability is not a
—> ‘z(t+ 1) — x(t) normalized vector field A
global property in general !

Practical Observability

For any pair (z,(0),z,(0)) of initial states in X(0), require that
T

1
lwr(t) = y2(t)loc = wllz1(0) — 22(0)|1
0

t=

whatever the input signal u(t) is (within a given input set U).

1. w > 0 is a sensitivity indicator = Require w = Wiy
2. T is an observability index = Require T < T4,

Equivalently:

T-1

min > v — y2(®)lloo — wllz1(0) — z2(0)11 > O
21(0),22(0) € X(0) (=0

uw(t) eUU,t =0,...,T -1

Practical observability is a decidable property

Observability Algorithm #1

Goal: Compute, forT < Thax

T—1
J*E S lyn(®) — v2(Dlleo = wllz1(0) — 22(0)||1
=0

w.r.t. z;(0),z,(0)eX(0) and u(t)eld, and subj. to the MLD
equations + constraints.

The cost function is not convex !

Idea: The 1-norm is a PWL function and it can be represented
via mixed integer linear inequalities

The wo-norm can be represented via linear inequalities

J* can be computed by solving a Mixed Integer Linear Program

Only suitable for relatively small T'
(because the number of free integer variables grows linearly with T')

Observability Algorithm #2

Alternative approach:

Use a reachability analysis algorithm to verify that
J“> 0 for all initial conditions

(reachability analysis is not propagated from sets where J*> 0)

Computationally very efficient also for large T
(complexity depends on number of possible switches over the horizon T)

State Estimation / Fault Detection

* Problem: given past output measurements and inputs, estimate

the current states of the hybrid systems (including discrete
states and 0/1 faults)

» Idea: Use Moving Horizon Estimation ideas on the MLD model
(modified w/ disturbances). This is the (almost) dual of MPC

(Rao, Rawlings, Lee, Automatica 2001)

+ measurements
— estimates

MLD Systems w/ Disturbances

+ Mixed logic dynamic fault (MLDF) form: (Bemporad, Mignone, Morari, ACC 99)

z(t+1) = Az(t) + Byu(t) + Bad(t) + Bsz(t) + Bso(t) + £(1)
y(t) = Cx(t) + Dyu(t) + D26(t) + D3z(t)+ Dso(t) + ((t)
Eq0(t) + Esz(t) < Eiu(t) + Exx(t) + E5 + Esb(t)

« Faults: ¢ € {0,1}" = unknown binary disturbances

« Disturbances: ¢ € R", (e R/

« Goal: obtain estimates ¢(t),i(t) at each time ¢

Hybrid Moving Horizon Estimation

(Bemporad, Mignone, Morari, ACC 99)

« At time ¢, solve the optimization problem

min Z 5t — klt) — y(t — k)[I? +
s.t. MLDF dynamics

with respect to z(¢t — T|t), 8(t —T), ...8(t — 1),
2=T), ...2(t=1), ¢t =T), ... ¢(t —1)
E@-T), ... -1), ct-T), ... ¢t -1).

« Compute the estimate Z(t), ¢(t)

* Set t « t+1 and repeat

Hybrid Moving Horizon Estimation

« Complexity: at each time step we must solve an MIQP
with respect to z(t —TIt), 6(t —T), ...56(t — 1),
2(t=T), ...2(t=1), o(t =T), ...0(t — 1)
EX=T), ... E(t=1), C(t=T), ...C(t—1).

* Choice of T related to observability properties

» Convergence: can be proved for state estimation problems
using proper quadratic penalties on z{(t — T'|t)
(Ferrari-T., Mignone, Morari, 2002)

State Estimation / Fault Detection

* Problem: given past output measurements and inputs, estimate the current
state/faults

* Solution: Use Moving Horizon Estimation for MLD systems (dual of MPC)

n

+ measurements Augment the MLD model with:
estimates

7 * Input disturbances ¢ € R"
* Output disturbances ¢ ¢ R?

’ T
At each time t solve| . ~ 2 i 5
the optimization: mmg Hy(t - k‘t) - y(t - k)H +...fjand get estimates x(t)

) N HE optimization = MIQP (Bemporad, Mignone, Morari, ACC 1999)

) Convergence can be guaranteed
(Ferrari-T., Mignone, Morari, 2002)

Fault detection: augment MLD with unknown binary distubances ¢ € {0,1}”

: leak in tank 1

for 20s <t < 60s

=01
0

: valve V,; blocked

for t > 40s

iy
&

: leak in tank 1
for 20s <t <60s

- ®; :valve V; blocked
for t > 40s

* Add logic constraint
[hi <h)J) = ¢=0

0}

by 83

=01

20 40 80 B0 100

