
1

ReachabilityReachability and and ObservabilityObservability
Analysis of Hybrid SystemsAnalysis of Hybrid Systems

Alberto BemporadAlberto Bemporad

Dip. di Dip. di IngegneriaIngegneria dell’Informazionedell’Informazione
UniversitàUniversità deglidegli StudiStudi di Sienadi Siena

Università degli Studi di Siena
Facoltà di Ingegneria

bemporad@dii.unisi.itbemporad@dii.unisi.it
http://http://www.dii.unisi.it/~bemporadwww.dii.unisi.it/~bemporad

ReachabilityReachability AnalysisAnalysis

VerificationVerification

• GIVEN: an embedded system (continuous dynamical

system + logic controller = hybrid system)

• CERTIFY that such combination behaves as desired

• for ALL initial conditions within a given set

• for ALL disturbances within a given class

• or PROVIDE a counterexample.

Simulation: provides a partial answer (not all possibilities
can be tested!)

Reachability Analysis: provides the answer • If yes, from which subset of ?

• Disturbance/input sequences driving to .

• Target sets (disjoint)

• A hybrid system

X(0)Σ

ReachabilityReachability Analysis/VerificationAnalysis/Verification

• Given:

Z1, Z2, . . ., ZL

t ô Tmax

• Problem: • Is reachable from in t steps ?Zi X(0)
X(0)

Zi

XZi
(0)

XZi
(0)

• A set of initial conditions

• Time horizon

Z1

Z2

ZL

XZ1
(0)

XZ2
(0)

XZL
(0)

X(0)
(Bemporad, Torrisi, Morari, 2000)

2

• Mixed-integer linear feasibility test: for all , for
all , solve:

Complexity of Complexity of ReachabilityReachability AnalysisAnalysis

• , discrete-time modelTmax <∞ Decidable !

• NP-hard ! because of free integer variables (worst case:)i(k) sT

BUT

Z1

Z2

ZL

X(0)
XZ1

(0)

XZ2
(0)

XZ3
(0)

x(k+1) =Ai(k)x(t)+Bi(k)u(k)+fi(k)

Hi(k)x(k) ôKi(k)

i(k) ∈ {0, . . ., sà1}
x(0) ∈ X(0)
u(k) ∈ U, k = 0, . . ., tà1
x(t) ∈ Zj

t ô Tmax
Zj, j = 1, . . ., L

Verification Algorithm via Verification Algorithm via MILPMILP

• Only practical for small problems ! because number of free

integer variables grows with T

• Efficient Solution: Exploit the special structure of the problem.

î(0), î(1), . . ., î(T)

• Simple solution: Solve ∀T>0 the mixed-integer linear feasibility test

x(0) ∈ X(0)
x(T) ∈ Zi

u(t) ∈ U, 0 ô t ô T
x(t + 1) = Ax(t) +B1u(t) +B2î(t) +B3z(t)
E2î(t) + E3z(t) ô E1u(t) + E4x(t) +E5


x(0), {u(t), î(t), z(t)}T

t=0
with respect to

(Bemporad, Torrisi, Morari, 2000)
(Torrisi, Bemporad, Giovanardi, 2003)

ReachabilityReachability Analysis AlgorithmAnalysis Algorithm

– Compute the polyhedral reach set X(t)
(affine dynamics)

– Detect switching

– Describe new intersections X(t) ∩ Cj
– Stopping criteria for a single exploration

– Organize the search

Ci Cj

X(0)

X(1)
X(2)
X(3)
X(4)

Reach set implicitly defined by linear inequalities

Reach Set ComputationReach Set Computation

• Simple to compute

• Number of constraints grows linearly with time

• Explicit form also possible via projection

methods (e.g. CDD by K. Fukuda)

where is the current region

3

Approximation of IntersectionsApproximation of Intersections

Simple to compute via Linear Programming (LP)

Can approximate with arbitrary precision

Trade off between conservativeness and complexity

Both inner and outer approximations in one shot

Approximate computation of projections

Stopping CriteriaStopping Criteria

• Reach set has left the current region

• Reach set is all inside a target Zi

• t > Tmax (to guarantee termination)

X (5, X (0))

X (0)

X (1,X (0))

X (2, X (0))

X (3, X (0))

X (4,X (0))

C1 C2

X (0)

X (1,X (0))

X (2, X (0))

X (3,X (0))

Zi

• The graph is initialized with all the initial subsets

and all the target sets

Graph of EvolutionGraph of Evolution

3

Z

X
1

X
2

2

Z
1

Xi,X(0) ∩ Ci

1

1

1

2

2

3

34

4

• A node is added for each initial region of a new exploration

• If a set can reach another set, an oriented arc is drawn

• The time needed to reach the set is a weight associated with

the arc

Removing NodesRemoving Nodes

• Before starting a new exploration, if the initial

set associated with the node is included in

another set, the node is removed and the arcs

are redirected

Rj

Rj
R1

R2

X1

X2

1

1

3

4
4

4

2

Rj R1

R2

C1

C3

C2

C4Unexplored
STACK

X

4

Switching SequencesSwitching Sequences

• All switching admissible switching sequences

of the system are paths in the graph

• The converse is not true in general

(the graph is only a simulation)

X1

X2

1
X3

Z2

Z11

1

1

2

2

3

34

4

{i(0), i(1), . . ., i(T)}

R1

C1

C3

C2

C4

C5

R2

1

1

1

1
R1

R2

Path Refinement Path Refinement

Conservativeness introduced by

hyper-rectangular approximation

redirection of arcs (for set inclusion)

Each path of the graph can be validated by a Linear Program

(LP)

A fake path from C1

to C3 has appeared

◦ Less conservative

◦ Graph more complicate

LP determines if a switching sequence is feasible

Conservativeness Conservativeness vsvs Graph ComplexityGraph Complexity

◦ Graph less complicate

◦ More conservative

Verification Algorithm: FeaturesVerification Algorithm: Features

• Discrete-time, affine dynamics

• Logic-, threshold-, and time-

based switching

• Inputs (e.g.: disturbances,

references)

• Finite-time reachability analysis

• Logic-, threshold-, and time-

based verification queries

x(t + 1) = Aix(t) + Biu(t) + fi
x(t+ 1) =

A1x(t) + B1u(t) + f1 A2x(t) +B2u(t) + f2

x(t+ 1) =
A3x(t) +B3u(t) + f3

x(t+ 1) =

g12x(t) + h12u(t) < k12

g32x(t) + h32u(t) < k32

g23x(t) + h23u(t) < k23

g13x(t) + h13u(t) < k13

A/D D/A

continuous

logic

Designer

Hysdel

MLD PWA

Hysdel
Source

Software: shortly on the web

5

ApplicationsApplications
• Safety (= unsafe sets)

• Stability (= invariant set around the origin)

• Optimal control (= optimal strategy,

= reference set)

• (practical) Liveness (= set to be reached within a finite time)

• Robust Simulation

Z1, Z2, . . ., ZL

Z1

u(0), . . ., u(Tmax)

Z1

Z1

XZ1
(0)

XZ2
(0)

XZL
(0)

Z1

Z2

ZL

X(0)

(Bemporad, Giovanardi, Torrisi, CDC 2000)

Verification Example:Verification Example:
Cruise Control SystemCruise Control System

Cruise Control SystemCruise Control System

GOAL:

Verify if a given switching
controller satisfies certain
specifications

(Torrisi, Bemporad, 2001)

Cruise Control SystemCruise Control System

Gear selector:

Speed controller:

6

Verification ProblemVerification Problem

0 2 4 6 8 10 12 14 16
0

20

40

60

80

100

120

Time (s)

S
pe

ed
 (K

m
/h

)

Liveness

SafetyQuestion: Will the

cruise control reach

the desired speed

reference within 10 s

without exceeding the

speed limit?

Liveness

Safety

SYSTEM car {
INTERFACE {

STATE { REAL speed, err, vr; BOOL gear1, gear2, gear3, gear4, gear5; }
PARAMETER {…}}

IMPLEMENTATION {
AUX {

REAL Fe1, Fe2, Fe3, Fe4, Fe5, w1, w2, w3, w4, w5, DCe1, DCe2, DCe3, DCe4,zut, zub, ierr, torque, F_brake;
BOOL dPWL1, dPWL2, dPWL3, dPWL4, sd, su, verr, sat_torque, sat_F_brake, no_sat;}

LOGIC { no_sat = ~(sat_torque | sat_F_brake) & verr; }
AD {dPWL1 = wPWL1 - (w1 + w2 + w3 + w4 + w5) <= 0; dPWL2 = wPWL2 - (w1 + w2 + w3 + w4 + w5) <= 0;

dPWL3 = wPWL3 - (w1 + w2 + w3 + w4 + w5) <= 0; dPWL4 = wPWL4 - (w1 + w2 + w3 + w4 + w5) <= 0;

sd = (w1 + w2 + w3 + w4 + w5) - wl <= 0; su = wu - (w1 + w2 + w3 + w4 + w5) <= 0; verr = speed - vr - 2 <= 0;
sat_torque = - zut + (DCe1 + DCe2 + DCe3 + DCe4) + 1 <= 0; sat_F_brake = - zub + max_brake_force <= 0; }

DA {Fe1 = {IF gear1 THEN torque / speed_factor * Rgear1}; Fe2 = {IF gear2 THEN torque / speed_factor * Rgear2};
Fe3 = {IF gear3 THEN torque / speed_factor * Rgear3}; Fe4 = {IF gear4 THEN torque / speed_factor * Rgear4};
Fe5 = {IF gear5 THEN torque / speed_factor * Rgear5};

w1 = {IF gear1 THEN speed / speed_factor * Rgear1}; w2 = {IF gear2 THEN speed / speed_factor * Rgear2};
w3 = {IF gear3 THEN speed / speed_factor * Rgear3}; w4 = {IF gear4 THEN speed / speed_factor * Rgear4};
w5 = {IF gear5 THEN speed / speed_factor * Rgear5};

DCe1 = {IF dPWL1 THEN (aPWL2) + (bPWL2) * (w1 + w2 + w3 + w4 + w5) ELSE (aPWL1) + (bPWL1) * (w1 + w2 + w3 + w4 + w5)};
DCe2 = {IF dPWL2 THEN (aPWL3 - aPWL2) + (bPWL3 - bPWL2) * (w1 + w2 + w3 + w4 + w5)};
DCe3 = {IF dPWL3 THEN (aPWL4 - aPWL3) + (bPWL4 - bPWL3) * (w1 + w2 + w3 + w4 + w5)};
DCe4 = {IF dPWL4 THEN (aPWL5 - aPWL4) + (bPWL5 - bPWL4) * (w1 + w2 + w3 + w4 + w5)};

zut = {IF verr THEN kt * (vr - speed) + it * err}; zub = {IF ~verr THEN - kb * (vr - speed) - ib * err};
torque ={IF sat_torque THEN (DCe1 + DCe2 + DCe3 + DCe4) + 1 ELSE zut}; F_brake = {IF sat_F_brake THEN max_brake_force ELSE zub};
ierr = {IF no_sat THEN err + Ts * (vr - speed)};}

CONTINUOUS {
speed = speed + Ts / mass * (Fe1 + Fe2 + Fe3 + Fe4 + Fe5 - F_brake - beta_friction * speed); err = ierr; vr = vr;}

AUTOMATA {
gear1 = (gear2 & sd) | (gear1 & ~su); gear2 = (gear1 & su) | (gear3 & sd) | (gear2 & ~sd & ~su);
gear3 = (gear2 & su) | (gear4 & sd) | (gear3 & ~sd & ~su); gear4 = (gear3 & su) | (gear5 & sd) | (gear4 & ~sd & ~su);
gear5 = (gear4 & su) | (gear5 & ~sd);}

MUST {
-w1 <= -wemin; w1 <= wemax; -w2 <= -wemin; w2 <= wemax; -w3 <= -wemin; w3 <= wemax; -w4 <= -wemin; w4 <= wemax; -w5 <= -wemin;
w5 <= wemax; -F_brake <= 0; F_brake <= max_brake_force; torque - (DCe1 + DCe2 + DCe3 + DCe4) - 1 <= 0;
-((REAL gear1) + (REAL gear2) + (REAL gear3) + (REAL gear4) + (REAL gear5)) <= -0.9999;
(REAL gear1) + (REAL gear2) + (REAL gear3) + (REAL gear4) + (REAL gear5) <= 1.0001;
dPWL4 -> dPWL3; dPWL4 -> dPWL2; dPWL4 -> dPWL1; dPWL3 -> dPWL2; dPWL3 -> dPWL1; dPWL2 -> dPWL1;}}

HysdelHysdel Model Model ((HYbridHYbrid Systems Systems DEscriptionDEscription Language)Language)

Hybrid ModelHybrid Model
• MLD model

• 3 continuous states:

• 5 binary states:

• 15 auxiliary binary vars:

• 19 auxiliary continuous vars:

(gears)g1, g2, g3, g4, g5

(speed, reference and tracking error)v, vr, e

(5 traction force, 5 engine speed,
5 reset/saturation, 4 PWL max engine torque)

(4 PWL max torque breakpoints, 4 saturations
5 logic updates, 2 gear switching conditions)

• 173 mixed-integer inequalities

• For
the verification algorithm
finds the first

~counterexample after 7m

• For all the controller satisfies
both liveness & safety properties

• ~CPU time: 2.5h (Matlab 5.3, PC650MHz)

Verification ResultsVerification Results

vr ∈

0 2 4 6 8 10 12 14 16
0

20

40

60

80

100

120

Time (s)

Sp
ee

d
(K

m
/h

)
Liveness

Safety
[30,120] km/h

vr ∈ [30,70] km/h

7

ObservabilityObservability Analysis andAnalysis and
State Estimation/Fault DetectionState Estimation/Fault Detection

Observability of Hybrid SystemsObservability of Hybrid Systems
(Bemporad, Ferrari-Trecate, Morari , IEEE TAC, 2000)

Motivation: can we estimate states from a
certain set of output measurements ?

Complexity of ObservabilityComplexity of Observability

x (t + 1) = A ix (t) + B iu (t) + f i

y (t) = Cix (t) + gi) for
x (t)
u (t)

ô õ
∈ X i

Consider the PWA system:

Ai, B i, Ci, f i, gi()i-th component

1. PWA systems with observable components are observable
2. PWA systems with unobservable components are unobservable

All these conjectures are false !

Possible conjectures:

Observability is undecidable
(Sontag, 1996)

ExampleExample

An observable PWL system with unobservable components.

x1

x2

ô õ
(t + 1) =

1 0
1 1

ô õ
x1

x2

ô õ
(t) if x1(t) > x2(t)

1 1
0 1

ô õ
x1

x2

ô õ
(t) if x1(t) ô x2(t)


y(t) =

x1(t) if x1(t) > x2(t)
x2(t) if x1(t) ô x2(t)

ú

Observability is not a
global property in general !

: x (t + 1) à x (t) normalized vector field

X(0) ú Sector 1 ∪ Sector 2

is observable

X(0) ú Sector 3 ∪ Sector 4

is unobservable

8

Practical ObservabilityPractical Observability

w > 0

Practical observability is a decidable property

1. is a sensitivity indicator ⇒ Require w > wmin

2. T ô TmaxT is an observability index ⇒ Require

For any pair (x1(0),x2(0)) of initial states in X(0), require that

whatever the input signal u(t) is (within a given input set U).

Equivalently:

ObservabilityObservability Algorithm #1Algorithm #1

Goal: Compute, for

w.r.t. x1(0),x2(0)∈X(0) and u(t)∈U, and subj. to the MLD

equations + constraints.

The cost function is not convex !

T ô Tmax

Idea: The 1-norm is a PWL function and it can be represented
via mixed integer linear inequalities

The ∞-norm can be represented via linear inequalities

Jã can be computed by solving a Mixed Integer Linear Program

Only suitable for relatively small T
(because the number of free integer variables grows linearly with T)

ObservabilityObservability Algorithm #2Algorithm #2

Alternative approach:

Use a reachability analysis algorithm to verify that
J*≥ 0 for all initial conditions

(reachability analysis is not propagated from sets where J*≥ 0)

Computationally very efficient also for large T
(complexity depends on number of possible switches over the horizon T)

State Estimation / Fault DetectionState Estimation / Fault Detection

• Idea: Use Moving Horizon Estimation ideas on the MLD model
(modified w/ disturbances). This is the (almost) dual of MPC

• Problem: given past output measurements and inputs, estimate
the current states of the hybrid systems (including discrete
states and 0/1 faults)

(Rao, Rawlings, Lee, Automatica 2001)

9

MLDMLD Systems w/ DisturbancesSystems w/ Disturbances

• Goal: obtain estimates at each time t

x(t + 1) = Ax(t) +B1u(t) + B2î(t) +B3z(t)
y(t) = Cx(t) +D1u(t) +D2î(t) +D3z(t)

E2î(t) +E3z(t) ô E1u(t) + E4x(t) +E5

+ B6þ(t) + ø(t)
+D6þ(t) + ð(t)

+E6þ(t)

(Bemporad, Mignone, Morari, ACC 99)

• Faults: þ ∈ {0, 1}nf

ø ∈ Rn, ð ∈ Rp

• Mixed logic dynamic fault (MLDF) form:

þê(t), xê(t)

= unknown binary disturbances

• Disturbances:

Hybrid Moving Horizon EstimationHybrid Moving Horizon Estimation

• At time t, solve the optimization problem

with respect to

• Set t ← t+1 and repeat

• Compute the estimate

(Bemporad, Mignone, Morari, ACC 99)

Hybrid Moving Horizon EstimationHybrid Moving Horizon Estimation

• Complexity: at each time step we must solve an MIQP

with respect to

(Ferrari-T., Mignone, Morari, 2002)

• Choice of T: related to observability properties

• Convergence: can be proved for state estimation problems
using proper quadratic penalties on

State Estimation / Fault DetectionState Estimation / Fault Detection

• Solution: Use Moving Horizon Estimation for MLD systems (dual of MPC)

(Bemporad, Mignone, Morari, ACC 1999)

• Input disturbances
• Output disturbances

ø ∈ Rn

min
P
k=1

T
yê(t à k|t)à y(t à k)k k2 + . . . xê(t)

• Problem: given past output measurements and inputs, estimate the current
state/faults

MHE optimization = MIQP

Convergence can be guaranteed
(Ferrari-T., Mignone, Morari, 2002)

Augment the MLD model with:

At each time t solve
the optimization:

ð ∈ R p

and get estimates

Fault detection: augment MLD with unknown binary distubances þ∈ {0,1}p

10

Example: Three Tank SystemExample: Three Tank System

• : leak in tank 1
for

• : valve V1 blocked
for

þ1

þ2

20s ô t ô 60s

t õ 40s

COSY Benchmark problem, ESF

Example: Three Tank SystemExample: Three Tank System

[h1 ô hv] ⇒ þ2 = 0

• Add logic constraint

COSY Benchmark problem, ESF

• : leak in tank 1
for

• : valve V1 blocked
for

þ1

þ2

20s ô t ô 60s

t õ 40s

