Consider the following continuous PWA system:

$$
\begin{equation*}
\dot{x}(t)=A_{i} x(t)+B_{i} u(t)+a_{i}, \quad \text { for } x \in X_{i} \tag{1}
\end{equation*}
$$

Here, $\left\{X_{i}\right\}_{i \in I} \subseteq \mathbb{R}^{n}$ is a partition of the state space into a number of closed (possibly unbounded) polyhedral cells. The index set of the cells is denoted by I. Let $I_{0} \subseteq I$ be the set of indices of the cells that contain the origin and $I_{1} \subseteq I$ the set of indices of cells that do not contain the origin. It is assumed that $a_{i}=0$, for all $i \in I_{0}$. Defining the following modified matrices:

$$
\bar{A}_{i}=\left[\begin{array}{cc}
A_{i} & a_{i} \tag{2}\\
0 & 0
\end{array}\right], \bar{B}_{i}=\left[\begin{array}{c}
B_{i} \\
0
\end{array}\right], \bar{x}=\left[\begin{array}{l}
x \\
1
\end{array}\right],
$$

we obtain:

$$
\begin{equation*}
\dot{\bar{x}}(t)=\bar{A}_{i} \bar{x}(t)+\bar{B}_{i} u(t), \quad \text { for } x \in X_{i} \tag{3}
\end{equation*}
$$

Next, we can construct matrices

$$
\bar{E}_{i}=\left[\begin{array}{ll}
E_{i} & e_{i}
\end{array}\right], \quad \bar{F}_{i}=\left[\begin{array}{ll}
F_{i} & f_{i} \tag{4}
\end{array}\right],
$$

with $e_{i}=0$ and $f_{i}=0$ for $i \in I_{0}$ and such that

$$
\begin{align*}
\bar{E}_{i} \bar{x} \geq 0, & \text { if } x \in X_{i}, \quad i \in I \tag{5}\\
\bar{F}_{i} \bar{x}=\bar{F}_{j} \bar{x}, & \text { if } x \in X_{i} \cap X_{j}, i, j \in I \tag{6}
\end{align*}
$$

The construction of the constraint matrices \bar{E}_{i} and \bar{F}_{i} will be discussed later. Now consider symmetric matrices T, U_{i} and W_{i}, such that U_{i} and W_{i} have nonnegative entries. Moreover, define matrices \bar{Q}_{i} as follows:

$$
\bar{Q}_{i}=\left[\begin{array}{cc}
Q_{i} & 0 \tag{7}\\
0 & 0
\end{array}\right],
$$

with Q_{i} positive definite matrices. Now if $P_{i}=F_{i}^{\mathrm{T}} T F_{i}$, for $i \in I_{0}$, and $\bar{P}_{i}=\bar{F}_{i}^{\mathrm{T}} T \bar{F}_{i}$, for $i \in I_{1}$, satisfy ([1])

$$
\begin{align*}
& \left\{\begin{array}{l}
0>A_{i}^{\mathrm{T}} P_{i}+P_{i} A_{i}+E_{i}^{\mathrm{T}} U_{i} E_{i}+Q_{i}, \\
0<P_{i}-E_{i}^{\mathrm{T}} W_{i} E_{i},
\end{array} \text { for all } i \in I_{0},\right. \tag{8}\\
& \left\{\begin{array}{l}
0>\bar{A}_{i}^{\mathrm{T}} \bar{P}_{i}+\bar{P}_{i} \bar{A}_{i}+\bar{E}_{i}^{\mathrm{T}} U_{i} \bar{E}_{i}+\bar{Q}_{i}, \\
0<\bar{P}_{i}-\bar{E}_{i}^{\mathrm{T}} W_{i} \bar{E}_{i},
\end{array} \text { for all } i \in I_{1},\right. \tag{9}
\end{align*}
$$

then $x(t)$ tends to zero exponentially as $t \rightarrow \infty$ for every continuous piecewise trajectory in $\cup_{i \in I} X_{i}$ satisfying (1) with $u \equiv 0$. As discussed before, for cells that contain the origin, a_{i} is zero. Therefore for these cells (which belong to the set I_{0}) we use the original matrix definitions $\left(A_{i}\right.$ and B_{i}) in (8).

Now in order to integrate the reference tracking problem into this framework, we define an additional state x_{e} as follows:

$$
\begin{equation*}
\dot{x}_{\mathrm{e}}(t)=x_{\mathrm{ref}}(t)-x(t) \tag{10}
\end{equation*}
$$

with $x_{\mathrm{ref}}(t)$ the reference signal to be tracked. Thus, the dynamics are modified as follows:

$$
\dot{x}_{\mathrm{t}}=\left[\begin{array}{c}
\dot{\dot{x}} \tag{11}\\
\dot{x}_{\mathrm{e}}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
A_{i} & 0 \\
-I & 0
\end{array}\right]}_{A_{t, i}}\left[\begin{array}{c}
x \\
x_{\mathrm{e}}
\end{array}\right]+\underbrace{\left[\begin{array}{c}
B_{i} \\
0
\end{array}\right]}_{B_{t, i}} u+\left[\begin{array}{c}
0 \\
I
\end{array}\right] x_{\mathrm{ref}}+\left[\begin{array}{c}
a_{i} \\
0
\end{array}\right]
$$

and with the state augmentation technique introduced in (2), the dynamics can be reformulated as follows

$$
\dot{\bar{x}}_{\mathrm{t}}=\left[\begin{array}{c}
\dot{x} \tag{12}\\
\dot{x}_{\mathrm{e}} \\
0
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
A_{i} & 0 & a_{i} \\
-I & 0 & 0 \\
0 & 0 & 0
\end{array}\right]}_{\bar{A}_{t, i}}\left[\begin{array}{c}
x \\
x_{\mathrm{e}} \\
1
\end{array}\right]+\underbrace{\left[\begin{array}{c}
B_{i} \\
0 \\
0
\end{array}\right]}_{\bar{B}_{t, i}} u+\left[\begin{array}{c}
0 \\
I \\
0
\end{array}\right] x_{\mathrm{ref}}
$$

Now define the state feedback control law as

$$
\begin{equation*}
u(t)=K_{i} \bar{x}_{t}(t), \quad \text { if } x \in X_{i} \tag{13}
\end{equation*}
$$

If we replace u in (12) with the above feedback law, the closed-loop system will have $\left(\bar{A}_{t, i}+\bar{B}_{t, i} K_{i}\right)$ as its A matrix. Therefore, the design equations (8)-(9) will be modified as follows:

$$
\begin{align*}
& \left\{\begin{array}{l}
0>\left(A_{t, i}+B_{t, i} K_{i}\right)^{\mathrm{T}} P_{t, i}+P_{t, i}\left(A_{t, i}+B_{t, i} K_{i}\right)+E_{t, i}^{\mathrm{T}} U_{i} E_{t, i}+Q_{t, i}, \\
0<P_{t, i}-E_{t, i}^{\mathrm{T}} W_{i} E_{t, i},
\end{array}\right. \tag{14}\\
& \left\{\begin{array}{l}
0>\left(\bar{A}_{t, i}+\bar{B}_{t, i} K_{i}\right)^{\mathrm{T}} \bar{P}_{t, i}+\bar{P}_{t, i}\left(\bar{A}_{t, i}+\bar{B}_{t, i} K_{i}\right)+\bar{E}_{t, i}^{\mathrm{T}} U_{i} \bar{E}_{t, i}+\bar{Q}_{t, i}, \\
0<\bar{P}_{t, i}-\bar{E}_{t, i}^{\mathrm{T}} W_{i} \bar{E}_{t, i},
\end{array} \text { for all } i \in I_{1}\right. \tag{15}
\end{align*}
$$

with $P_{t, i}=F_{t, i}^{\mathrm{T}} T F_{t, i}$, for $i \in I_{0}$, and $\bar{P}_{t, i}=\bar{F}_{t, i}^{\mathrm{T}} T \bar{F}_{t, i}$, for $i \in I_{1}$. Clearly, we have to re-define the matrices $\bar{E}_{t, i}$ and $\bar{F}_{t, i}$ using the new state vector \bar{x}_{t}. But note that the cells are still defined based on x.

After all, the feedback gains K_{i} are determined by finding a solution for (14)-(15) (by solution we mean values for matrices T_{i}, W_{i}, U_{i}, and K_{i} that satisfy (14)-(15); remember that T_{i}, U_{i}, and W_{i} are symmetric, and furthermore U_{i} and W_{i} have nonnegative elements). This is a nonlinear feasibility problem that can be solved using optimization tools in MATLAB ${ }^{1}$.

Constraint handling:

If we have constraints on the control input u of the following form

$$
\begin{equation*}
u_{\mathrm{L}} \leq u \leq u_{\mathrm{H}} \tag{16}
\end{equation*}
$$

we can integrate them in our design approach as follows. Note that the control input is in fact a state feedback controller of the following form:

$$
\begin{equation*}
u=K x \tag{17}
\end{equation*}
$$

Therefore, we need to have

$$
\begin{equation*}
u_{\mathrm{L}} \leq K x \leq u_{\mathrm{H}} \tag{18}
\end{equation*}
$$

Before proceeding, we have to make the assumption that the state vector x is constrained in the following region of admissible states:

$$
\begin{equation*}
0 \leq x \leq x^{*} \tag{19}
\end{equation*}
$$

This assumption is consistent with the system under study (the ACC system in the practical assignment) in which the speed of the following car is limited between zero and a certain maximum speed determined in the Step 1 of the assignment. Furthermore, we introduce the following decomposition for K :

$$
\begin{equation*}
K=K^{+}-K^{-}, \tag{20}
\end{equation*}
$$

[^0]where K^{+}and K^{-}are matrices with nonnegative elements:
\[

$$
\begin{equation*}
K^{+} \geq 0, K^{-} \geq 0 \tag{21}
\end{equation*}
$$

\]

With this definition we will be able to multiply (19) with K^{+}and K^{-}and come up with the following inequalities:

$$
\begin{array}{r}
0 \leq K^{+} x \leq K^{+} x^{*} \\
-K^{-} x^{*} \leq-K^{-} x \leq 0 \tag{23}
\end{array}
$$

This yields the following:

$$
\begin{equation*}
-K^{-} x^{*} \leq K x \leq K^{+} x^{*} \tag{24}
\end{equation*}
$$

Hence, in order to satisfy (16) it is necessary and sufficient that

$$
\begin{array}{r}
K^{+} x^{*} \leq u_{\mathrm{H}} \\
K^{-} x^{*} \leq-u_{\mathrm{L}} \tag{26}
\end{array}
$$

Note that since we have assumed $0 \leq x \leq x^{*}$, we can conclude (24) from (22).
Hence, in our design approach we use the constraints (25)-(26) together with (20)-(21) in order to guarantee (18) and therefore, variables k^{+}and k^{-}are considered as variables too. Also note that we have to determine x^{*} based on the model of the system (similar to what we did in step 1 of the assignment).

Hints on finding E and F matrices:

In this section, we show how matrices E and F are determined for a simple PWA system. For the general case the interested reader is referred to [1]. Assume that a scalar PWA system consists of two affine pieces $a_{i} x+b_{i}, x \in X_{i}, i \in\{1,2\}$. Moreover, assume that $0 \leq x \leq \alpha$ for X_{1} and $\alpha \leq x \leq \beta$ for $X_{2}(\alpha, \beta>0)$. The boundary of two regions is specified by $x=\alpha$.

Now define the matrices V and \bar{V} as follows:

$$
\begin{align*}
V & =\left[v_{0} \cdots v_{2}\right] \tag{27}\\
\bar{V} & =\left[\bar{v}_{0} \cdots \bar{v}_{2}\right] \tag{28}
\end{align*}
$$

with $v_{0}=0$, and $\bar{v}_{k}=\left[v_{k}, 1\right]^{\mathrm{T}}$. Then each $\bar{x}=[x, 1]^{\mathrm{T}}$, with $x \in X_{i}$, has a unique representation as a convex combination of the elements \bar{v}_{k} as long as v_{k} belongs to X_{i} (note that we assume each X_{i} is bounded with finite number of corner points (vertices), therefore each point in X_{i} can be represented by a convex combination of the vertices v_{k} of X_{i}). As a hint, in our case v_{1} and v_{2} are in fact α and β, respectively. Moreover, for each cell X_{i}, we define a matrix $Y_{i} \in \mathbb{R}^{3 \times 2}$. The k th row of Y_{i} is zero for all k such that $v_{k} \notin X_{i}$ and the remaining rows of Y_{i} are equal to the rows of an identity matrix. Now we can define the matrices \bar{E}_{i} and \bar{F}_{i} as:

$$
\begin{align*}
\bar{F}_{i} & =\left[\begin{array}{ll}
0 & I_{2}
\end{array}\right] Y_{i}\left(\bar{V} Y_{i}\right)^{-1} \tag{29}\\
\bar{E}_{i} & =Y_{i}^{\mathrm{T}}\left[\begin{array}{c}
0 \\
\bar{F}_{i}
\end{array}\right] \tag{30}
\end{align*}
$$

with I_{2} the identity matrix of order 2 . Moreover, for the region X_{1} which contains the origin, the last columns of the matrices \bar{E}_{1} and \bar{F}_{1} will become zero. Therefore, as discussed before, for the state feedback design, we can use E_{1} and F_{1} obtained from eliminating the last columns of \bar{E}_{1} and \bar{F}_{1}.

References

[1] A. Rantzer and M. Johansson. Piecewise linear quadratic optimal control. Automatic Control, IEEE Transactions on, 45(4):629-637, 2000.

[^0]: ${ }^{1}$ Furthermore, the problem can be recast as a linear matrix inequalities (LMI) problem but we skip this step in the current report.

