Sability analysis and reference tracking for PWA systems

Consider the followingontinuous PWA system:
X(t) = AX(t) + Biu(t) + a, for x € X; 1)

Here, {Xi}ici € R" is a partition of the state space into a number of closed (possibly unbounded)
polyhedral cells. The index set of the cells is denotedl.yet I C | be the set of indices of the cells
that contain the origin anid C | the set of indices of cells that do not contain the origin. It is assumed
thata; = 0, for alli € lp. Defining the following modified matrices:

s 3 a-Bef)

X(t) = AX(t) +Biu(t),  forxeX; (3)

Next, we can construct matrices

we obtain:

E=[Ee], FR=I[F fi (4)
with g = 0 andfj = 0 fori € | and such that
EiX

>0, if xe X, iel (5)
RX=FX

if xe XinXj, i,jel (6)
The construction of the constraint matridg@sandF; will be discussed later. Now consider symmetric

matricesT, U; andW, such thatJ; andW have nonnegative entries. Moreover, define matri@gess
follows:

5 _|Q& 0
a-|2 9 )

with Q; positive definite matrices. Now B = ETTF, fori € lo, andR = F'TF, for i € I, satisfy

([1D

0>A'R+RA +E'UE +Q;, foralli € o, )
0< PR —-EWE,
0>ATR+RA+EUE+Q. forallich, ©
O< P_|_ E_iTV\/IE_i?

thenx(t) tends to zero exponentially &s— o for every continuous piecewise trajectoryimn: X
satisfying (1) withu = 0. As discussed before, for cells that contain the origirs zero. Therefore
for these cells (which belong to the $gtwe use the original matrix definitiongy(andB;) in (8).

Now in order to integrate the reference tracking problem into this framewaldefine an addi-
tional statexe as follows:

Xe(t) = Xeer(t) — X(t) (10)
with xf(t) the reference signal to be tracked. Thus, the dynamics are modifieliioagsto
. |Ix| _[A 0] |x B; 0 a;
=l = (5 o] [B] e [ 5] a2
~— ~—~
A B.i
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and with the state augmentation technique introduced!in (2), the dynamics cafobuulated as
follows

X A 0 g X B; 0
0 0O O 0f]|1 0 0
_Y_/ \Y./
A By,
Now define the state feedback control law as
u(t) = Kix (t), if xe X (13)

If we replaceu in (12) with the above feedback law, the closed-loop system will I(la_yeJr I§t7iKi) as
its A matrix. Therefore, the design equations (8)—(9) will be modified as follows

0> (Ai+BriKi) TR, 4 Rii(Ani +BriKi) + Ef Ui + Qui, foralli € lg (14)
0<R;—EWE;,
0> (Ai+ByiKi) TR +Ri(Ay +BiK) + ENUE, +Q,  foralliel; (15)
0<R; - E\WE,

with R = RITRy, fori € lp, andR,; = R TR}, fori € 1. Clearly, we have to re-define the matrices
Ei andFR; uéing the new state vectay. But note that the cells are still defined basedon

After all, the feedback gaink; are determined by finding a solution for (14)—(15) (by solution
we mean values for matricds W, U;, andK; that satisfy[(14)+(15); remember th&tU;, andW, are
symmetric, and furthermord; andW have nonnegative elements). This is a nonlinear feasibility
problem that can be solved using optimization tools in MATB

Constraint handling:
If we have constraints on the control inpuof the following form

u. <u<ug, (16)

we can integrate them in our design approach as follows. Note that thelcoptit is in fact a state
feedback controller of the following form:

u=Kx a7

Therefore, we need to have
u. < Kx < uy (18)

Before proceeding, we have to make the assumption that the state xéxtwwnstrained in the fol-
lowing region of admissible states:
0<x<Xx' (29)

This assumption is consistent with the system under study (the ACC systemprattieeal assign-
ment) in which the speed of the following car is limited between zero and a certaimona speed
determined in the Step 1 of the assignment. Furthermore, we introduce theifigildacomposition
for K:

K=K"—K"~, (20)

1Furthermore, the problem can be recast as a linear matrix inequalitiel} gi:dblem but we skip this step in the current
report.
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whereK™ andK ™~ are matrices with nonnegative elements:
K">0,K™ >0 (21)

With this definition we will be able to multiply (19) witK ™ andK~ and come up with the following
inequalities:

0<KTXx<KTx (22)
— K X<-K™x<0 (23)

This yields the following:
—K xX* <Kx< K"x* (24)

Hence, in order to satisfy (16) it is necessary and sufficient that

K*x" < un (25)
KX < —up (26)

Note that since we have assumed & < x*, we can conclude (24) from (22).

Hence, in our design approach we use the constraints (25)—(26) ¢oggth (20)—(21) in order
to guarantee (18) and therefore, variathésandk ™~ are considered as variables too. Also note that
we have to determing* based on the model of the system (similar to what we did in step 1 of the
assignment).

Hints on finding E and F matrices:

In this section, we show how matricesandF are determined for a simple PWA system. For the
general case the interested reader is referred to [1]. Assume thalaaB¥A system consists of two
affine piecesyx+bj, x € X;, i € {1,2}. Moreover, assume thatOx < a for X; anda < x < 3 for
X2 (a, B > 0). The boundary of two regions is specifiedXoy a.

Now define the matriceg andV as follows:

V = [Vo--~V2] (27)
V= [Vo--V (28)

with vp = 0, andvk = [v,1]T. Then eachx = [x,1]T, with x € X;, has a unique representation as a
convex combination of the elementg as long as/ belongs toX; (note that we assume eahis
bounded with finite number of corner points (vertices), therefore eaittt im X; can be represented
by a convex combination of the verticegof X;). As a hint, in our case; andv, are in facta andf3,
respectively. Moreover, for each cédl, we define a matri¥; € R3*2. Thekth row ofY; is zero for all

k such that, € X; and the remaining rows &f are equal to the rows of an identity matrix. Now we
can define the matricég andF; as:

F=1[0 I2JY,(VY) 1, (29)
E=Y' [,2] | (30)

with I, the identity matrix of order 2. Moreover, for the regidn which contains the origin, the last
columns of the matriceg; andF; will become zero. Therefore, as discussed before, for the state
feedback design, we can uBgandF; obtained from eliminating the last columnsBf andF; .
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