Consider the following continuous PWA system:

$$\dot{x}(t) = A_i x(t) + B_i u(t) + a_i, \qquad \text{for } x \in X_i$$
(1)

Here, $\{X_i\}_{i \in I} \subseteq \mathbb{R}^n$ is a partition of the state space into a number of closed (possibly unbounded) polyhedral cells. The index set of the cells is denoted by *I*. Let $I_0 \subseteq I$ be the set of indices of the cells that contain the origin and $I_1 \subseteq I$ the set of indices of cells that do not contain the origin. It is assumed that $a_i = 0$, for all $i \in I_0$. Defining the following modified matrices:

$$\bar{A}_i = \begin{bmatrix} A_i & a_i \\ 0 & 0 \end{bmatrix}, \ \bar{B}_i = \begin{bmatrix} B_i \\ 0 \end{bmatrix}, \ \bar{x} = \begin{bmatrix} x \\ 1 \end{bmatrix},$$
(2)

we obtain:

$$\dot{\bar{x}}(t) = \bar{A}_i \bar{x}(t) + \bar{B}_i u(t), \qquad \text{for } x \in X_i$$
(3)

Next, we can construct matrices

$$\bar{E}_i = [E_i \ e_i], \qquad \bar{F}_i = [F_i \ f_i], \tag{4}$$

with $e_i = 0$ and $f_i = 0$ for $i \in I_0$ and such that

$$\bar{E}_i \bar{x} \ge 0, \qquad \text{if } x \in X_i, \ i \in I \tag{5}$$

$$\bar{F}_i \bar{x} = \bar{F}_j \bar{x}, \quad \text{if } x \in X_i \cap X_j, \ i, j \in I$$
(6)

The construction of the constraint matrices \bar{E}_i and \bar{F}_i will be discussed later. Now consider symmetric matrices T, U_i and W_i , such that U_i and W_i have nonnegative entries. Moreover, define matrices \bar{Q}_i as follows:

$$\bar{Q}_i = \begin{bmatrix} Q_i & 0\\ 0 & 0 \end{bmatrix},\tag{7}$$

with Q_i positive definite matrices. Now if $P_i = F_i^T T F_i$, for $i \in I_0$, and $\bar{P}_i = \bar{F}_i^T T \bar{F}_i$, for $i \in I_1$, satisfy ([1])

$$\begin{cases} 0 > A_i^{\mathrm{T}} P_i + P_i A_i + E_i^{\mathrm{T}} U_i E_i + Q_i, & \text{for all } i \in I_0, \\ 0 < P_i - E_i^{\mathrm{T}} W_i E_i, \end{cases}$$
(8)

$$\begin{cases} 0 > \bar{A}_i^{\mathrm{T}} \bar{P}_i + \bar{P}_i \bar{A}_i + \bar{E}_i^{\mathrm{T}} U_i \bar{E}_i + \bar{Q}_i, & \text{for all } i \in I_1, \\ 0 < \bar{P}_i - \bar{E}_i^{\mathrm{T}} W_i \bar{E}_i, \end{cases}$$
(9)

then x(t) tends to zero exponentially as $t \to \infty$ for every continuous piecewise trajectory in $\bigcup_{i \in I} X_i$ satisfying (1) with $u \equiv 0$. As discussed before, for cells that contain the origin, a_i is zero. Therefore for these cells (which belong to the set I_0) we use the original matrix definitions (A_i and B_i) in (8).

Now in order to integrate the reference tracking problem into this framework, we define an additional state x_e as follows:

$$\dot{x}_{\rm e}(t) = x_{\rm ref}(t) - x(t) \tag{10}$$

with $x_{ref}(t)$ the reference signal to be tracked. Thus, the dynamics are modified as follows:

$$\dot{x}_{t} = \begin{bmatrix} \dot{x} \\ \dot{x}_{e} \end{bmatrix} = \underbrace{\begin{bmatrix} A_{i} & 0 \\ -I & 0 \end{bmatrix}}_{A_{t,i}} \begin{bmatrix} x \\ x_{e} \end{bmatrix} + \underbrace{\begin{bmatrix} B_{i} \\ 0 \end{bmatrix}}_{B_{t,i}} u + \begin{bmatrix} 0 \\ I \end{bmatrix} x_{ref} + \begin{bmatrix} a_{i} \\ 0 \end{bmatrix}$$
(11)

Stability analysis and reference tracking for PWA systems

and with the state augmentation technique introduced in (2), the dynamics can be reformulated as follows

$$\dot{x}_{t} = \begin{bmatrix} \dot{x} \\ \dot{x}_{e} \\ 0 \end{bmatrix} = \underbrace{\begin{bmatrix} A_{i} & 0 & a_{i} \\ -I & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{\bar{A}_{t,i}} \begin{bmatrix} x \\ x_{e} \\ 1 \end{bmatrix} + \underbrace{\begin{bmatrix} B_{i} \\ 0 \\ 0 \end{bmatrix}}_{\bar{B}_{t,i}} u + \begin{bmatrix} 0 \\ I \\ 0 \end{bmatrix} x_{ref}$$
(12)

Now define the state feedback control law as

$$u(t) = K_i \bar{x}_t(t), \qquad \text{if } x \in X_i \tag{13}$$

If we replace *u* in (12) with the above feedback law, the closed-loop system will have $(\bar{A}_{t,i} + \bar{B}_{t,i}K_i)$ as its *A* matrix. Therefore, the design equations (8)–(9) will be modified as follows:

$$\begin{cases} 0 > (A_{t,i} + B_{t,i}K_i)^{\mathrm{T}}P_{t,i} + P_{t,i}(A_{t,i} + B_{t,i}K_i) + E_{t,i}^{\mathrm{T}}U_iE_{t,i} + Q_{t,i}, & \text{for all } i \in I_0 \\ 0 < P_{t,i} - E_{t,i}^{\mathrm{T}}W_iE_{t,i}, \end{cases}$$
(14)

$$\begin{cases} 0 > (\bar{A}_{t,i} + \bar{B}_{t,i}K_i)^{\mathrm{T}}\bar{P}_{t,i} + \bar{P}_{t,i}(\bar{A}_{t,i} + \bar{B}_{t,i}K_i) + \bar{E}_{t,i}^{\mathrm{T}}U_i\bar{E}_{t,i} + \bar{Q}_{t,i}, & \text{for all } i \in I_1 \\ 0 < \bar{P}_{t,i} - \bar{E}_{t,i}^{\mathrm{T}}W_i\bar{E}_{t,i}, \end{cases}$$
(15)

with $P_{t,i} = F_{t,i}^{\mathrm{T}} T F_{t,i}$, for $i \in I_0$, and $\bar{P}_{t,i} = \bar{F}_{t,i}^{\mathrm{T}} T \bar{F}_{t,i}$, for $i \in I_1$. Clearly, we have to re-define the matrices $\bar{E}_{t,i}$ and $\bar{F}_{t,i}$ using the new state vector \bar{x}_t . But note that the cells are still defined based on x.

After all, the feedback gains K_i are determined by finding a solution for (14)–(15) (by solution we mean values for matrices T_i, W_i, U_i , and K_i that satisfy (14)–(15); remember that T_i, U_i , and W_i are symmetric, and furthermore U_i and W_i have nonnegative elements). This is a nonlinear feasibility problem that can be solved using optimization tools in MATLAB¹.

Constraint handling:

If we have constraints on the control input *u* of the following form

$$u_{\rm L} \le u \le u_{\rm H},\tag{16}$$

we can integrate them in our design approach as follows. Note that the control input is in fact a state feedback controller of the following form:

$$u = Kx \tag{17}$$

Therefore, we need to have

$$u_{\rm L} \le Kx \le u_{\rm H} \tag{18}$$

Before proceeding, we have to make the assumption that the state vector x is constrained in the following region of admissible states:

$$0 \le x \le x^* \tag{19}$$

This assumption is consistent with the system under study (the ACC system in the practical assignment) in which the speed of the following car is limited between zero and a certain maximum speed determined in the Step 1 of the assignment. Furthermore, we introduce the following decomposition for K:

$$K = K^{+} - K^{-}, (20)$$

¹Furthermore, the problem can be recast as a linear matrix inequalities (LMI) problem but we skip this step in the current report.

where K^+ and K^- are matrices with nonnegative elements:

$$K^+ \ge 0, \ K^- \ge 0$$
 (21)

With this definition we will be able to multiply (19) with K^+ and K^- and come up with the following inequalities:

$$0 \le K^+ x \le K^+ x^* \tag{22}$$

$$-K^{-}x^{*} \le -K^{-}x \le 0 \tag{23}$$

This yields the following:

$$-K^- x^* \le K x \le K^+ x^* \tag{24}$$

Hence, in order to satisfy (16) it is necessary and sufficient that

$$K^+ x^* \le u_{\rm H} \tag{25}$$

$$K^{-}x^{*} \le -u_{\rm L} \tag{26}$$

Note that since we have assumed $0 \le x \le x^*$, we can conclude (24) from (22).

Hence, in our design approach we use the constraints (25)–(26) together with (20)–(21) in order to guarantee (18) and therefore, variables k^+ and k^- are considered as variables too. Also note that we have to determine x^* based on the model of the system (similar to what we did in step 1 of the assignment).

Hints on finding *E* and *F* matrices:

In this section, we show how matrices *E* and *F* are determined for a simple PWA system. For the general case the interested reader is referred to [1]. Assume that a scalar PWA system consists of two affine pieces $a_ix + b_i$, $x \in X_i$, $i \in \{1, 2\}$. Moreover, assume that $0 \le x \le \alpha$ for X_1 and $\alpha \le x \le \beta$ for X_2 ($\alpha, \beta > 0$). The boundary of two regions is specified by $x = \alpha$.

Now define the matrices V and \overline{V} as follows:

$$V = [v_0 \cdots v_2] \tag{27}$$

$$\bar{V} = [\bar{v}_0 \cdots \bar{v}_2] \tag{28}$$

with $v_0 = 0$, and $\bar{v}_k = [v_k, 1]^T$. Then each $\bar{x} = [x, 1]^T$, with $x \in X_i$, has a unique representation as a convex combination of the elements \bar{v}_k as long as v_k belongs to X_i (note that we assume each X_i is bounded with finite number of corner points (vertices), therefore each point in X_i can be represented by a convex combination of the vertices v_k of X_i). As a hint, in our case v_1 and v_2 are in fact α and β , respectively. Moreover, for each cell X_i , we define a matrix $Y_i \in \mathbb{R}^{3\times 2}$. The *k*th row of Y_i is zero for all k such that $v_k \notin X_i$ and the remaining rows of Y_i are equal to the rows of an identity matrix. Now we can define the matrices \bar{E}_i and \bar{F}_i as:

$$\bar{F}_i = [0 \ I_2] Y_i (\bar{V} Y_i)^{-1}, \tag{29}$$

$$\bar{E}_i = Y_i^{\rm T} \begin{bmatrix} 0\\ \bar{F}_i \end{bmatrix},\tag{30}$$

with I_2 the identity matrix of order 2. Moreover, for the region X_1 which contains the origin, the last columns of the matrices \bar{E}_1 and \bar{F}_1 will become zero. Therefore, as discussed before, for the state feedback design, we can use E_1 and F_1 obtained from eliminating the last columns of \bar{E}_1 and \bar{F}_1 .

References

[1] A. Rantzer and M. Johansson. Piecewise linear quadratic optimal control. *Automatic Control, IEEE Transactions on*, 45(4):629–637, 2000.