Recasting the M PC problem for ML D systems as a mixed-integer
guadratic programming problem

To illustrate how the MLD-MPC problem can be recast into a mixed-integedratia programming
problem (see equations (6.22)—(6.23) on p. 112 of the lecture notespnsider the following simple
MLD system with no output, without any real-valued auxiliary variable, aitd wscalar input, state,
and binary auxiliary variable:
X(k+1) = ax(k) + Bu(k) + yo (k) (@D)
ax(k) +bu(k)+cd(k) <d . 2

In addition, let the MPC objective function be

I(K) = [[R(K) — Regll -+ 11i(K) — TeqB+ | (k) — deqllz

with Ny = 3 and
Rk+1k)] _B(KK) u(k)
K(K) = {x<k+2k)}, 5(k) = |d(k+1]k) |, G(k) = !u(k+1)],
R(k+3[k) 5(k+2|k) uk+2)

With Xeq, Ueg, and5eq being the equilibrium values ofK), d(k), andS(k) respectively, and, Q, and

R being positive definite matrices.

Now the aim is to write the given MLD-MPC optimization problem in an explicit formoté&that
at time stepk the statex(k) is given andu(k), u(k+ 1), andu(k+ 2) are the independent decision
variables.

The first step is to expresgk+ 1|k), R(k+ 2|k), K(k+ 3|k), andd(k[k), d(k+ 1]k), d(k+2|k) as a
function ofx(k) andu(k), u(k+1), andu(k + 2).
We first use (2) to determin&k|k):
ax(k) + bu(k) + c(klk) < d . (3)
Next, we use (1) to determingék+ 1|k):
R(k+1|k) = ax(k) + Bu(k) + yS(k|K) - (4)
Subsequently, we again use (2), this time to deterrﬁ(rlr&L 1|K):
ax(k+ 1/k) + bu(k+1) +cd(k+1|k) < d .
In this inequalityx(k+ 1|k) can be eliminated using (4):
aax(k) +aBu(k) + bu(k+ 1) +ayd(k/k) + cd(k+1]k) < d . (5)
Next, we use (1) to determin€k+ 2|k):

R(k+2/K) = af(k+ 1]K) + Bu(k+1) + yd(k+ 1K) .



In this equatiorx(k+ 1/k) can be eliminated using (4):
R(k+2/k) = a®x(K) + a Bu(k) + Bu(k+ 1) + ayd(k|k) + yd(k+ 1|K) .
Next, we use (2) to determin%z(k+ 2|k):
ax(k+ 2|K) + bu(k+2) + cd(k+2/k) < d .

In this inequalityx(k + 2|k) can be eliminated using (6):

aax(k) +aa Bu(k) + aBu(k+ 1) + bu(k+ 2) + aa yd(k|k) + ayd(k+ 1|k) +cd(k+2|k) < d

Next, we use (1) to determingk+ 3|k):
R(k+3]k) = ar(k+ 2|K) + Bu(k+2) + yd(k+2|K) .
In this equatiorx(k + 2|k) can be eliminated using (6):

K(k+3|k) = a®x(k) + a?Bu(k) + aBu(k+ 1) + Bu(k+2)
+a?yd(KIK) + ayd(k+ 1|k) + yd(k+2/k) .

Note: In general we will thus get equations of the form

aa‘x(k) +aa’"1Bu(k) +aa’?pu(k+1) + ... +aBu(k+£ — 1) +bu(k+¢)

+aa’ tyS(kK) +aa’ 2yd(k+1|k) + ...+ ayd(k+ £ — 1) + cd(k+ £|k) < d

for(=0,...,Np—1and

K(k+ L+ 1K) = a“ (k) + a’Bu(k) + a" 1puk+1) + ... + aBu(k+ £ — 1) + Bu(k+¢)

(6)

(7)

(8)
(9)

+alyS(KK) + a LyS(k+1|K) + ...+ ayd(k+ £ — 1|k) + yS(k+ £|K)

for(=0,...,N,—1.

Let us now go one with rewriting the MLD-MPC problem in an explicit form. & define

[ S(kk) ]
S(k+1JKk)
V(K) = 5(?(—k?|k)
u(k+1)
| u(k+2) |

O

then the equations (4), (6), (8) and the inequalities (3), (5), (7) canrltten in a more compact

matrix-vector notation as follows:

%(K) = M1V (K) + Max(K)
F1V (k) < P2+ Fax(K) .

(10)
(11)



Now we use (10) to eliminateffom the expression af(k). We have

3(K) = (8 %) PR ) + (7 Ve |3 0] (7 Vg

——
=:S

(M1V (K) + M2x(K) — Zeq) "P(M1V (K) +M2X(K) — Req) " + (V (K) —Veq) "S(V (k) — Veg)
VT (KM PM1V (K) + X" (K)MZ PM2X(K) + %Peq
+2XT (K)MZ PM1V (k) — 25 PM1V (K) — 2XT (k)M PSeq
+VT(K)SV (K) — VgV (K) + VegSVeq
=VT(K)SWV (k) +2(S2+XT (K S)V (K) + XT (K)Sax() + 2S5x(K) + S
=:57(k)

Since the terns; (k) does not depend ovi(k), it does not influence the optimal value \étk), and
therefore it can be omitted. So we end up with a problem of the form

\r7n(Lr)1 VT(K)SV (K) +2(S +XT (K)S3)V (K)

subject toF1V (K) < R+ Fax(K)

which is a mixed-integer quadratic programming (MIQP) problem.
For 1-norm oro-norm we get a mixed-integer linear programming (MILP) problem (seerthetipal

assignment).



