Modeling & Control of Hybrid Systems Chapter 4 – Stability

Overview:

- 1. Switched systems
- 2. Lyapunov theory for smooth and linear systems
- 3. Stability for any switching signal
- 4. Stability for a given switching signal
- 5. Summary

<<u>
ロ → < □ → < 三 → < 三 → </u> 三 · の へ C⁻ 1/14

Modeling & Control of Hybrid Systems Chapter 4 – Stability

Overview:

- 1. Switched systems
- 2. Lyapunov theory for smooth and linear systems
- 3. Stability for any switching signal
- 4. Stability for a given switching signal
- 5. Summary

Generic form for switched systems:

$$\dot{x} = f_{\sigma}(x)$$

Definitions

$$\blacktriangleright f_{\sigma}: \mathbb{R}^n \to \mathbb{R}^n$$

$$\blacktriangleright \ \sigma: [0,\infty) \to \{1,2,\ldots,N\}$$

Assumptions

• f_{σ} are smooth vector fields

<<u>
ロ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < </u>

Generic form for switched systems:

$$\dot{x} = f_{\sigma}(x)$$

- ► *N* is the number of modes
- $\blacktriangleright \sigma$ is the switching signal
- σ is a piece-wise constant function e.g. $\sigma(t), \sigma(x), \sigma(t, x)$

Definitions

$$\blacktriangleright f_{\sigma}: \mathbb{R}^n \to \mathbb{R}^n$$

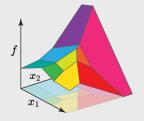
$$\blacktriangleright \ \sigma: [0,\infty) \to \{1,2,\ldots,N\}$$

Assumptions

• f_{σ} are smooth vector fields

<<u>
ロ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ → ○ Q ○ 2/14</u>

Recap: (Continuous) PieceWise-Affine Systems



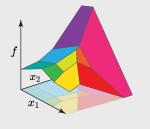
(Continuous) PWA function

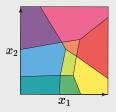
Definitions

$$f(x) = \begin{cases} A_1 x + a_1 & x \in \mathcal{X}_1 \\ A_2 x + a_2 & x \in \mathcal{X}_2 \\ \vdots \\ A_N x + a_N & x \in \mathcal{X}_N \end{cases}$$
$$\mathcal{X}_i := E_i x \ge e_i, \ i \in \{1, \dots, N\}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Recap: (Continuous) PieceWise-Affine Systems





(Continuous) PWA function

Definitions

$$f(x) = \begin{cases} A_1 x + a_1 & x \in \mathcal{X}_1 \\ A_2 x + a_2 & x \in \mathcal{X}_2 \\ \vdots \\ A_N x + a_N & x \in \mathcal{X}_N \end{cases}$$
$$\mathcal{X}_i := E_i x \ge e_i, \ i \in \{1, \dots, N\}$$

Assumptions

f is continuous
⋃_{i=1}^N X_i = ℝⁿ *i* ≠ *j* ⇒ interior(X_i) ∩ interior(X_j) = ∅

Definitions

$$\blacktriangleright \dot{x} = A_{\sigma}x \quad x \in \mathcal{X}_{\sigma}$$

Assumptions

$$\bigcup_{\sigma=1}^{N} \mathcal{X}_{\sigma} = \mathbb{R}^{n}$$

$$i \neq j \implies \text{interior}(\mathcal{X}_{i}) \cap \text{interior}(\mathcal{X}_{j}) = \emptyset$$

Definitions

$$\blacktriangleright \dot{x} = A_{\sigma}x \quad x \in \mathcal{X}_{\sigma}$$

Assumptions

- $\blacktriangleright \bigcup_{\sigma=1}^{N} \mathcal{X}_{\sigma} = \mathbb{R}^{n}$
- $i \neq j \implies$ interior $(\mathcal{X}_i) \cap$ interior $(\mathcal{X}_j) = \emptyset$
- Switching is only state-dependant
- System is autonomous/unforced (no input)

<ロト < 回 > < 臣 > < 臣 > 三 の へ で 4/14

Stability definitions:

Asymptotic Stability (AS):

 $\lim_{t\to\infty}x(t)=0$

Stability definitions:

Asymptotic Stability (AS):

$$\lim_{t\to\infty}x(t)=0$$

Global Asymptotic Stability (GAS):

$$\lim_{t\to\infty}x(t)=0\qquad\forall x_0$$

Stability definitions:

Asymptotic Stability (AS):

$$\lim_{t\to\infty}x(t)=0$$

Global Asymptotic Stability (GAS):

$$\lim_{t\to\infty}x(t)=0\qquad\forall x_0$$

Global Uniform Asymptotic Stability (GUAS):

$$\lim_{t\to\infty} x(t) = 0 \qquad \forall x_0 \ \forall \sigma$$

<ロ> < 四 > < 回 > < 三 > < 三 > 三 の < で 5/14

Stability definitions:

Asymptotic Stability (AS):

$$\lim_{t\to\infty}x(t)=0$$

Global Asymptotic Stability (GAS):

$$\lim_{t\to\infty}x(t)=0\qquad\forall x_0$$

Global Uniform Asymptotic Stability (GUAS):

$$\lim_{t\to\infty} x(t) = 0 \qquad \forall x_0 \ \forall \sigma$$

Problems:

A Find conditions of GAS for any switching signal (GUAS)

<ロ> < 四 > < 回 > < 三 > < 三 > 三 の < で 5/14

Stability definitions:

Asymptotic Stability (AS):

$$\lim_{t\to\infty}x(t)=0$$

Global Asymptotic Stability (GAS):

$$\lim_{t\to\infty} x(t) = 0 \qquad \forall x_0$$

Global Uniform Asymptotic Stability (GUAS):

$$\lim_{t\to\infty} x(t) = 0 \qquad \forall x_0 \ \forall \sigma$$

Problems:

- A Find conditions of GAS for any switching signal (GUAS)
- B Show the system is GAS for <u>a given</u> class of switching strategies

Stability definitions:

Asymptotic Stability (AS):

$$\lim_{t\to\infty}x(t)=0$$

Global Asymptotic Stability (GAS):

$$\lim_{t\to\infty} x(t) = 0 \qquad \forall x_0$$

Global Uniform Asymptotic Stability (GUAS):

$$\lim_{t\to\infty} x(t) = 0 \qquad \forall x_0 \ \forall \sigma$$

Problems:

- A Find conditions of GAS for any switching signal (GUAS)
- B Show the system is GAS for <u>a given</u> class of switching strategies
- C Construct a switching signal to have GAS (stabilization problem ightarrow chp 5)

Definitions

$$\blacktriangleright \dot{x} = f(x)$$

If (Assumptions)

Definitions

- $\blacktriangleright \dot{x} = f(x)$
- $\blacktriangleright V: \mathbb{R}^n \to \mathbb{R}$

If (Assumptions)

- f(0) = 0
- V is continuously differentiable

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < 0 < 0 < 6/14</p>

Definitions

$$\blacktriangleright \dot{x} = f(x)$$

 $\blacktriangleright V: \mathbb{R}^n \to \mathbb{R}$

If (Assumptions)

- f(0) = 0
- V is continuously differentiable
- ▶ $|x| \rightarrow \infty \implies V(x) \rightarrow \infty$ (V is radially unbounded)
- V(0) = 0 ∧ x ≠ 0 ⇒ V(x) > 0 (V is positive definite)
 ∀x ≠ 0 : $\dot{V}(x) < 0$

note:
$$\dot{V}(x) = L_f V(x) := \frac{\partial V}{\partial x} \dot{x} = \frac{\partial V}{\partial x} f(x)$$

<ロト < 部 × 注 × 注 × 注 ・ 注 の Q C 6/14</p>

Definitions

$$\blacktriangleright \dot{x} = f(x)$$

 $\blacktriangleright V: \mathbb{R}^n \to \mathbb{R}$

If (Assumptions)

•
$$f(0) = 0$$

V is continuously differentiable

▶
$$|x| \rightarrow \infty \implies V(x) \rightarrow \infty$$
 (V is radially unbounded)

V(0) = 0 ∧ x ≠ 0 ⇒ V(x) > 0 (V is positive definite)

$$\forall x ≠ 0 : \dot{V}(x) < 0$$

note:
$$\dot{V}(x) = L_f V(x) := \frac{\partial V}{\partial x} \dot{x} = \frac{\partial V}{\partial x} f(x)$$

Then

•
$$f$$
 is GAS for $x = 0$.

Definitions



Definitions

- $\blacktriangleright \dot{x} = Ax$
- \blacktriangleright $V(x) = x^T P x$

Conditions

- $\blacktriangleright P = P^T$
- *P* is positive definite, i.e. $\forall x \neq 0$, $x^T P x > 0$

note:
$$\dot{V}(x) = L_{Ax}V(x) = x^T \underbrace{(A^T P + PA)}_{-Q} x$$

<<u>
ロ → < □ → < 三 → < 三 → </u> 三 · の へ ⁰ · 7/14

Definitions

- $\blacktriangleright \dot{x} = Ax$
- \blacktriangleright $V(x) = x^T P x$

Conditions

- $\blacktriangleright P = P^T$
- *P* is positive definite, i.e. $\forall x \neq 0$, $x^T P x > 0$

note:
$$\dot{V}(x) = L_{Ax}V(x) = x^T \underbrace{(A^T P + PA)}_{-Q} x$$

$$\dot{V}(x) < 0 \equiv x^{T} (A^{T} P + P A) x < 0 \equiv x^{T} Q x > 0$$

Definitions

- $\blacktriangleright \dot{x} = Ax$
- $\blacktriangleright V(x) = x^T P x$

Conditions

- $\blacktriangleright P = P^T$
- *P* is positive definite, i.e. $\forall x \neq 0$, $x^T P x > 0$

note:
$$\dot{V}(x) = L_{Ax}V(x) = x^T \underbrace{(A^T P + PA)}_{-Q} x$$

$$\dot{V}(x) < 0 \equiv x^T (A^T P + PA)x < 0 \equiv x^T Qx > 0$$

► For every *A* that is Hurwitz (eigenvalues in the left half-plane):

 $\forall Q > 0 \quad \exists P > 0 \quad \text{s.t.} \quad A^T P + P A = -Q \text{ (Lyapunov equality)}$

<<u>
ロ → < □ → < 三 → < 三 → </u> 三 · の へ ⁰ · 7/14

Definitions

•
$$\dot{x} = f(x)$$
 where $f: D \to \mathbb{R}^n$
• $f(a) = 0$

<ロ> < □ > < □ > < 三 > < 三 > 三 の < ℃ 8/14

Definitions

▶
$$\dot{x} = f(x)$$
 where $f : D \to \mathbb{R}^{t}$
▶ $f(a) = 0$
▶ $A = \frac{\partial f}{\partial x}(x)|_{x=a}$

Asymptotic stability

► $\forall \lambda = eig(A)$, $Re(\lambda) < 0 \implies a$ is locally asymptotically stable.

<□ > < □ > < □ > < Ξ > < Ξ > Ξ - ク < ℃ 8/14

Definitions

▶
$$\dot{x} = f(x)$$
 where $f : D \to \mathbb{R}^{t}$
▶ $f(a) = 0$
▶ $A = \frac{\partial f}{\partial x}(x)|_{x=a}$

Asymptotic stability

- $\forall \lambda = eig(A)$, $Re(\lambda) < 0 \implies a$ is locally asymptotically stable.
- ► $\exists \lambda = \operatorname{eig}(A)$, $\operatorname{Re}(\lambda) > 0 \implies a$ is unstable.

<ロト < 回 > < 臣 > < 臣 > 三 の へ で 8/14

Definitions

▶
$$\dot{x} = f(x)$$
 where $f : D \to \mathbb{R}^{t}$
▶ $f(a) = 0$
▶ $A = \frac{\partial f}{\partial x}(x)|_{x=a}$

Asymptotic stability

- ► $\forall \lambda = eig(A)$, $Re(\lambda) < 0 \implies a$ is locally asymptotically stable.
- ► $\exists \lambda = \operatorname{eig}(A)$, $\operatorname{Re}(\lambda) > 0 \implies a$ is unstable.

Question

• What if
$$\exists \lambda = \operatorname{eig}(A)$$
 s.t. $\operatorname{Re}(\lambda) = 0$?

<ロト < 回 > < 臣 > < 臣 > 三 の へ で 8/14

ls $\dot{x} = f_{\sigma}(x)$ stable if each f_{σ} is stable?

ls
$$\dot{x} = f_{\sigma}(x)$$
 stable if each f_{σ} is stable? No!
Example

$$\dot{x} = \begin{cases} A_1 x & x_1 x_2 < 0 \\ A_2 x & x_1 x_2 > 0 \end{cases}$$

where

$$A_1 = \begin{bmatrix} -1 & 10 \\ -100 & -1 \end{bmatrix} \quad A_2 = \begin{bmatrix} -1 & 100 \\ -10 & -1 \end{bmatrix} \quad \text{eigenvalues} = \{-1 \pm 31.6j\}$$

Switched Systems

2. Lyapunov Theor

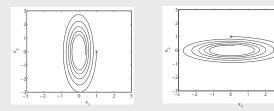
3. Global Uniform Asymptotic Stability

ls
$$\dot{x} = f_{\sigma}(x)$$
 stable if each f_{σ} is stable? No!
Example

$$\dot{x} = \begin{cases} A_1 x & x_1 x_2 < 0 \\ A_2 x & x_1 x_2 > 0 \end{cases}$$

where

$$A_1 = \begin{bmatrix} -1 & 10 \\ -100 & -1 \end{bmatrix} \quad A_2 = \begin{bmatrix} -1 & 100 \\ -10 & -1 \end{bmatrix} \quad \text{eigenvalues} = \{-1 \pm 31.6j\}$$



 A_1x

 A_2x

Switched Systems

2. Lyapunov Theory

3. Global Uniform Asymptotic Stability

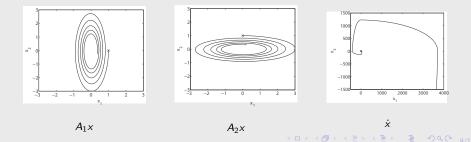
<ロ > < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > 通) < 9/14

ls
$$\dot{x} = f_{\sigma}(x)$$
 stable if each f_{σ} is stable? No!

$$\dot{x} = \begin{cases} A_1 x & x_1 x_2 < 0 \\ A_2 x & x_1 x_2 > 0 \end{cases}$$

where

$$A_1 = \begin{bmatrix} -1 & 10 \\ -100 & -1 \end{bmatrix} \quad A_2 = \begin{bmatrix} -1 & 100 \\ -10 & -1 \end{bmatrix} \quad \text{eigenvalues} = \{-1 \pm 31.6j\}$$



1. Switched System

Lyapunov Theory

3. Global Uniform Asymptotic Stability

Find conditions of GAS for any switching signal

 \blacktriangleright GUAS \iff the switching system and all its subsystems are stable

Find conditions of GAS for any switching signal

- ► GUAS ⇐⇒ the switching system and all its subsystems are stable
- For GUAS, we need a common Lyapunov function

Find conditions of GAS for any switching signal

- \blacktriangleright GUAS \iff the switching system and all its subsystems are stable
- For GUAS, we need a common Lyapunov function

Definitions

- $\dot{x} = f_{\sigma}(x)$ with $\sigma \in \{1, 2, \dots, N\}$
- \blacktriangleright $V : \mathbb{R}^n \to \mathbb{R}$

<<u>
ロ → < 団 → < 三 → < 三 → </u> 三 の へ C⁻ 10/14

Find conditions of GAS for any switching signal

- ► GUAS ⇐⇒ the switching system and all its subsystems are stable
- For GUAS, we need a common Lyapunov function

Definitions

- $\dot{x} = f_{\sigma}(x)$ with $\sigma \in \{1, 2, \dots, N\}$
- $\blacktriangleright V: \mathbb{R}^n \to \mathbb{R}$

GUAS Condition

$$\blacktriangleright V(0) = 0$$

$$\blacktriangleright V(x) > 0 \qquad \forall x \neq 0$$

 $\blacktriangleright \dot{V}(x) = L_{f_i}V(x) < 0 \qquad \forall x \neq 0, \forall i \in \{1, 2, \dots, N\}$

Converse Theorem

if x is GUAS, then

 $\exists V: \mathbb{R}^n \to \mathbb{R}^+ \text{ s.t. } \dot{V}(x) = L_{f_i} V(x) < 0 \qquad \forall x \neq 0 , \forall i \in \{1, 2, \dots, N\}$

(ロ) (日) (日) (日) (日) (日) (10/14)

Problem A: Stability of Switched Linear Systems

Find conditions of GAS for any switching signal

Definitions

- $\dot{x} = A_{\sigma}x$ with $\sigma \in \{1, 2, \dots, N\}$
- $V(x) = x^T P x$ where P is positive definite

Problem A: Stability of Switched Linear Systems

Find conditions of GAS for any switching signal

Definitions

- $\dot{x} = A_{\sigma}x$ with $\sigma \in \{1, 2, \dots, N\}$
- $V(x) = x^T P x$ where P is positive definite

Stability Condition

$$\blacktriangleright \dot{V}(x) = L_{f_i}V(x) < 0 = x^T (A_i^T P + PA_i)x < 0 \qquad \forall x \neq 0, \forall i \in \{1, \dots, N\}$$

Find conditions of GAS for any switching signal

Definitions

- $\dot{x} = A_{\sigma}x$ with $\sigma \in \{1, 2, \dots, N\}$
- $V(x) = x^T P x$ where P is positive definite

Stability Condition

- $\blacktriangleright \dot{V}(x) = L_{f_i}V(x) < 0 = x^T (A_i^T P + PA_i)x < 0 \qquad \forall x \neq 0, \forall i \in \{1, \dots, N\}$
- We need to find $P \succ 0$ s.t.

$$A_i^T P + P A_i < 0 \qquad \forall i \in \{1, \dots, N\}$$

which is a Linear Matrix Inequality (LMI).

(ロ) (日) (日) (三) (三) (三) (1/14)

Find conditions of GAS for any switching signal

Definitions

- $\dot{x} = A_{\sigma}x$ with $\sigma \in \{1, 2, \dots, N\}$
- $V(x) = x^T P x$ where P is positive definite

Stability Condition

- $\blacktriangleright \dot{V}(x) = L_{f_i}V(x) < 0 = x^T (A_i^T P + PA_i)x < 0 \qquad \forall x \neq 0, \forall i \in \{1, \dots, N\}$
- We need to find $P \succ 0$ s.t.

$$A_i^T P + P A_i < 0 \qquad \forall i \in \{1, \dots, N\}$$

which is a Linear Matrix Inequality (LMI).

Quadratic Stability Conditions

►
$$\exists \epsilon > 0 \text{ s.t. } \dot{V}(x) = L_{f_i} V(x) \leqslant -\epsilon |x|^2 \quad \forall x \neq 0, \forall i \in \{1, \dots, N\}$$

(ロ) (日) (日) (三) (三) (三) (1/14)

Find conditions of GAS for any switching signal

Problem A_{CQL}

Find $P \succ 0$ s.t. $A_i^T P + PA_i < 0$ $\forall i \in \{1, \dots, N\}$ (set of LMIs)

We can also check if this problem is feasible

Find conditions of GAS for any switching signal

Problem A_{CQL}

Find $P \succ 0$ s.t. $A_i^T P + PA_i < 0$ $\forall i \in \{1, \dots, N\}$ (set of LMIs)

We can also check if this problem is feasible

Dual Theorem

Problem A_{CQL} is infeasible if and only if

$$\exists R_i \succ 0 \text{ s.t. } \sum_{i=1}^{N} (A_i^T R_i + R_i A_i) > 0 \qquad \forall i \in \{1, \dots, N\}$$

Find conditions of GAS for any switching signal

Problem A_{CQL}

Find $P \succ 0$ s.t. $A_i^T P + PA_i < 0$ $\forall i \in \{1, \dots, N\}$ (set of LMIs)

We can also check if this problem is feasible

Dual Theorem

Problem A_{CQL} is infeasible if and only if

$$\exists R_i \succ 0 \text{ s.t. } \sum_{i=1}^{N} (A_i^T R_i + R_i A_i) > 0 \qquad \forall i \in \{1, \dots, N\}$$

If problem A_{CQL} is infeasible, does this mean the system is unstable?

Find conditions of GAS for any switching signal

Now we have <u>a</u> sufficient condition for stability

Find conditions of GAS for any switching signal

Now we have <u>a</u> sufficient condition for stability

Example 4.4.6 in the lecture notes

$$\dot{x} = \begin{cases} A_1 x & x \in \mathcal{X}_1 \\ A_2 x & x \in \mathcal{X}_2 \end{cases} \quad \text{where} \quad A_1 = \begin{bmatrix} -1 & -1 \\ 1 & -1 \end{bmatrix} A_2 = \begin{bmatrix} -1 & -10 \\ 0.1 & -1 \end{bmatrix}$$

<□> < □> < □> < 三> < 三> < 三> 三 のへで 13/14

Find conditions of GAS for any switching signal

Now we have <u>a</u> sufficient condition for stability

Example 4.4.6 in the lecture notes

$$\dot{x} = \begin{cases} A_1 x & x \in \mathcal{X}_1 \\ A_2 x & x \in \mathcal{X}_2 \end{cases} \quad \text{where} \quad A_1 = \begin{bmatrix} -1 & -1 \\ 1 & -1 \end{bmatrix} A_2 = \begin{bmatrix} -1 & -10 \\ 0.1 & -1 \end{bmatrix}$$

Infeasibility test problem has the solution

$$R_1 = \begin{bmatrix} 0.2996 & 0.7048 \\ 0.7048 & 2.4704 \end{bmatrix} R_2 = \begin{bmatrix} 0.2123 & -0.5532 \\ -0.5532 & 1.9719 \end{bmatrix}$$

Find conditions of GAS for any switching signal

Now we have <u>a</u> sufficient condition for stability

Example 4.4.6 in the lecture notes

$$\dot{x} = \begin{cases} A_1 x & x \in \mathcal{X}_1 \\ A_2 x & x \in \mathcal{X}_2 \end{cases} \quad \text{where} \quad A_1 = \begin{bmatrix} -1 & -1 \\ 1 & -1 \end{bmatrix} A_2 = \begin{bmatrix} -1 & -10 \\ 0.1 & -1 \end{bmatrix}$$

Infeasibility test problem has the solution

$$R_1 = \begin{bmatrix} 0.2996 & 0.7048 \\ 0.7048 & 2.4704 \end{bmatrix} R_2 = \begin{bmatrix} 0.2123 & -0.5532 \\ -0.5532 & 1.9719 \end{bmatrix}$$

There is a common quadratic Lyapunov function

$$V(x) = \max_{i \in \{1, 2, \dots, k\}} (I_i^T x)^2$$

which is a piece-wise quadratic function

Find conditions of GAS for any switching signal

Explicit form for problem A_{CQL} [Theorem 4.4.4 in lecture notes]

Definitions

- $\blacktriangleright \dot{x} = A_{\sigma}x , \ \sigma \in \{1, \ldots, N\}$
- $\blacktriangleright V(x) = x^T P x , P \succ 0$

Conditions

- A_i is Hurwitz $\forall i \in \{1, \ldots, N\}$
- ► $A_i A_j = A_j A_i$ $\forall i, j \in \{1, ..., N\}$ (A_i commute pairwise)

Find conditions of GAS for any switching signal

Explicit form for problem A_{CQL} [Theorem 4.4.4 in lecture notes]

Definitions

- $\blacktriangleright \dot{x} = A_{\sigma}x , \ \sigma \in \{1, \ldots, N\}$
- $\blacktriangleright V(x) = x^T P x , P \succ 0$

Conditions

- A_i is Hurwitz $\forall i \in \{1, \ldots, N\}$
- ► $A_i A_j = A_j A_i$ $\forall i, j \in \{1, ..., N\}$ (A_i commute pairwise)

The common Lyapunov function is found via this procedure:

Find conditions of GAS for any switching signal

Explicit form for problem A_{CQL} [Theorem 4.4.4 in lecture notes]

Definitions

- $\blacktriangleright \dot{x} = A_{\sigma}x , \ \sigma \in \{1, \ldots, N\}$
- $\blacktriangleright V(x) = x^T P x , P \succ 0$

Conditions

- A_i is Hurwitz $\forall i \in \{1, \ldots, N\}$
- ► $A_i A_j = A_j A_i$ $\forall i, j \in \{1, ..., N\}$ (A_i commute pairwise)

► The common Lyapunov function is found via this procedure:

Step 1. Find $P_1 \succ 0$ s.t. $A_1^T P_1 + P_1 A_1 = -I$

Find conditions of GAS for any switching signal

Explicit form for problem A_{CQL} [Theorem 4.4.4 in lecture notes]

Definitions

- $\blacktriangleright \dot{x} = A_{\sigma}x , \ \sigma \in \{1, \ldots, N\}$
- $\blacktriangleright V(x) = x^T P x , P \succ 0$

Conditions

- A_i is Hurwitz $\forall i \in \{1, \ldots, N\}$
- ► $A_i A_j = A_j A_i$ $\forall i, j \in \{1, ..., N\}$ (A_i commute pairwise)

The common Lyapunov function is found via this procedure:

▶ Step 1. Find $P_1 \succ 0$ s.t. $A_1^T P_1 + P_1 A_1 = -I$ ▶ Step 2. Find $P_2 \succ 0$ s.t. $A_2^T P_2 + P_2 A_2 = -P_1$

Find conditions of GAS for any switching signal

Explicit form for problem A_{CQL} [Theorem 4.4.4 in lecture notes]

Definitions

- $\blacktriangleright \dot{x} = A_{\sigma}x , \ \sigma \in \{1, \ldots, N\}$
- $\blacktriangleright V(x) = x^T P x , P \succ 0$

Conditions

- A_i is Hurwitz $\forall i \in \{1, \ldots, N\}$
- ► $A_i A_j = A_j A_i$ $\forall i, j \in \{1, ..., N\}$ (A_i commute pairwise)

The common Lyapunov function is found via this procedure:

▶ Step 1. Find $P_1 \succ 0$ s.t. $A_1^T P_1 + P_1 A_1 = -I$ ▶ Step 2. Find $P_2 \succ 0$ s.t. $A_2^T P_2 + P_2 A_2 = -P_1$ ▶ Step 3. Find $P_3 \succ 0$ s.t. $A_2^T P_3 + P_3 A_3 = -P_2$

Find conditions of GAS for any switching signal

Explicit form for problem A_{CQL} [Theorem 4.4.4 in lecture notes]

Definitions

- $\blacktriangleright \dot{x} = A_{\sigma}x , \ \sigma \in \{1, \ldots, N\}$
- $\blacktriangleright V(x) = x^T P x , P \succ 0$

Conditions

- A_i is Hurwitz $\forall i \in \{1, \ldots, N\}$
- ► $A_i A_j = A_j A_i$ $\forall i, j \in \{1, ..., N\}$ (A_i commute pairwise)

The common Lyapunov function is found via this procedure:

<ロ> < 団> < 団> < 目> < 目> 三 のへで 14/14

Find conditions of GAS for any switching signal

Explicit form for problem A_{CQL} [Theorem 4.4.4 in lecture notes]

Definitions

- $\blacktriangleright \dot{x} = A_{\sigma}x , \ \sigma \in \{1, \ldots, N\}$
- $\blacktriangleright V(x) = x^T P x , P \succ 0$

Conditions

- A_i is Hurwitz $\forall i \in \{1, \ldots, N\}$
- ► $A_i A_j = A_j A_i$ $\forall i, j \in \{1, ..., N\}$ (A_i commute pairwise)

The common Lyapunov function is found via this procedure:

▶ Step 1. Find
$$P_1 \succ 0$$
 s.t. $A_1^T P_1 + P_1 A_1 = -I$
▶ Step 2. Find $P_2 \succ 0$ s.t. $A_2^T P_2 + P_2 A_2 = -P_1$
▶ Step 3. Find $P_3 \succ 0$ s.t. $A_3^T P_3 + P_3 A_3 = -P_2$
:
▶ Step N. Find $P_N \succ 0$ s.t. $A_N^T P_N + P_N A_N = -P_{N-1}$
Then $P = P_N$. [Proof: Exercise 4.4.5 in lecture notes]