4. Global asymptotic stability for *given* switching strategy?

Overview for Problem B: GAS for given switching strategy

- 1. multiple Lyapunov functions
- 2. state-dependent switching single Lyapunov function
- 3. state-dependent switching multiple Lyapunov function
- 4. piecewise linear systems S-procedure

4.1 Multiple Lyapunov approach

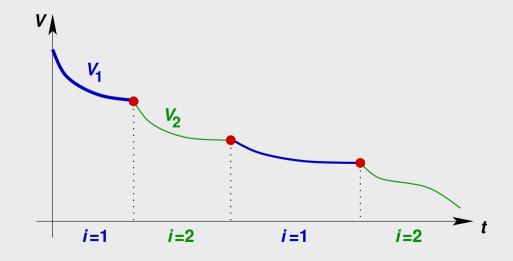
Switched system with $\dot{x} = f_i(x)$, i = 1, 2 are GAS with Lyapunov function $V_i(x)$

Assumption: no common Lyapunov function \rightarrow not GUAS

Let switching times be given by t_k , k = 0, 1, 2, ... and suppose that

$$V_{\sigma(t_{k-1})}(x(t_k)) = V_{\sigma(t_k)}(x(t_k))$$
 for all $k = 1, 2, ...$

 V_{σ} is now continuous Lyapunov function \Rightarrow switched system is GAS



4.2 Most general theorem

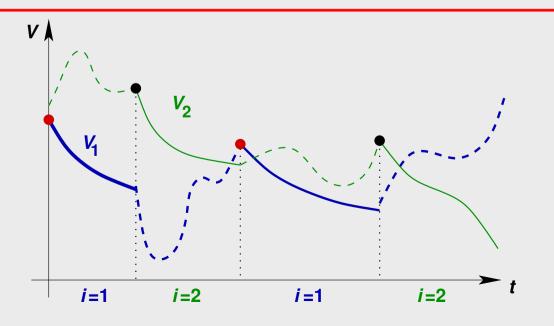
Theorem

Consider switched system with all submodels $\dot{x} = f_i(x)$ GAS with corresponding Lyapunov function V_i

Suppose that for every pair of switching times (t_k, t_l) , k < l with $\sigma(t_k) = \sigma(t_l) = i$ and $\sigma(t_m) \neq i$ for $t_k < t_m < t_l$, we have

$$V_i(x(t_l)) - V_i(x(t_k)) \leq -\rho(||x(t_k)||) < 0,$$

then switched system is GAS



4.3 State-dependent switchings: Single Lyapunov function

$$\dot{x} = \begin{cases} A_1 x, & \text{if } x_1 x_2 \leq 0\\ A_2 x, & \text{if } x_1 x_2 > 0 \end{cases} \text{ with } A_1 = \begin{pmatrix} -1 & -1\\ 1 & -1 \end{pmatrix}; A_2 = \begin{pmatrix} -1 & -10\\ 0.1 & -1 \end{pmatrix}$$

- No common quadratic Lyapunov function
- However, for $V(x) = x_1^2 + x_2^2$ it holds that $\dot{V} < 0$ along the nonzero solutions of the switched system, which implies GAS

Relaxation w.r.t. common Lyapunov function approach: Indeed, we only need

$$L_{A_1x}V(x) < 0$$
 if $x_1x_2 \leq 0$ and $L_{A_2x}V(x) < 0$ if $x_1x_2 > 0$

Hence, general set-up:

Find V such that $L_{f_i}V(x)$ is only negative where $\dot{x} = f_i(x)$ can be active hs_stab.21

4.4 State-dependent switchings: Multiple Lyapunov function

$$\dot{x} = \begin{cases} A_1 x, & \text{if } x_1 \leq 0\\ A_2 x, & \text{if } x_1 > 0, \end{cases} \text{ where } A_1 = \begin{pmatrix} -5 & -4\\ -1 & -2 \end{pmatrix}; A_2 = \begin{pmatrix} -2 & -4\\ 20 & -2 \end{pmatrix}$$

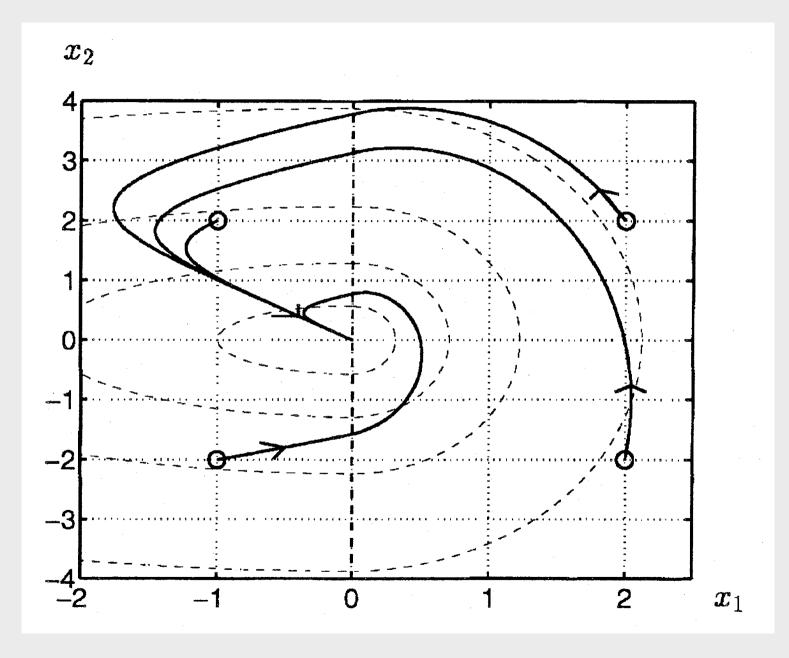
No common Lyapunov function and no quadratic function as in previous example

However, consider 2 quadratic Lyapunov functions $V_i(x) = x^T P_i x$ with

$$P_1 = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}, \quad P_2 = \begin{pmatrix} 10 & 0 \\ 0 & 3 \end{pmatrix}$$

 V_i is Lyapunov function for $\dot{x} = A_i x$

 V_{σ} (with $\sigma = 1$ if $x_1 \leq 0$ and $\sigma = 2$ when $x_1 > 0$) is continuous and strictly decreasing



4.5 More general set-up for piecewise linear systems

 $\dot{x} = A_i x \text{ if } x \in \mathscr{X}_i$

Several relaxations possible w.r.t. common *quadratic* Lyapunov function:

- One can require that derivative $L_{f_i(x)}V(x)$ of $V(x) = x^T P x$ is only negative in region where subsystem is active
- One can use multiple Lyapunov functions, say $V_i(x) = x^T P_i x$, for each submodel and "connect them" in a suitable way
- One can require that the Lyapunov function $V_i(x) = x^T P_i x$ is only positive definite in its active region

4.6 Relaxation: S-procedure

Aim: $V(x) = x^T P x$, P > 0 such that $x^T [A_i^T P + P A_i] x < 0$ for $0 \neq x \in \mathscr{X}_i$

Find: $S_i(x)$ based on \mathscr{X}_i with $S_i(x) \ge 0$ when $x \in \mathscr{X}_i$

Next: search for $\beta \ge 0$ satisfying

 $x^{T}A_{i}^{T}Px + x^{T}PA_{i}x + \beta S_{i}(x) < 0$ for all x

Result: Since $S_i(x)$ might be negative outside \mathscr{X}_i , so less conservative than $A_i^T P + PA_i < 0$ (i.e., $x^T A_i^T P x + x^T PA_i x < 0$ for all x)

Computationally interesting: $S_i(x) = x^T S_i x$, then LMI:

Find $\beta_i \ge 0$ and P > 0 such that $A_i^T P + PA_i + \beta_i S_i < 0$

+ other relaxations (cf. lecture notes)

5. Summary

- Stability of submodels \Rightarrow stability!
- Problem A: GAS for arbitrary switchings:
 - common Lyapunov function approach
 - piecewise linear: common quadratic Lyapunov function
- Problem B: GAS for specific switchings
 - multiple Lyapunov function: hard to verify in general case
 - state-dependent switching
 - * decrease of Lyapunov function only in active region
 - * multiple Lyapunov function (continuous over boundary)
 - Piecewise linear systems:
 - * S-procedure: nice tool to get LMI