
4. Global asymptotic stability for given switching strategy?

Overview for Problem B: GAS for given switching strategy

1. multiple Lyapunov functions

2. state-dependent switching – single Lyapunov function

3. state-dependent switching – multiple Lyapunov function

4. piecewise linear systems – S-procedure
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4.1 Multiple Lyapunov approach

Switched system with ẋ = fi(x), i= 1,2 are GAS with Lyapunov func-

tion Vi(x)

Assumption: no common Lyapunov function → not GUAS

Let switching times be given by tk, k = 0,1,2, . . . and suppose that

Vσ(tk−1)(x(tk)) =Vσ(tk)(x(tk)) for all k = 1,2, . . .

Vσ is now continuous Lyapunov function ⇒ switched system is GAS
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4.2 Most general theorem

Theorem

Consider switched system with all submodels ẋ = fi(x) GAS with

corresponding Lyapunov function Vi

Suppose that for every pair of switching times (tk, tl), k < l with

σ(tk) = σ(tl) = i and σ(tm) 6= i for tk < tm < tl, we have

Vi(x(tl))−Vi(x(tk))6−ρ(‖x(tk)‖)< 0,

then switched system is GAS
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4.3 State-dependent switchings: Single Lyapunov function

ẋ =

{

A1x, if x1x2 6 0

A2x, if x1x2 > 0
with A1 =

(

−1 −1

1 −1

)

; A2 =

(

−1 −10

0.1 −1

)

• No common quadratic Lyapunov function

• However, for V (x) = x2
1 + x2

2 it holds that V̇ < 0 along the nonzero

solutions of the switched system, which implies GAS

Relaxation w.r.t. common Lyapunov function approach: Indeed,

we only need

LA1xV (x)< 0 if x1x2 6 0 and LA2xV (x)< 0 if x1x2 > 0

Hence, general set-up:

Find V such that L fiV (x) is only negative where ẋ = fi(x) can be
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4.4 State-dependent switchings: Multiple Lyapunov function

ẋ =

{

A1x, if x1 6 0

A2x, if x1 > 0,
where A1 =

(

−5 −4

−1 −2

)

; A2 =

(

−2 −4

20 −2

)

No common Lyapunov function and no quadratic function as in pre-

vious example

However, consider 2 quadratic Lyapunov functions Vi(x) = xTPix with

P1 =

(

1 0

0 3

)

, P2 =

(

10 0

0 3

)

Vi is Lyapunov function for ẋ = Aix

Vσ (with σ = 1 if x1 6 0 and σ = 2 when x1 > 0) is continuous and

strictly decreasing
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4.5 More general set-up for piecewise linear systems

ẋ = Aix if x ∈ Xi

Several relaxations possible w.r.t. common quadratic Lyapunov func-

tion:

• One can require that derivative L fi(x)V (x) of V (x) = xT Px is only

negative in region where subsystem is active

• One can use multiple Lyapunov functions, say Vi(x) = xT Pix, for

each submodel and “connect them” in a suitable way

• One can require that the Lyapunov function Vi(x) = xT Pix is only

positive definite in its active region
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4.6 Relaxation: S-procedure

Aim: V (x) = xT Px, P > 0 such that xT [AT
i P+PAi]x < 0 for 0 6= x ∈ Xi

Find: Si(x) based on Xi with Si(x)> 0 when x ∈ Xi

Next: search for β > 0 satisfying

xT AT
i Px+ xT PAix+βSi(x)< 0 for all x

Result: Since Si(x) might be negative outside Xi, so less conser-

vative than AT
i P+PAi < 0 (i.e., xT AT

i Px+ xT PAix < 0 for all x)

Computationally interesting: Si(x) = xT Six, then LMI:

Find βi > 0 and P > 0 such that AT
i P+PAi+βiSi < 0

+ other relaxations (cf. lecture notes)
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5. Summary

• Stability of submodels 6⇒ stability!

• Problem A: GAS for arbitrary switchings:

– common Lyapunov function approach

– piecewise linear: common quadratic Lyapunov function

• Problem B: GAS for specific switchings

– multiple Lyapunov function: hard to verify in general case

– state-dependent switching

∗ decrease of Lyapunov function only in active region

∗ multiple Lyapunov function (continuous over boundary)

– Piecewise linear systems:

∗ S-procedure: nice tool to get LMI

hs stab.26


