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Background

Properties of linear autonomous vector fields

Affine systems: ξ̇ = Aξ + F , ξ ∈ R
n

Equivalent to ẋ = Ax where A =

[

A F
0 0

]

and x =

[

ξ

xn+1

]

, xn+1(0) = 1, x ∈ R
n+1

For systems of the class
ẋ = Ax

we have

State Transition Matrix:

x(t) = Φ(t, t0)x(t0) =

∫ t

t0

Ax(τ )dτ = eA(t−t0)x0

where x0 = x(t0) is the initial condition

proof: Verifies initial condition and the DE
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Background

Properties of linear autonomous vector fields

Time invariant:

x(t) = Φ(t, t0)x(t0) = eA(t−t0)x(t0) = eA∆tx(t0)
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Final x(t) depends ONLY on x(t0) and ∆t, but NOT on t, t0
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Background

Properties of linear autonomous vector fields

Homogeneity: given a point x0 ∈ R
n and a non zero scalar λ ∈ R, for all t

x(t) = eAtx0

and
λx(t) = eAtλx0
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Background

Properties of linear autonomous vector fields

Stability arguments:
Lyapunov: the vector field ẋ = Ax is stable if ∀ε > 0 ∃ δε such that ∀ ‖x(t0)‖ < δε and
∀ t > t0 ‖x(t) = Φ(t, t0, x(t0))‖ < ε

Asymptotic stability :
lim

t→+∞
‖x‖ = 0

(Convergence of the norm)

For linear autonomous vector fields (Matrix A is Hurwitz):

Asymptotically stable ⇐⇒ Re(λi) < 0 i = 1, . . . , n

λi: zeros of the n-order polynomial

det(A − λI) = 0

For linear case:

Asymptotically stable ⇐⇒ Exponentially stable
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Background

Properties of the cost

Cost of the evolution until time t > t0 from the initial point x0, with the dynamics A

Weight matrix Q ≥ 0, initial point x0 and a matrix A

J(x0, t0, t) ,

∫ t

t0

x′(τ )Qx(τ )dτ,

subject to
ẋ = Ax, x(t0) = x0

Basic properties

• J(x0, t0, t) is finite if t < +∞ and positive if Q > 0, t > t0

• J(x0, t0, t0) = 0

• if Q > 0, J(x0, t0, +∞) =

{

< +∞ if A is strictly Hurwitz
+∞ else

• J(x0, t0, t) = J(x0, t0, +∞) − J(x0, t, +∞)
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Background

Properties of the cost

J(x0, t0, t) =

∫ t

t0

x′(τ )Qx(τ )dτ,

1. Quadratically homogeneous and even over x: for all λ 6= 0

J(x0, t0, t) =
1

λ2
J(λx0, t0, t)

2. There exists a matrix M(t − t0) s.t.

J(x0, t0, t) = x′
0M(t − t0)x0

Proofs-
Point 1: TRIVIAL - Exercise

Point 2: J(x0, t0, t) =

∫ t

t0

x′(τ )Qx(τ )dτ =

∫ t

t0

x′
0(e

A(τ−t0))′QeA(τ−t0)x0dτ, hence

J(x0, t0, t) = x′
0

∫ t−t0

0

eA′ϑQeAϑdϑ x0 = x′
0M(t − t0)x0
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Background

Properties of the cost

Particular (important) case:
When A is Hurwitz then the Lyapunov equation

A′Z + ZA = −Q

admits a unique solution and

J(x0, t0, t) = x′
0

(

Z − eA′(t−t0)ZeA(t−t0)
)

x0

Proof: J(x0, t0, t) = −

∫ t

t0

x′(τ )(A′Z + ZA)x(τ )dτ = −
(

∫ t

t0

ẋ′Zxdτ + x′Zẋdτ
)

=

−

∫ t

t0

dx′Zx

dτ
dτ = −

∫ t

t0

dx′Zx = x′(t0)Zx(t0) − x′(t)Zx(t) = x′
0

(

Z − eA′(t−t0)ZeA(t−t0)
)

x0

NB: In Matlab use commands
>>Z=lyap(A’,Q) to compute Z and
>>eAt=expm(A*t) to compute eAt

If Z does not exist then the cost J(x0, t0, t) must be computed numerically
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Background

Basic concepts of dynamic programming

Principle of optimality [Bellman, 1957]

“An optimal policy has the property that
whatever the initial state and the initial decisions are,

the remaining decisions must constitute an optimal policy
with regard to the state resulting from the first decision”
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Background

Basic concepts of dynamic programming

A formulation of the principle of optimality

Jk(x(t)) = min
u(t)

(

Jk+1(x(t + T )) +

∫ t+T

t

L(x(τ ), u(τ ))dτ
)

k = 1, . . . , N

and JN(x) given as a boundary condition
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Background

Basic concepts of dynamic programming

Example: Minimize the toll of the path from Start to END
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Background

Basic concepts of dynamic programming

Example: Stage 1
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Background

Basic concepts of dynamic programming

Example: Stage 2
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Background

Basic concepts of dynamic programming

Example: Stage 3
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Background

Basic concepts of dynamic programming

Example: Stage 4
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Background

Basic concepts of dynamic programming

Example: Stage 5
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NOTE: State feedback, if disturbance occur...
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Background

Polar coordinates in R
n

The properties of homogeneity of the autonomous vector field ẋ = Ax and the quadratic
form of the cost function allow to keep the attention on the unitary semi sphere

R=1

x2

x1

∆θ

 

This geometry advises to reconsider the formulation in polar coordinates
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Background

Polar coordinates in R
n

Given a vector x = [x1, x2, . . . , xn] ∈ R
n, its polar representation will be given by a radius

ρn and n − 1 angles θi, i = 2, . . . , n related as






























xn = ρn sin(θn)
xn−1 = ρn−1 sin(θn−1)
...
x3 = ρ3 sin(θ3)
x2 = ρ2 sin(θ2)
x1 = ρ2 cos(θ2)

where ρn = ‖x‖, ρi = ρi+1 cos(θi) for i = n − 1, . . . , 2.
Ranges

ρn ∈ [0, +∞)

θ2 ∈ [0, 2π)

θ3, . . . , θn ∈ [−
π

2
,
π

2
]

The unitary semi sphere Σn:
ρn = 1, θ2 ∈ [0, 2π), θ3, . . . , θn−1 ∈ [−π

2 ,
π
2), and θn ∈ [0, π

2 ].
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Switched Systems

– Description

– A paradox

– Example: buck-boost converter
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Switched Systems

Description
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Switched Systems

Description

Locations `i, labels: indicate the current operating mode

Vector fields fi, functions: govern the evolution in mode `i

Constraint sets Ωi, domain: restrict the area where mode `i is allowed

Guards gi,j, switching manifold: trigger the switch from `i → `j

Continuous state: x ∈ R
n

Continuous control signal: u ∈ R
m

Discrete control signal: i ∈ S
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Switched Systems

Paradox [Branicky, 1998]
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Switched Systems

Paradox [Branicky, 1998]
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Switched Systems

Example: the buck-boost converterPSfrag replacements
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Four possible modes: x =

[

i

v

]

1. Switch closed, diode blocked

2. Switch open, diode conducting

3. Switch open, diode blocked

4. Switch closed, diode conducting

I: ẋ =

[

0 0
0 − 1

RC

]

x +

[

E
L

0

]

II: ẋ =

[

0 1
L

− 1
C

− 1
RC

]

x

III: ẋ =

[

0 0
0 − 1

RC

]

x

IV: Fault mode
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Switched Systems

Example: the buck-boost converter

Switched system representation
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Switched systems

Formal definition of switched systems

S = (L, act, E ,M), S

— L: finite set of locations, i = 1, . . . , s
— act : L → (Rn × R

n) Affine differential equation

ẋ = Aix + fi

— E ⊂ L × L set of edges
ei,j = (i, j): arc from i to j, i 6= j

— M : E → R
n×n Switching reset

Switch from i to j occurs ⇒ x+ = Mi,jx
−.

Set of indexes : S associated to each location

Minimum permanence time δmin(i) ≥ 0 associated to each location i.
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Switched Systems

Oriented graph: examples

 

l1 

l2 

l3 

l4 

e2,1 

e1,2 

e1,3 

e1,4 e4,3 

e3,2 

 

l1 
 
 

l2 

l3 

A1 
 
 

A2 
 
 

A3 
 
 

l4 A4 
 
 

              j=1              j=2               j=3

h=1

h=2

l1 l3 l5

l2 l4 l6

Hybrid state : couple (x, i)
x ∈ R

n: continuous state i ∈ S : discrete location

Hybrid evolution : (x(t), i(t))

Set of successors : succ(i) ⊂ S set of locations reachable from i
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Problem definition

optimal control problem OPN(S)
N : upper bound (finite) on the number of switches
S: switched system as above

Formulation:

J∗
N , min

I,T

{

F (I, T ) ,

∫ ∞

0

x′(t)Qi(t)x(t)dt+

N
∑

k=1

Hik−1,ik

}

s.t. ẋ = Ai(t)x + fi(t)

x(0) = x0

i(t) = ik for τk ≤ t < τk+1 k = 0, . . . , N
ik+1 ∈ succ(ik) k = 0, . . . , N
τ0 = 0, τN+1 = +∞
τk+1 ≥ τk + δmin(ik) k = 0, . . . , N
x(τ+

k ) = Mik−1,ikx(τ−
k ) k = 1, . . . , N

Qi: positive semi-definite matrices, weight continuous evolution
Hi,j: switching costs positive reals, weight discrete evolution
x0: initial state of the system
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Problem definition

Design the function i(t)

 

t 

i(t) 

4 

3 

2 

1 

τ1 τ2 τ3 τ4 

Two types of decision variables

T , {τ1, . . . , τN}

Finite sequence of switching instants

I , {i0, . . . , iN}

Finite sequence of modes
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Switching table procedure

Assumptions

Finite solution of OPN(S): it must hold

Assumption 1

(i) there exists at least one location i ∈ S such that Ai is strictly Hurwitz, fi = 0;

(ii) if the initial location i0 is imposed, than the number N of available switches is such
that the location i must be reachable from i0 in k ≤ N steps.

Comments

(i) At least one location i is characterized by a stable dynamics

(ii) This (these) location(s) i must be reachable within N switches

If i0 is not assigned then (ii) can be relaxed
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Switching table procedure

Objectives

Construct offline a partition of the state space

State feedback optimal control law: checks system state (x, i) and decide if a switch from
location i should occur

Switching table: Ci
k of location i and k available switches

 

Table C1
i 

Remain in li

Switch to lj

Switch to lk 

Switch to lh 

Recursively:
First construct tables Ci

1 Then construct tables Ci
k using Ci

k−1, k = 1, . . . , N
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Switching table procedure

Definitions

Assume

• Current state: (x, jk)

• Missing switches: k ≥ 0 out of N

Schedule of future evolution from (x, jk):

Time intervals %k %k−1 . . . %0

Indexes j(t) jk jk−1 . . . j0

Cost of remaining evolution:

J =

∫ ∞

τN−k

x′(t)Qj(t)x(t)dt +

1
∑

i=k

Hji,ji−1

Cost of remaining evolution : two parts

(i) event driven cost (SUM)

(ii) time driven cost (INTEGRAL)
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Switching table procedure

Definitions

Time cost: recursive expression

At k available switches

T̃k(x, jk, . . . , j0, %k, . . . , %0) = x′Q̄jk(%k)x + x′Ā′
jk

(%k)M
′
jk,jQ̄j(δmin(j))Mjk,jĀjk(%k)x

+T̃k−1(z, jk−1, . . . , j0, %k−1, . . . , %0)

At k = 0 available switches (initial stage of recursion)

T̃0(x, j0, %0) = x′Q̄j0(%0)x = x′Q̄j0(+∞)x

with Q̄(%) =

∫ %

0

x′(t)Qx(t)dt and Ā(%) = eA%
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Switching table procedure

Definitions

The point z = Ājk−1
(δmin(jk−1))Mjk,jk−1

Ājk(%k)x is reached after the evolution in the current
dynamics jk and the δmin(jk−1) 

x 
Ai 

Aj 

x (ρ) δmin(j) 

ρ 

)())(( ,min ρδ jjij xMjA

λ

Mi,jx (ρ) 
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Switching table procedure

Definitions

Event cost: recursive expression

At k available switches

Ek(jk, . . . , j0) = Hjk,jk−1
+ Ek−1(jk−1, . . . , j0)

At k = 0 available switches (initial stage of recursion)

E0(j0) = 0

Total residual cost

Tk(x, jk, . . . , j0, %k, . . . , %0) = T̃k(x, jk, . . . , j0, %k, . . . , %0) + Ek(jk, . . . , j0)

D. Corona Optimal control of Switched Systems

Switching table procedure

Theorem

Minimize the function residual cost Tk(x, jk, . . . , j0, %k, . . . , %0)

T ∗
k (x, jk) = min

{jk−1, . . . , j0}
{%k, . . . , %1}

Tk(x, jk, . . . , j0, %k, . . . , %0)

constrained to

%0 = +∞
%h ≥ δmin(jh)
%k ≥ 0
jk = i

jh ∈ succ(jh+1) ∪ {jh}
h = 0, . . . , k − 1.

Mixed integer quadratic programming (MIQP) problem

Integer variables {jk−1, . . . , j0} ∈ 2S

Continuous variables {%k, . . . , %1}
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Switching table procedure

Theorem

Solution 1: ”brute force” method

Advantages: appropriate numerical tools for MIQP (e.g., CPLEX )

Disadvantages: mixed integer (!!)

Solution 2: heuristic methods (Genetic algorithms, Simulated annealing,...)

Disadvantages: sub-optimal solutions

Advantages: velocity
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Switching table procedure

Theorem

Theorem : Optimal remaining cost
k switches available, current hybrid state x, jk.

1. If k = 0 then the remaining optimal cost starting from x is:

T ∗
0 (x, j0, %0) = T̃0(x, j0, %0)

2. If k ∈ {1, . . . , N} then:

(i) Remaining optimal cost starting from x is:

T ∗
k (x, jk) = min

jk−1 ∈ succ(jk) ∪ {jk}%k ≥ 0

F (x, jk, jk−1, %k) + T ∗
k−1(z(x, jk, jk−1, %k), jk−1)

(ii) Next optimal dynamics

j∗k−1(x, jk) = arg min
jk−1 ∈ succ(jk) ∪ {jk}

%k ≥ 0

F (x, jk, jk−1, %k) + T ∗
k−1(z(x, jk, jk−1, %k), jk−1)

(iii) Switching time %∗k(x, jk)

%∗k(x, jk) = arg min
jk−1 ∈ succ(jk) ∪ {jk}

%k ≥ 0

F (x, jk, jk−1, %k) + T ∗
k−1(z(x, jk, jk−1, %k), jk−1)
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Switching table procedure

Theorem

Proof
Case 1: k = 0. The systems is forced to evolve with dynamics Ajk to infinity hence the
remaining optimal is given
Case 2: k > 0.

T ∗
k (x, jk) = min

{jk−1, . . . , j0}
{%k, . . . , %1}

Tk(x, jk, . . . , j0, %k, . . . , %0)

but

Tk(x, jk, . . . , j0, %k, . . . , %0) = F (x, jk, jk−1, %k) + Tk−1(x, jk−1, . . . , j0, %k−1, . . . , %0)

and by the principle of optimality (choose optimal T ∗
k−1)

T ∗
k (x, jk) = min

{jk−1 ∈ succ(jk) ∪ {jk}}
{%k ≥ 0}

F (x, jk, jk−1, %k) + T ∗
k−1(z(x, jk, jk−1, %k), jk−1)

Only one discrete and one continuous variable

(jk−1, %k)
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Switching table procedure

Definition of the switching table

%∗k(x, i) ≥ 0: time spent in the current location i

%∗k(x, i) = 0 ⇒ Switch immediately to location j∗k−1

%∗k(x, i) > 0 ⇒ Remain in the current location i

Ci
k (switching table): partition of R

n

(i) Rj: it is optimal to switch immediately to j∗

(ii) Ri: it is optimal to remain in i

 

Table C1
i 

Remain in li

Switch to lj

Switch to lk 

Switch to lh 

If switching costs are null then the regions are conic−→ Unitary semi sphere
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Switching table procedure

Algorithm/Pseudo-code

1. k = 0 % remaining switches (initialize)

∀ (y, i) ∈ Σn × S

Zi : A′
iZi + ZiAi = −Qi.

T0(y, i) =

{

y′Ziy if ∃ Zi > 0
+∞ else.

C0(y, i) = i

2. For k = 1 : N

∀ (y, i) ∈ Σn × S

Compute the set succ(i)

Tk(y, i) = min
j∈succ(i)∪{i},t≥0

T (y, i, j, t) % Defined above

(j∗, t∗) = arg min
j,t

T (y, i, j, t).

Ck(y, i) =

{

j∗ if t∗ = 0
i if t∗ > 0.

end (k)
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Switching table procedure

Application: Servomechanism system

V

R

JM

JL

µL

µM

TM

½(j)

TL

¯M

¯L

kT _µM
kT I

System dynamics

V = RI + kT θ̇M , JM θ̈M = kTI − βM θ̇M − TM

θ̇M = ρ(j)θ̇L, TL = ρ(j)TM , JLθ̈L = −βLθ̇L + TL

Linear differential equation

[

JL + ρ2(j)JM

]

θ̈L +

[

βL + ρ2(j)

(

k2
T

R
+ βM

)]

θ̇L = ρ(j)
kT

R
V.

V : PI controller of two levels

V = −k1(h)θL − k2(h)θ̇L, h = 1, 2
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Switching table procedure

Application: Servomechanism system

State space variables:
x , [θL, θ̇L]′

Autonomous switched linear system representation

ẋ = A(h, j)x =

[

0 1
a21(h, j) a22(h, j)

]

x

a21(h, j), a22(h, j): gear/voltage configuration

Oriented graph

              j=1              j=2               j=3

h=1

h=2

l1 l3 l5

l2 l4 l6
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Switching table procedure

Application: Servomechanism system

Numerical values
Symbol Value (IS) Physical meaning

JM 1 motor inertia
βM 0.2 motor friction coefficient
R 50 resistance of armature
kT 15 motor constant
JL 50 nominal load inertia
βL 10 load friction coefficient
ρ 1,2,3 gear ratios

k1(1) 3.2 proportional action (smooth)
k1(2) 31.6 proportional action (aggressive)
k2(1) 3.5 integral action (smooth)
k2(2) 32.1 integral action (aggressive)

A1 =

[

0 1
−0.019 −0.31

]

A3 =

[

0 1
−0.036 −0.57

]

A5 =

[

0 1
−0.049 −0.94

]

A2 =

[

0 1
−0.186 −0.47

]

A4 =

[

0 1
−0.351 −0.89

]

A6 =

[

0 1
−0.482 −1.38

]
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Switching table procedure

Application: Servomechanism system

Numerical simulations
Additional values:

• Number of switches N = 5

• No switching costs

• Minimum permanence time δmin = 0.2 s

• Initial state: x0 = [−1.4, 1.5]′

• Initial location i0 = 1

• Weight matrices

Q1 = Q3 = Q5 =

[

1 0
0 2

]

Q2 = Q4 = Q6 =

[

3 0
0 6

]
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Switching table procedure

Application: Servomechanism system

Step 1:
Evaluation offline of (N = 5 × S = 6) = 30 switching tables

−1 0 1−1

0

1
C5

1

−1 0 1−1

0

1
C6

2

−1 0 1−1

0

1
C5

3

−1 0 1−1

0

1
C3

4

−1 0 1−1

0

1
C1

5

Location Color mapping 
l1  
l2  
l3  
l4  
l5  
l6  

 

Note: Tables interested by the evolution from the given initial state
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Switching table procedure

Application: Servomechanism system

Step 2:
Perform an evolution from the given initial state by using the 30 switching tables

−1.5 −1 −0.5 0 0.5−0.5

0

0.5

1

1.5

2
θL 
. 

θL 

l1 
l3 

l5 

l6 

l5 l3 

Hybrid evolution that minimizes the LQ performance index
Circle: indicates the initial state
Squares: indicate the values of the state at the switching instants
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Switching table procedure

Application: Servomechanism system

Relevant observation
The performance of the system is related to the number of available switches.

From the same initial state, the performance index J varies when k = 0, . . . , 6 switches are
available

Available switches Index Value
0 108.62
1 20.78
2 6.69
3 4.84
4 4.84
5 4.75
6 4.69
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Outline

1. Background

2. Switched systems

3. Problem definition

4. Switching table procedure

5. Computational complexity
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Computational complexity

Computational complexity of the procedure:

O(Ns(s − 1)rn−1Nt)

where

• N is the number of available switches

• s is the cardinality of the set S

• r is the number of samples along each direction of R
n

• Nt is the number of time samples used in the minimization over time

The complexity of the algorithm is polynomial over the number of switches and the number
of modes

It is exponential over the space discretization (limits high dimensional applications)
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Some conclusions

• STP for finite number of switches

• Feedback solution

• Offline

• Global optimum

• State space discretization (accuracy vs. time consumption)

• Studied extensions

1. Switching constraints on the state space

2. Infinite number of switches

3. Design of a stabilizing switching signal
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