Background
 Switched systems

3. Problem definition

4. Switching table procedure

5. Computational complexity

**Optimal control of Switched Systems** 



## Modeling and Control of Hybrid Systems

## **Optimal control of Switched Systems**

Daniele Corona

d.corona@tudelft.nl

**T**UDelft

February 14, 2007

| D. Corona |  |  |
|-----------|--|--|
|           |  |  |
|           |  |  |
|           |  |  |

Optimal control of Switched Systems

D. Corona

Background

- Properties of linear autonomous vector fields
- Properties of the LQ cost
- Basic concepts of dynamic programming
- Polar coordinates in  $\mathbb{R}^n$

Background

Outline

Properties of linear autonomous vector fields

Affine systems:  $\dot{\xi} = \mathcal{A}\xi + \mathcal{F}, \xi \in \mathbb{R}^n$ 

**Equivalent to** 
$$\dot{x} = Ax$$
 where  $A = \begin{bmatrix} \mathcal{A} & \mathcal{F} \\ 0 & 0 \end{bmatrix}$  and  $x = \begin{bmatrix} \xi \\ x_{n+1} \end{bmatrix}$ ,  $x_{n+1}(0) = 1$ ,  $x \in \mathbb{R}^{n+1}$ 

For systems of the class

 $\dot{x} = Ax$ 

we have

#### State Transition Matrix:

$$x(t) = \Phi(t, t_0) x(t_0) = \int_{t_0}^t A x(\tau) d\tau = e^{A(t-t_0)} x_0$$

where  $x_0 = x(t_0)$  is the initial condition

proof: Verifies initial condition and the DE

**Optimal control of Switched Systems** 

## Background



 $x(t) = e^{At} x_0$ 

and

D. Corona



Optimal control of Switched Systems

Background



**Cost of the evolution** until time  $t > t_0$  from the initial point  $x_0$ , with the dynamics A Weight matrix  $Q \ge 0$ , initial point  $x_0$  and a matrix A

$$J(x_0, t_0, t) \triangleq \int_{t_0}^t x'(\tau) Q x(\tau) d\tau$$

subject to

D. Corona

 $\dot{x} = Ax, \quad x(t_0) = x_0$ 

## **Basic properties**

- $J(x_0, t_0, t)$  is finite if  $t < +\infty$  and positive if  $Q > 0, t > t_0$
- $J(x_0, t_0, t_0) = 0$

• if 
$$Q > 0$$
,  $J(x_0, t_0, +\infty) = \begin{cases} < +\infty & \text{if } A \text{ is strictly Hurwitz} \\ +\infty & \text{else} \end{cases}$ 

• 
$$J(x_0, t_0, t) = J(x_0, t_0, +\infty) - J(x_0, t, +\infty)$$

Background

Properties of linear autonomous vector fields

Time invariant:





#### D. Corona

Background



### Stability arguments:

**Lyapunov**: the vector field  $\dot{x} = Ax$  is stable if  $\forall \varepsilon > 0 \exists \delta_{\varepsilon}$  such that  $\forall ||x(t_0)|| < \delta_{\varepsilon}$  and  $\forall t > t_0 ||x(t) = \Phi(t, t_0, x(t_0))|| < \varepsilon$ 

#### Asymptotic stability :

$$\lim_{t \to +\infty} \|x\| = 0$$

(Convergence of the norm)

For linear autonomous vector fields (Matrix A is *Hurwitz*):

Asymptotically stable 
$$\iff Re(\lambda_i) < 0 \ i = 1, \dots, n$$

 $\lambda_i$ : zeros of the *n*-order polynomial

$$det(A - \lambda I) = 0$$

For linear case:

**Optimal control of Switched Systems** 

Background

Properties of the cost

Particular (important) case: When A is Hurwitz then the Lyapunov equation

A'Z + ZA = -Q

admits a **unique** solution and

$$J(x_0, t_0, t) = x_0' \left( Z - e^{A'(t-t_0)} Z e^{A(t-t_0)} \right) x_0$$
  
Proof:  $J(x_0, t_0, t) = -\int_{t_0}^t x'(\tau) (A'Z + ZA) x(\tau) d\tau = -\left(\int_{t_0}^t \dot{x}' Z x d\tau + x' Z \dot{x} d\tau\right) = -\int_{t_0}^t \frac{dx'Zx}{d\tau} d\tau = -\int_{t_0}^t dx' Z x = x'(t_0) Z x(t_0) - x'(t) Z x(t) = x_0' \left( Z - e^{A'(t-t_0)} Z e^{A(t-t_0)} \right) x_0$ 

NB: In Matlab use commands >>Z=lyap(A',Q) to compute Z and >>eAt=expm(A\*t) to compute  $e^{At}$ If Z does not exist then the cost  $J(x_0, t_0, t)$  must be computed numerically

D. Corona

## Background

Basic concepts of dynamic programming

A formulation of the *principle of optimality* 

$$J_k(x(t)) = \min_{u(t)} \left( J_{k+1}(x(t+T)) + \int_t^{t+T} L(x(\tau), u(\tau)) d\tau \right)$$
  
$$k = 1, \dots, N$$

and  $J_N(x)$  given as a boundary condition

Properties of the cost

$$J(x_0, t_0, t) = \int_{t_0}^t x'(\tau) Q x(\tau) d\tau,$$

1. Quadratically homogeneous and even over x: for all  $\lambda \neq 0$ 

$$J(x_0, t_0, t) = \frac{1}{\lambda^2} J(\lambda x_0, t_0, t)$$

2. There exists a matrix  $M(t - t_0)$  s.t.

$$J(x_0, t_0, t) = x_0' M(t - t_0) x_0$$

Proofs-

Point 1: TRIVIAL - Exercise  
Point 2: 
$$J(x_0, t_0, t) = \int_{t_0}^t x'(\tau)Qx(\tau)d\tau = \int_{t_0}^t x'_0(e^{A(\tau-t_0)})'Qe^{A(\tau-t_0)}x_0d\tau$$
, hence  
 $J(x_0, t_0, t) = x'_0 \int_0^{t-t_0} e^{A'\vartheta}Qe^{A\vartheta}d\vartheta \ x_0 = x'_0M(t-t_0)x_0$ 

D. Corona

Optimal control of Switched Systems



Basic concepts of dynamic programming

Principle of optimality [Bellman, 1957]

"An optimal policy has the property that whatever the initial state and the initial decisions are, the remaining decisions must constitute an optimal policy with regard to the state resulting from the first decision"



3

END

3

Background

Example: Minimize the toll of the path from *Start* to *END* 

2

Start

3

0

2

Basic concepts of dynamic programming

3

2

3

**Optimal control of Switched Systems** 

3

J=2

**J**=1

3

END





## Example: Stage 1





## Background



Example: Stage 5



NOTE: State feedback, if disturbance occur...



Polar coordinates in  $\mathbb{R}^n$ 

Given a vector  $x = [x_1, x_2, ..., x_n] \in \mathbb{R}^n$ , its *polar* representation will be given by a radius  $\rho_n$  and n-1 angles  $\theta_i$ , i = 2, ..., n related as

$$\begin{cases} x_n = \rho_n \sin(\theta_n) \\ x_{n-1} = \rho_{n-1} \sin(\theta_{n-1}) \\ \vdots \\ x_3 = \rho_3 \sin(\theta_3) \\ x_2 = \rho_2 \sin(\theta_2) \\ x_1 = \rho_2 \cos(\theta_2) \end{cases}$$
  
where  $\rho_n = ||x||, \rho_i = \rho_{i+1} \cos(\theta_i)$  for  $i = n - 1, \dots, 2$ .  
Ranges  
$$\rho_n \in [0, +\infty) \\ \theta_2 \in [0, 2\pi) \\ \theta_3, \dots, \theta_n \in [-\frac{\pi}{2}, \frac{\pi}{2}]$$

The unitary semi sphere  $\Sigma_n$ :

Ranges

 $\rho_n = 1, \theta_2 \in [0, 2\pi), \theta_3, \dots, \theta_{n-1} \in [-\frac{\pi}{2}, \frac{\pi}{2}), \text{ and } \theta_n \in [0, \frac{\pi}{2}].$ 

Example: Stage 4 J=8<sup>3</sup> J=5 3 I=23 2 J=52 3 Start END J=3 **∕**J=1 2 J=4D. Corona **Optimal control of Switched Systems** 

Background

Basic concepts of dynamic programming



Polar coordinates in  $\mathbb{R}^n$ 

The properties of homogeneity of the autonomous vector field  $\dot{x} = Ax$  and the quadratic form of the cost function allow to keep the attention on the *unitary semi sphere* 



This geometry advises to reconsider the formulation in polar coordinates



1. Background

2. Switched systems

3. Problem definition

4. Switching table procedure5. Computational complexity

Outline

D. Corona

Switched Systems

- Description
- -A paradox
- Example: buck-boost converter



#### D. Corona



Paradox [Branicky, 1998]





Switched system representation

D. Corona



Switched Systems

Paradox [Branicky, 1998]





Optimal control of Switched Systems

## Switched Systems

Example: the buck-boost converter



D. Corona

Switched Systems

Oriented graph: examples



 $-act: \mathcal{L} \to (\mathbb{R}^n \times \mathbb{R}^n)$  Affine differential equation

 $\dot{x} = A_i x + f_i$ 

Switched systems

$$\begin{split} & -\mathcal{E} \subset \mathcal{L} \times \mathcal{L} \text{ set of edges} \\ & e_{i,j} = (i,j) \text{: arc from } i \text{ to } j, \, i \neq j \\ & -\mathcal{M} : \mathcal{E} \to \mathbb{R}^{n \times n} \text{ Switching reset} \\ & \text{Switch from } i \text{ to } j \text{ occurs } \Rightarrow x^+ = M_{i,j}x^-. \end{split}$$

Set of indexes:  $\mathcal{S}$  associated to each location

Minimum permanence time  $\delta_{\min}(i) \geq 0$  associated to each location *i*.



Hybrid state: couple (x, i) $x \in \mathbb{R}^n$ : continuous state

e  $i \in \mathcal{S}$ : discrete location

Hybrid evolution: (x(t), i(t))

Set of successors:  $succ(i) \subset S$  set of locations reachable from i

 D. Corona
 Optimal control of Switched Systems

 Outline
 D. Corona

Problem definition

1. Background

2. Switched systems

3. Problem definition

4. Switching table procedure

5. Computational complexity

**optimal control problem**  $OP_N(S)$ N: upper bound (**finite**) on the number of switches

S: switched system as above

Formulation:

s.t. 
$$\begin{aligned} \dot{x} &= A_{i(t)}x + f_{i(t)} \\ x(0) &= x_0 \\ i(t) &= i_k \quad \text{for } \tau_k \leq t < \tau_{k+1} \\ i_{k+1} \in succ(i_k) \\ \tau_0 &= 0, \ \tau_{N+1} = +\infty \\ \tau_{k+1} \geq \tau_k + \delta_{\min}(i_k) \\ x(\tau_k^+) &= M_{i_{k-1},i_k}x(\tau_k^-) \end{aligned} \qquad \begin{aligned} k &= 0, \dots, N \\ k &= 1, \dots, N \\ k &= 1, \dots, N \end{aligned}$$

 $Q_i$ : positive semi-definite matrices, weight continuous evolution  $H_{i,j}$ : switching costs positive reals, weight discrete evolution  $x_0$ : initial state of the system

## Problem definition

## **Design** the function i(t)



Two types of decision variables

## $\mathcal{T} \triangleq \{\tau_1, \ldots, \tau_N\}$

## Finite sequence of switching instants

## $\mathcal{I} \triangleq \{i_0, \ldots, i_N\}$ Finite sequence of modes



## Comments

- (i) At least one location i is characterized by a stable dynamics
- (ii) This (these) location(s) i must be *reachable* within N switches

If  $i_0$  is not assigned then (ii) can be relaxed

## Outline

1. Background

D. Corona

- 2. Switched systems
- 3. Problem definition
- 4. Switching table procedure
- 5. Computational complexity

(ii) if the initial location  $i_0$  is imposed, than the number N of available switches is such

D. Corona

Switching table procedure

Definitions

## Assume

- Current state:  $(x, j_k)$
- Missing switches:  $k \ge 0$  out of N

**Schedule** of future *evolution* from  $(x, j_k)$ :

$$\frac{\text{Time intervals}}{\text{Indexes } j(t)} \frac{\varrho_k}{j_k} \frac{\varrho_{k-1}}{j_{k-1}} \frac{\dots}{j_0}$$
Cost of **remaining** evolution:  

$$J = \int_{\tau_{N-k}}^{\infty} x'(t)Q_{j(t)}x(t)dt + \sum_{i=k}^{1} H_{j_i,j_{i-1}}$$

Cost of *remaining evolution*: two parts

(i) event driven cost (SUM)

(ii) time driven cost (INTEGRAL)





Switching table procedure

Objectives

Construct **offline** a partition of the state space

**State feedback** optimal control law: *checks* system state (x, i) and *decide* if a switch from location i should occur

**Switching table**:  $C_k^i$  of location *i* and *k* available switches



## **Recursively**:

**First** construct tables  $C_1^i$  **Then** construct tables  $C_k^i$  using  $C_{k-1}^i$ , k = 1, ..., N



Time cost: recursive expression

At k available switches

$$\begin{split} \tilde{T}_k(x, j_k, \dots, j_0, \varrho_k, \dots, \varrho_0) &= x' \bar{Q}_{j_k}(\varrho_k) x + x' \bar{A}'_{j_k}(\varrho_k) M'_{j_k, j} \bar{Q}_j(\delta_{\min}(j)) M_{j_k, j} \bar{A}_{j_k}(\varrho_k) x \\ &+ \tilde{T}_{k-1}(z, j_{k-1}, \dots, j_0, \varrho_{k-1}, \dots, \varrho_0) \end{split}$$

At k = 0 available switches (initial stage of recursion)

$$\tilde{T}_0(x, j_0, \varrho_0) = x' \bar{Q}_{j_0}(\varrho_0) x = x' \bar{Q}_{j_0}(+\infty) x$$

with  $\bar{Q}(\varrho) = \int_0^{\varrho} x'(t)Qx(t)dt$  and  $\bar{A}(\varrho) = e^{A\varrho}$ 

**Optimal control of Switched Systems** 

Switching table procedure

Theorem

Minimize the function residual cost  $T_k(x, j_k, \ldots, j_0, \varrho_k, \ldots, \varrho_0)$ 

 $T_k^*(x, j_k) = \min_{(j_k, \dots, j_k) \atop (q_k, \dots, q_l)} T_k(x, j_k, \dots, j_0, \varrho_k, \dots, \varrho_0)$ 

constrained to

D. Corona

 $\begin{array}{l}
\varrho_0 = +\infty \\
\varrho_h \ge \delta_{\min}(j_h) \\
\varrho_k \ge 0 \\
j_k = i \\
j_h \in succ(j_{h+1}) \cup \{j_h\} \\
h = 0, \dots, k - 1.
\end{array}$ 

## Mixed integer quadratic programming (MIQP) problem

Integer variables  $\{j_{k-1}, \ldots, j_0\} \in 2^{\mathcal{S}}$ Continuous variables  $\{\varrho_k, \ldots, \varrho_1\}$ 

Switching table procedure

Theorem

## Theorem: Optimal remaining cost

k switches available, current hybrid state  $x, j_k$ .

1. If k = 0 then the remaining optimal cost starting from x is:

$$T_0^*(x, j_0, \varrho_0) = T_0(x, j_0, \varrho_0)$$

2. If  $k \in \{1, ..., N\}$  then:

(i) Remaining optimal cost starting from x is:

$$T_k^*(x, j_k) = \min_{j_{k-1} \in succ(j_k) \cup (j_k)_{\theta_k} \ge 0} F(x, j_k, j_{k-1}, \varrho_k) + T_{k-1}^*(z(x, j_k, j_{k-1}, \varrho_k), j_{k-1})$$

(ii) Next optimal dynamics

$$j_{k-1}^{*}(x, j_{k}) = \arg \min_{j_{k-1} \in \max_{\substack{\varphi \in \mathcal{O} \\ \varphi \in \mathcal{O}}} |j_{k}| \le \ell} F(x, j_{k}, j_{k-1}, \varrho_{k}) + T_{k-1}^{*}(z(x, j_{k}, j_{k-1}, \varrho_{k}), j_{k-1})$$

(iii) Switching time  $\varrho_k^*(x, j_k)$ 

$$\varrho_k^*(x, j_k) = \arg\min_{j_{k-1} \in m(j_k) \cup \{j_k\} \atop q_k \geq 0} F(x, j_k, j_{k-1}, \varrho_k) + T_{k-1}^*(z(x, j_k, j_{k-1}, \varrho_k), j_{k-1})$$

**Event cost**: recursive expression

At k available switches

$$E_k(j_k,\ldots,j_0) = H_{j_k,j_{k-1}} + E_{k-1}(j_{k-1},\ldots,j_0)$$

Definitions

Switching table procedure

At k = 0 available switches (initial stage of recursion)

$$E_0(j_0) = 0$$

Total residual cost

$$T_k(x, j_k, \dots, j_0, \varrho_k, \dots, \varrho_0) = \tilde{T}_k(x, j_k, \dots, j_0, \varrho_k, \dots, \varrho_0) + E_k(j_k, \dots, j_0)$$

D. Corona

Switching table procedure

Theorem

Solution 1: "brute force" method

Advantages: appropriate numerical tools for MIQP (e.g., CPLEX)

**Disadvantages**: mixed integer (!!)

Solution 2: heuristic methods (Genetic algorithms, Simulated annealing,...)

**Disadvantages**: sub-optimal solutions

Advantages: velocity

D. Corona

Switching table procedure

Theorem

Proof

**Case 1**: k = 0. The systems is forced to evolve with dynamics  $A_{j_k}$  to infinity hence the remaining optimal is given

**Case 2**: k > 0.

 $T_k^*(x, j_k) = \min_{(j_{k-1}, \dots, j_k) \atop \{\varrho_k, \dots, \varrho_1\}} T_k(x, j_k, \dots, j_0, \varrho_k, \dots, \varrho_0)$ 

but

 $T_k(x, j_k, \dots, j_0, \varrho_k, \dots, \varrho_0) = F(x, j_k, j_{k-1}, \varrho_k) + T_{k-1}(x, j_{k-1}, \dots, j_0, \varrho_{k-1}, \dots, \varrho_0)$ and by the principle of optimality (choose optimal  $T_{k-1}^*$ )

$$T_k^*(x, j_k) = \min_{(j_{k-1} \in mind(j_k) \cup \{j_k\}) \atop (q_k \ge 0)} F(x, j_k, j_{k-1}, \varrho_k) + T_{k-1}^*(z(x, j_k, j_{k-1}, \varrho_k), j_{k-1})$$

Only one discrete and one continuous variable

 $(j_{k-1},\varrho_k)$ 



Switching table procedure

Definition of the switching table

 $\varrho_k^*(x,i) \ge 0$ : time spent in the current location *i* 

 $\varrho_k^*(x,i) = 0 \Rightarrow$  Switch immediately to location  $j_{k-1}^*$  $\varrho_k^*(x,i) > 0 \Rightarrow$  Remain in the current location i

 $\mathcal{C}_k^i$  (switching table): partition of  $\mathbb{R}^n$ 

(i)  $\mathcal{R}_j$ : it is optimal to switch immediately to  $j^*$ 

(ii)  $\mathcal{R}_i$ : it is optimal to **remain** in *i* 



If switching costs are null then the regions are  $conic \rightarrow$  Unitary semi sphere



$$V = RI + k_T \dot{\theta}_M, \ J_M \ddot{\theta}_M = k_T I - \beta_M \dot{\theta}_M - T_M$$
$$\dot{\theta}_M = \rho(j) \dot{\theta}_L, \ T_L = \rho(j) T_M, \ J_L \ddot{\theta}_L = -\beta_L \dot{\theta}_L + T_L$$

Linear differential equation

$$\left[J_L + \rho^2(j)J_M\right]\ddot{\theta}_L + \left[\beta_L + \rho^2(j)\left(\frac{k_T^2}{R} + \beta_M\right)\right]\dot{\theta}_L = \rho(j)\frac{k_T}{R}V.$$

V: PI controller of two levels

$$V = -k_1(h)\theta_L - k_2(h)\dot{\theta}_L, \quad h = 1, 2$$

Switching table procedure

Application: Servomechanism system

## Numerical values

D. Corona

| Symbol    | Value (IS) | Physical meaning                 |
|-----------|------------|----------------------------------|
| $J_M$     | 1          | motor inertia                    |
| $\beta_M$ | 0.2        | motor friction coefficient       |
| R         | 50         | resistance of armature           |
| $k_T$     | 15         | motor constant                   |
| $J_L$     | 50         | nominal load inertia             |
| $\beta_L$ | 10         | load friction coefficient        |
| ρ         | 1,2,3      | gear ratios                      |
| $k_1(1)$  | 3.2        | proportional action (smooth)     |
| $k_1(2)$  | 31.6       | proportional action (aggressive) |
| $k_2(1)$  | 3.5        | integral action (smooth)         |
| $k_2(2)$  | 32.1       | integral action (aggressive)     |
| -         |            |                                  |

$$A_{1} = \begin{bmatrix} 0 & 1 \\ -0.019 & -0.31 \end{bmatrix} A_{3} = \begin{bmatrix} 0 & 1 \\ -0.036 & -0.57 \end{bmatrix} A_{5} = \begin{bmatrix} 0 & 1 \\ -0.049 & -0.94 \end{bmatrix}$$
$$A_{2} = \begin{bmatrix} 0 & 1 \\ -0.186 & -0.47 \end{bmatrix} A_{4} = \begin{bmatrix} 0 & 1 \\ -0.351 & -0.89 \end{bmatrix} A_{6} = \begin{bmatrix} 0 & 1 \\ -0.482 & -1.38 \end{bmatrix}$$

D. Corona

#### **Optimal control of Switched Systems**

Switching table procedure

Application: Servomechanism system

## Step 1:

Evaluation offline of  $(N = 5 \times S = 6) = 30$  switching tables



Note: Tables interested by the evolution from the given initial state

Switching table procedure

Application: Servomechanism system

State space variables:

 $x \triangleq [\theta_L, \dot{\theta}_L]'$ 

Autonomous switched linear system representation

$$\dot{x} = A(h,j)x = \begin{bmatrix} 0 & 1\\ a_{21}(h,j) & a_{22}(h,j) \end{bmatrix} x$$

 $a_{21}(h, j), a_{22}(h, j)$ : gear/voltage configuration

## Oriented graph



#### D. Corona

Optimal control of Switched Systems

## Switching table procedure

Application: Servomechanism system

#### Numerical simulations

Additional values:

- Number of switches N = 5
- $\bullet$  No switching costs
- Minimum permanence time  $\delta_{min} = 0.2 \ s$
- Initial state:  $x_0 = [-1.4, 1.5]'$
- Initial location  $i_0 = 1$
- Weight matrices

$$Q_1 = Q_3 = Q_5 = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \quad Q_2 = Q_4 = Q_6 = \begin{bmatrix} 3 & 0 \\ 0 & 6 \end{bmatrix}$$

Step 2:

**Optimal control of Switched Systems** 

Switching table procedure

Application: Servomechanism system

#### **Relevant observation**

D. Corona

The performance of the system is related to the number of available switches.

From the same initial state, the performance index J varies when  $k = 0, \ldots, 6$  switches are available

| Available switches | Index Value |
|--------------------|-------------|
| 0                  | 108.62      |
| 1                  | 20.78       |
| 2                  | 6.69        |
| 3                  | 4.84        |
| 4                  | 4.84        |
| 5                  | 4.75        |
| 6                  | 4.69        |

Hybrid evolution that minimizes the LQ performance index **Circle**: indicates the initial state Squares: indicate the values of the state at the switching instants

θ,

0.5

-0.5

Switching table procedure

Perform an evolution from the given initial state by using the 30 switching tables

-1

-0.5

Application: Servomechanism system

D. Corona **Optimal control of Switched Systems** D. Corona Outline 1. Background 2. Switched systems 3. Problem definition where 4. Switching table procedure 5. Computational complexity

0 θ 0.5

**Optimal control of Switched Systems** 

Computational complexity

Computational complexity of the procedure:

$$O(Ns(s-1)r^{n-1}N_t)$$

- N is the number of available switches
- s is the cardinality of the set S
- r is the number of samples along each direction of  $\mathbb{R}^n$
- $N_t$  is the number of time samples used in the minimization over time

The complexity of the algorithm is **polynomial** over the number of switches and the number of modes

It is **exponential** over the space discretization (limits high dimensional applications)

Some conclusions

- $\bullet$  STP for finite number of switches
- $\bullet$  Feedback solution
- $\bullet$  Offline
- Global optimum
- State space discretization (accuracy vs. time consumption)
- $\bullet$  Studied extensions
- 1. Switching constraints on the state space
- 2. Infinite number of switches
- 3. Design of a stabilizing switching signal

# Thank Jou ATTORNE