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3. Examples with Zeno behavior
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1. Hybrid automata

“ System ”

• Example:
ẋ(t) = f (x(t),u(t))

t: time
x: state
u: input

• More formal definition:

x(σ) = φ(τ,σ ,x(τ),u)

τ: initial time
σ : current time
u: input function (over [τ,σ ])
φ : transition map
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Classification

• Continuous-state / discrete-state

• Continuous-time / discrete-time

• Time-driven / event-driven

– time-driven → state changes as time progresses,
i.e., continuously (for CT), or at every tick of clock (for DT)

– event-driven → state changes due to occurrence of event
event:
∗ start or end of an activity
∗ asynchronous (occurrence times not necessarily equidistant)

Combinations → “hybrid”
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Models for time-driven systems

• Continuous-time time-driven systems:

ẋ(t) = f (x(t),u(t))
y(t) = g(x(t),u(t))

• Discrete-time (or sampled) time-driven systems:

x(k +1) = f (x(k),u(k))
y(k) = g(x(k),u(k))
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Models for event-driven systems

Automaton
Automaton is defined by triple Σ = (Q,U ,φ) with

• Q: finite or countable set of discrete states

• U : finite or countable set of discrete inputs (“input alphabet”)

• φ : Q×U → P(Q): partial transition function.

where P(Q) is power set of Q (set of all subsets)

Finite automaton: Q and U finite
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Evolution of automaton

• Given state q ∈ Q and discrete input symbol u ∈ U ,
transition function φ defines collection of next possible states:
φ(q,u) ⊆ Q

• If each set of next states has 0 or 1 element:
→ “deterministic” automaton

• If some set of next states has more than 1 element:
→ “non-deterministic” automaton
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Deterministic automaton

qidleqbusy

qdown

α

β

γ δ

φ(qbusy,β ) = {qidle} φ(qidle,α) = {qbusy}

φ(qbusy,γ) = {qdown} φ(qdown,δ ) = {qidle}
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Non-deterministic automaton

q1 q2

α

α

β

φ(q1,α) = {q1,q2} φ(q2,β ) = {q1}

→ unmodeled dynamics
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Hybrid system

• System can be in one of several modes

• In each mode: behavior described by system of
difference or differential equations

• Mode switches due to occurrence of “events”

ẋ1 = f1(x1,u)

ẋ2 = f2(x2,u)

ẋ3 = f3(x3,u)
y = g1(x1,u)

y = g2(x2,u)

y = g3(x3,u)
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Hybrid system

• At switching time instant:
→ possible state reset or state dimension change

• Mode transitions may be caused by

– external control signal
– internal control signal
– dynamics of system itself (crossing of boundary in state space)
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Models for hybrid systems

•Z timed or hybrid Petri nets

• differential automata

•Z hybrid automata

• Brockett’s model

•Z mixed logical dynamic models

• real-time temporal logics

• timed communicating sequential processes

• switched bond graphs

• predicate calculus

•Z piecewise-affine models

• . . .
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Analysis techniques:

• formal verification

• computer simulation

• analytic techniques (for special subclasses)

• . . .

⇒ no general modeling & analysis framework

modeling power ↔ decision power

+ computational complexity (NP-hard, undecidable)

⇒ special subclasses (Chapter 2)
hierarchical / modular approach
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• Undecidable problems
→ no algorithm at all can be given for solving the problem

in general, i.e., no finite termination can be guaranteed

• NP-complete and NP-hard problems

– decision problem: solution is either “yes” or “no”
e.g., traveling salesman decision problem:

Given a network of cities, intercity distances, and a
number B, does there exist a tour with length 6 B?

– search problem
e.g., traveling salesman problem:

Given a network of cities, intercity distances, what
is the shortest tour?
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P and NP-complete decision problems

• time complexity function T (n): largest amount of time needed to
solve problem instance of size n (worst case!)

• polynomial time algorithm:

T (n) 6 |p(n)| for some polynomial p

→ class P: solvable by polynomial time algorithm

• nondeterministic computer:

– guessing stage (tour)
– checking stage (compute length of tour + compare it with B)

→ class NP: “nondeterministically polynomial ”
i.e., time complexity of checking stage is polynomial

hs intro.14

P and NP-complete decision problems

• Each problem in NP can be solved in exponential time: T (n) 6 2nk

• NP-complete problems: “hardest” class in NP:

– any NP-complete problem solvable in polynomial time
⇒ every problem in NP solvable in polynomial time

– any problem in NP intractable
⇒ NP-complete problems also intractable

NP

PNP-complete

if P6=NP
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NP-hard problems

• decision problem is NP-complete ⇒ search problem is NP-hard

• NP-hard problems: at least as hard as NP-complete problems

– NP-complete (decision problem)
→ solvable in polynomial time if and only if P = NP

– NP-hard (search problem)
→ cannot be solved in polynomial time unless P = NP
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Examples of NP-hard and undecidable problems

• Consider simple hybrid system:

x(k +1) =

{

A1x(k) if cTx(k) > 0

A2x(k) if cTx(k) < 0

→ deciding whether system is stable or not is NP-hard

• Given two Petri nets, do they have the same reachability set?
→ undecidable
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Hybrid automaton
Hybrid automaton H is collection H = (Q,X , f , Init, Inv,E,G,R) where

• Q = {q1, . . . ,qN} is finite set of discrete states or modes

• X = R
n is set of continuous states

• f : Q×X → X is vector field

• Init ⊆ Q×X is set of initial states

• Inv : Q → P(X) describes invariants

• E ⊆ Q×Q is set of edges or transitions

• G : E → P(X) is guard condition

• R : E → P(X ×X) is reset map
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Hybrid automaton H = (Q,X , f , Init, Inv,E,G,R)

• Hybrid state: (q,x)

• Evolution of continuous state in mode q: ẋ = f (q,x)

• Invariant Inv: describes conditions that continuous state has to
satisfy in given mode

• Guard G: specifies subset of state space where certain transition
is enabled

• Reset map R: specifies how new continuous states are related to
previous continuous states

hs intro.19

(q0,x0) ∈ Init

q0

ẋ = f (q0,x)
x ∈ Inv(q0)

q1

ẋ = f (q1,x)
x ∈ Inv(q1)

q2

ẋ = f (q2,x)
x ∈ Inv(q2)

G(q0,q1)

G(q1,q0)

G(q1,q2)

G(q2,q1)

G(q0,q2)

G(q2,q0)

R(q0,q1)

R(q1,q0)

R(q1,q2)

R(q2,q1)

R(q0,q2)

R(q2,q0)
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Evolution of hybrid automaton

• Initial hybrid state (q0,x0) ∈ Init

• Continuous state x evolves according to

ẋ = f (q0,x) with x(0) = x0

discrete state q remains constant: q(t) = q0

• Continuous evolution can go on as long as x ∈ Inv(q0)

• If at some point state x reaches guard G(q0,q1), then

– transition q0 → q1 is enabled
– discrete state may change to q1, continuous state then jumps

from current value x− to new value x+ with (x−,x+) ∈ R(q0,q1)

• Next, continuous evolution resumes and whole process is
repeated
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2. Examples of hybrid systems

1. Hysteresis

2. Manual transmission

3. Water-level monitor

4. Supervisor

5. Two-carts system

6. Boost converter
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2.1 Hysteresis
Control system with hysteresis element in the feedback loop :

ẋ = H(x)+u

H

∆
−∆ x

1

−1
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2.1 Hysteresis (continued)

ẋ = H(x)+u

H

∆
−∆ x

1

−1

Guard: x > ∆

Guard: x 6 −∆

H = 1
ẋ = 1+u

x ∈ {x | x 6 ∆}

H = −1
ẋ = −1+u

x ∈ {x | x > −∆}
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2.2 Manual transmission
Simple model of manual transmission

ẋ1 = x2

ẋ2 =
−ax2+u

1+ v

with v: gear shift position v ∈ {1,2,3,4}
u: acceleration
a: parameter

→ hybrid system with four modes, 2-dimensional continuous state,
controlled transitions (switchings), and no resets
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2.3 Water-level monitor

• variables:

– y(t): water level, continuous
– x(t): time elapsed since last signal was sent by monitor, continuous
– P(t): status of pump, ∈ {on,off}

– S(t): nature of signal last sent by monitor, ∈ {on,off}

• dynamics of system:

– water level rises 1 unit per second when pump is on and
falls 2 units per second when pump is off

– when water level rises to 10 units, monitor sends switch-off
signal; after delay of 2 seconds pump turns off

– when water level falls to 5 units, monitor sends switch-on sig-
nal; after delay of 2 seconds pump switches on

hs intro.26

x > 2

x > 2

x := 0

x := 0

y 6 5

y > 10

mode: on,on

ẋ = 1
ẏ = 1

y 6 10

mode: on,off

ẋ = 1
ẏ = 1

x 6 2

mode: off,off

ẋ = 1
ẏ = −2

y > 5

mode: off,on

ẋ = 1
ẏ = −2

x 6 2

y: water level
x: time since

last signal
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2.4 Two-carts system

• Two carts connected by spring

• Left cart attached to wall by spring;
motion constrained by completely inelastic stop
Stop is placed at equilibrium position of left cart

• Masses of carts and spring constants = 1

x1 x2
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2.4 Two-carts system (continued)
x1 x2

• x1, x2: deviations of left and right cart from equilibrium position

• x3,x4: velocities of left and right cart

• z: reaction force exerted by stop

• Evolution: ẋ1(t) = x3(t)
ẋ2(t) = x4(t)
ẋ3(t) = −2x1(t)+ x2(t)+ z(t)
ẋ4(t) = x1(t)− x2(t)
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2.4 Two-carts system (continued)
x1 x2

To model stop:

• define w(t) = x1(t)

• w(t) > 0 (since w is position of left cart w.r.t. stop)

• force exerted by stop can act only in positive direction → z(t) > 0

• if left cart not at stop (w(t) > 0), reaction force vanishes: z(t) = 0

• if z(t) > 0 then cart must necessarily be at the stop: w(t) = 0

0 6 w(t)⊥z(t) > 0
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2.4 Two-carts system (continued)
System can be represented by two modes (stop active or not)

z = 0 unconstrained constrained w = 0

ẋ1(t) = x3(t) ẋ1(t) = x3(t)

ẋ2(t) = x4(t) ẋ2(t) = x4(t)

ẋ3(t) = −2x1(t)+ x2(t) ẋ3(t) = −2x1(t)+ x2(t)+ z(t)

ẋ4(t) = x1(t)− x2(t) ẋ4(t) = x1(t)− x2(t)

z(t) = 0 w(t) = x1(t) = 0

ODE (in state) DAE (as z is not explicit)

System stays in mode as long as

unconstrained constrained
z(t) = 0, w(t) > 0 w(t) = 0, z(t) > 0
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Mode transitions for two-carts system
x1 x2

• Unconstrained → constrained
Suppose x(τ) = (0+,−1,−1,0)T → w(t) > 0 tends to be violated
Left cart hits stop and stays there. Velocity of left cart is reduced
to zero instantaneously (purely inelastic collision)

• Constrained → unconstrained
Suppose x(τ) = (0,0,0,1)T → z(t) > 0 tends to be violated
Right cart is moving to right of its equilibrium position, so spring
between carts pulls left cart away from stop

hs intro.32



x1 x2

• Unconstrained → unconstrained with re-initialization accord-
ing to constrained mode
Consider x(τ) = (0+,1,−1,0)T → w(t) > 0 tends to be violated
At impact, velocity of left cart is reduced to 0, i.e., state reset to
(0,1,0,0)T

Right cart is at right of its equilibrium position, pulls left cart away
from stop → smooth continuation in unconstrained mode

So: After the reset, no smooth continuation is possible in con-
strained mode → second mode change, back to unconstrained
mode
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2.5 Supervisor model

interface

controller
automaton

continuous-
time plant

symbolsymbol
i ∈ I o ∈ O

measurement
y ∈ Y

control
u ∈U

AD DA

Controller is input-output automaton: q# = ν(q, i)
o = η(q, i)
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2.6 Boost converter

+

++

+
+

−

−−

−

−

E R

L D

C

S = 0

S = 1
6

-−vD

iD

• presence of switch and diode introduces hybrid dynamics

• 4 modes:
(vS = 0,vD = 0), (vS = 0, iD = 0), (iS = 0,vD = 0), (iS = 0, iD = 0)
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transition guard reset
mode 1→mode 2 S = 1 and q > 0
mode 1→mode 3 φ = 0 and q > CE
mode 199Kmode 3 φ < 0 φ+ = 0
mode 1→mode 4 S = 1 and q 6 0 q+ = 0
mode 2→mode 1 S = 0 and φ > 0
mode 2→mode 3 S = 0 and φ 6 0 φ+ = 0
mode 2→mode 4 q = 0
mode 299Kmode 4 q < 0 q+ = 0
mode 3→mode 1 q = CE
mode 3→mode 2 S = 1 and q > 0
mode 3→mode 4 S = 1 and q 6 0 q+ = 0
mode 4→mode 1 S = 0 and φ > 0
mode 4→mode 3 S = 0 and φ 6 0 φ+ = 0
mode 4→mode 4 q < 0 q+ = 0
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mode 1

S = 0 and vD = 0

q̇ =
Φ
L
−

1
RC

q

Φ̇ = −
1
C

q+E

Φ > 0

mode 2

S = 1 and iD = 0

q̇ = −
1

RC
q

Φ̇ = E

q > 0

mode 3

S = 0 and iD = 0

q̇ = −
1

RC
q

Φ̇ = 0

Φ = 0,q > EC

mode 4

S = 1 and vD = 0

q̇ = 0

Φ̇ = E

q = 0
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2.6 Boost converter (continued)
Hybrid automaton model is very involved
Alternatively, one may use the more compact model

q̇ = −
1

RC
q+ iD

φ̇ = vS +E

−vD =
1
C

q+ vS

iS = 1
Lφ − iD

0 6 iD ⊥ −vD > 0
vS ⊥ iS

→ also complementarity relation (as in two-carts system)

hs intro.38

3. Examples with Zeno behavior

• Zeno behavior : infinitely many mode switches in finite time
interval

• Examples

1. bouncing ball
2. reversed Filippov’s system
3. two-tank system
4. three-balls example
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3.1 Bouncing ball

• Dynamics: ẍ = −g subject to x > 0 (x(t): height)

• Newton’s restitution rule (0 < e < 1):

ẋ(τ+) = −eẋ(τ−) when x(τ−) = 0, ẋ(τ−) < 0

• Assuming x(0) = 0, ẋ(0) > 0, event times are related through

τi+1 = τi +
2eiẋ(0)

g

• Sequence has finite limit τ∗ = 2ẋ(0)
g−ge < ∞ (geometric series)

• Physical interpretation: ball is at rest within finite time span, but
after infinitely many bounces → Zeno behavior

In this case: infinite number of state re-initializations, set of event
times contains right-accumulation point
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3.1 Bouncing ball (continued)

0 5 10
0

2

4

6

8

10

x

t
hs intro.41

3.2 Reversed Filippov’s example

• Dynamics:

ẋ1 = −sgn(x1)+2sgn(x2)

ẋ2 = −2sgn(x1)−sgn(x2),

with










sgn(x) = 1 if x > 0

sgn(x) = −1 if x < 0

sgn(x) ∈ [−1,1] when x = 0

• Solutions system are spiraling towards origin, which is an equi-
librium
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3.2 Reversed Filippov’s example (continued)

0 2 4 6

−2

0

2

4

x1

x 2

• Since
d

dt
(|x1(t)|+ |x2(t)|) =−2, solutions reach origin in finite time

• Solutions go through infinite number of mode transitions (relay
switches) → Zeno behavior
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3.3 Two-tank system

x1
x2r1
r2

v1 v2

w

• Two tanks (xi: volume of water in tank)

• Tanks are leaking at constant rate vi > 0

• Water is added at constant rate w through hose, which at any
point in time is dedicated to either one tank or the other

• Objective: keep water volumes above r1 and r2

• Controller that switches inflow to tank 1 whenever x1 6 r1 and to
tank 2 whenever x2 6 r2 hs intro.44



Description of two-tank system as hybrid automaton

x1
x2r1 r2

v1 v2

w

• Two modes: filling tank 1 (mode q1) or tank 2 (mode q2)

• Evolution of continuous state:
{

ẋ1 = w− v1

ẋ2 = −v2
in mode q1

{

ẋ1 = −v1

ẋ2 = w− v2
in mode q2

• Init = {q1,q2}×{(x1,x2) | x1 > r1 and x2 > r2} hs intro.45

Description of two-tank system as hybrid automaton (cont.)

x1
x2r1 r2

v1 v2

w

• Invariants: Inv(q1) = {x ∈ R
2 | x2 > r2}

Inv(q2) = {x ∈ R
2 | x1 > r1}

• Guards: G(q1,q2) = {x ∈ R
2 | x2 6 r2}

G(q2,q1) = {x ∈ R
2 | x1 6 r1}

• No resets:

R(q1,q2) = R(q2,q1) = {(x−,x+) | x−,x+ ∈ R
2 and x− = x+}
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Description of two-tank system as hybrid automaton (cont.)

q1

ẋ1 = w− v1

ẋ2 = −v2

x2 > r2

q2

ẋ1 = −v1

ẋ2 = w− v2

x1 > r1

x2 6 r2

x1 6 r1

x := x

x := x

x1 > r1 and x2 > r2x1 > r1 and x2 > r2
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Two-tank system and Zeno behavior

x1
x2r1 r2

v1 v2

w

• Assume total outflow v1+ v2 > w

• Control objective cannot be met and tanks will empty in finite time

• Infinitely many switchings in finite time → Zeno behavior
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3.4 Three-balls example

ball 1 ball 2 ball 3

v1(0) = 1 v2(0) = 0 v3(0) = 0

• System consisting of three balls

• Inelastic impacts modeled by successions of simple impacts

• Suppose unit masses, touching at time 0, and
v1(0) = 1, v2(0) = v3(0) = 0

• We model all impacts separately →

– first, inelastic collision between balls 1 and 2, resulting in
v1(0+) = v2(0+) = 0.5, v3(0+) = 0 hs intro.49

3.4 Three-balls example (continued)

- next, ball 2 hits ball 3, resulting in ball 1 ball 2 ball 3

v1(0) = 1 v2(0) = 0 v3(0) = 0

v1(0++) = 1
2, v2(0++) = v3(0++) = 1

4

- next, ball 1 hits ball 2 again, etc.
→ sequence of resets: v1 : 1 1

2
1
2

3
8

3
8

11
32 . . .

v2 : 0 1
2

1
4

3
8

5
16

11
32. . .

v3 : 0 0 1
4

1
4

5
16

5
16. . .

converges to (1
3,

1
3,

1
3)

T

• Afterwards, smooth continuation is possible with constant and
equal velocity for all balls

• Infinite number of events (resets) at one time instant, sometimes
called live-lock → another special case of Zeno behavior

hs intro.50


