Modeling & Control of Hybrid Systems Chapter 1 — Introduction

Overview

- 1. Hybrid automata
- 2. Examples of hybrid systems
- 3. Examples with Zeno behavior

1. Hybrid automata

"System"

• Example:

$$\dot{x}(t) = f(x(t), u(t))$$

t: time

x: state

u: input

More formal definition:

$$x(\sigma) = \phi(\tau, \sigma, x(\tau), u)$$

 τ : initial time

 σ : current time

u: input function (over $[\tau, \sigma]$)

 ϕ : transition map

Classification

- Continuous-state / discrete-state
- Continuous-time / discrete-time
- Time-driven / event-driven
 - time-driven → state changes as time progresses,
 i.e., continuously (for CT), or at every tick of clock (for DT)
 - event-driven → state changes due to occurrence of event event:
 - * start or end of an activity
 - * asynchronous (occurrence times not necessarily equidistant)

Combinations → "hybrid"

Models for time-driven systems

• Continuous-time time-driven systems:

$$\dot{x}(t) = f(x(t), u(t))$$
$$y(t) = g(x(t), u(t))$$

• Discrete-time (or sampled) time-driven systems:

$$x(k+1) = f(x(k), u(k))$$
$$y(k) = g(x(k), u(k))$$

Models for event-driven systems

Automaton

Automaton is defined by triple $\Sigma = (\mathcal{Q}, \mathcal{U}, \phi)$ with

- 2: finite or countable set of discrete states
- • W: finite or countable set of discrete inputs ("input alphabet")
- $\phi: \mathcal{Q} \times \mathcal{U} \to P(\mathcal{Q})$: partial *transition function*.

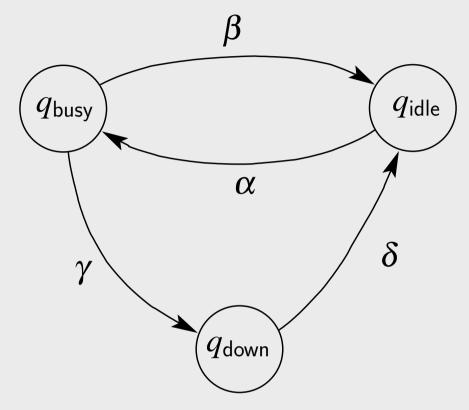
where $P(\mathcal{Q})$ is power set of \mathcal{Q} (set of all subsets)

Finite automaton: \mathcal{Q} and \mathcal{U} finite

Evolution of automaton

- Given state $q \in \mathcal{Q}$ and discrete input symbol $u \in \mathcal{U}$, transition function ϕ defines collection of next possible states: $\phi(q,u) \subseteq \mathcal{Q}$
- If each set of next states has 0 or 1 element:
 - → "deterministic" automaton
- If some set of next states has more than 1 element:
 - → "non-deterministic" automaton

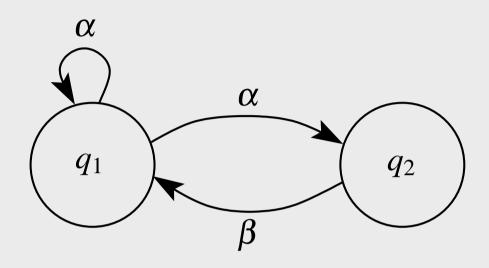
Deterministic automaton



$$egin{aligned} \phi(q_{\mathsf{busy}},oldsymbol{eta}) &= \{q_{\mathsf{idle}}\} \ \phi(q_{\mathsf{busy}},oldsymbol{\gamma}) &= \{q_{\mathsf{down}}\} \end{aligned}$$

$$egin{aligned} \phi(q_{\mathsf{idle}}, \pmb{lpha}) &= \{q_{\mathsf{busy}}\} \ \phi(q_{\mathsf{down}}, \pmb{\delta}) &= \{q_{\mathsf{idle}}\} \end{aligned}$$

Non-deterministic automaton

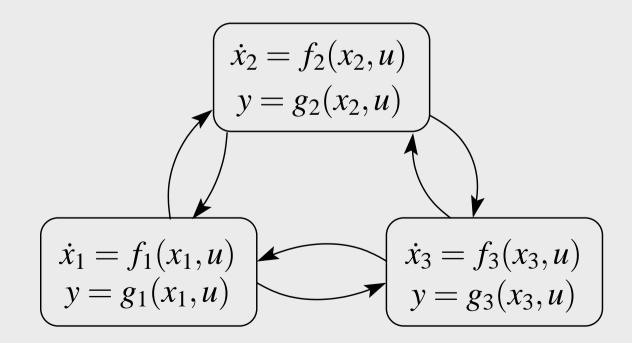


$$\phi(q_1, \alpha) = \{q_1, q_2\}$$
 $\phi(q_2, \beta) = \{q_1\}$

 \rightarrow unmodeled dynamics

Hybrid system

- System can be in one of several modes
- In each mode: behavior described by system of difference or differential equations
- Mode switches due to occurrence of "events"



Hybrid system

- At switching time instant:
 - → possible state reset or state dimension change
- Mode transitions may be caused by
 - external control signal
 - internal control signal
 - dynamics of system itself (crossing of boundary in state space)

Models for hybrid systems

- timed or hybrid Petri nets
 - differential automata
- hybrid automata
 - Brockett's model
- mixed logical dynamic models
 - real-time temporal logics
 - timed communicating sequential processes
 - switched bond graphs
 - predicate calculus
- piecewise-affine models

• . . .

Analysis techniques:

- formal verification
- computer simulation
- analytic techniques (for special subclasses)
- . . .
- ⇒ no general modeling & analysis framework

modeling power ↔ decision power

- + computational complexity (NP-hard, undecidable)
 - ⇒ special subclasses (Chapter 2) hierarchical / modular approach

Undecidable problems

→ no algorithm at all can be given for solving the problem in general, i.e., no finite termination can be guaranteed

NP-complete and NP-hard problems

- decision problem: solution is either "yes" or "no"
 - e.g., traveling salesman decision problem: Given a network of cities, intercity distances, and a number B, does there exist a tour with length $\leq B$?
- search problem
 - e.g., traveling salesman problem:

Given a network of cities, intercity distances, what is the shortest tour?

P and NP-complete decision problems

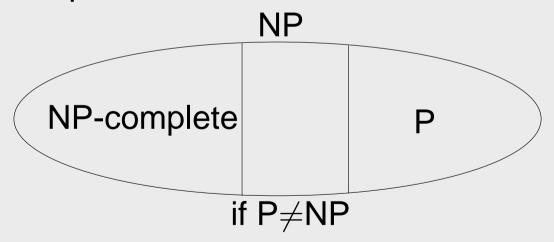
- time complexity function T(n): largest amount of time needed to solve problem instance of size n (worst case!)
- polynomial time algorithm:

$$T(n) \leq |p(n)|$$
 for some polynomial p

- → class P: solvable by polynomial time algorithm
- nondeterministic computer:
 - guessing stage (tour)
 - checking stage (compute length of tour + compare it with B)
 - → class NP: "nondeterministically polynomial" i.e., time complexity of checking stage is polynomial

P and NP-complete decision problems

- Each problem in NP can be solved in exponential time: $T(n) \leq 2^{n^k}$
- NP-complete problems: "hardest" class in NP:
 - any NP-complete problem solvable in polynomial time
 - ⇒ every problem in NP solvable in polynomial time
 - any problem in NP intractable
 - ⇒ NP-complete problems also intractable



NP-hard problems

- decision problem is NP-complete ⇒ search problem is NP-hard
- NP-hard problems: at least as hard as NP-complete problems
 - NP-complete (decision problem)
 - \rightarrow solvable in polynomial time if and only if P = NP
 - NP-hard (search problem)
 - → cannot be solved in polynomial time unless P = NP

Examples of NP-hard and undecidable problems

Consider simple hybrid system:

$$x(k+1) = \begin{cases} A_1 x(k) & \text{if } c^{\mathsf{T}} x(k) \geqslant 0\\ A_2 x(k) & \text{if } c^{\mathsf{T}} x(k) < 0 \end{cases}$$

- → deciding whether system is stable or not is NP-hard
- Given two Petri nets, do they have the same reachability set?
 - → undecidable

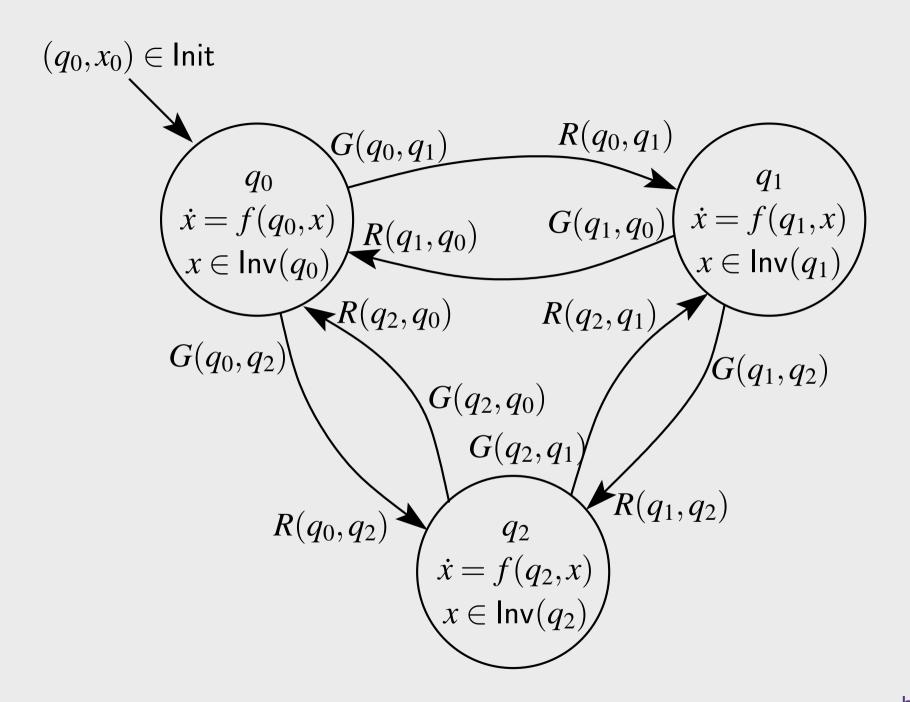
Hybrid automaton

Hybrid automaton H is collection H = (Q, X, f, Init, Inv, E, G, R) where

- $Q = \{q_1, \dots, q_N\}$ is finite set of discrete states or *modes*
- $X = \mathbb{R}^n$ is set of continuous states
- $f: Q \times X \rightarrow X$ is vector field
- Init $\subseteq Q \times X$ is set of initial states
- Inv : $Q \rightarrow P(X)$ describes *invariants*
- $E \subseteq Q \times Q$ is set of edges or *transitions*
- $G: E \rightarrow P(X)$ is guard condition
- $R: E \rightarrow P(X \times X)$ is reset map

Hybrid automaton H = (Q, X, f, Init, Inv, E, G, R)

- Hybrid state: (q,x)
- Evolution of continuous state in mode q: $\dot{x} = f(q, x)$
- Invariant Inv: describes conditions that continuous state has to satisfy in given mode
- Guard G: specifies subset of state space where certain transition is enabled
- Reset map R: specifies how new continuous states are related to previous continuous states



Evolution of hybrid automaton

- Initial hybrid state $(q_0, x_0) \in Init$
- Continuous state x evolves according to

$$\dot{x} = f(q_0, x) \quad \text{with } x(0) = x_0$$

discrete state q remains constant: $q(t) = q_0$

- ullet Continuous evolution can go on as long as $x\in \operatorname{Inv}(q_0)$
- If at some point state x reaches guard $G(q_0, q_1)$, then
 - transition $q_0 \rightarrow q_1$ is enabled
 - discrete state *may* change to q_1 , continuous state then jumps from current value x^- to new value x^+ with $(x^-, x^+) \in R(q_0, q_1)$
- Next, continuous evolution resumes and whole process is repeated

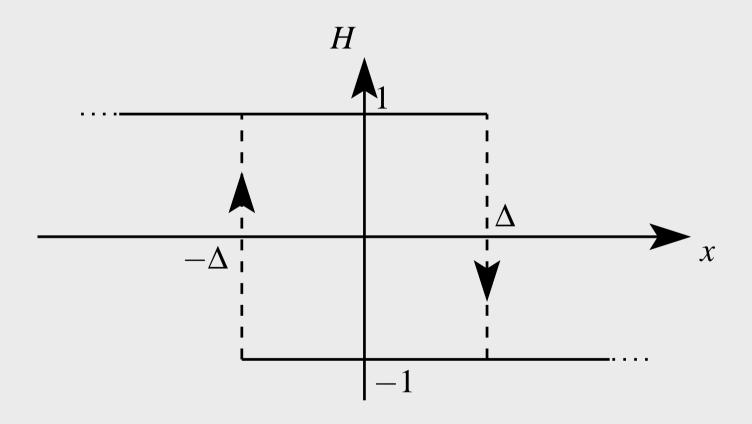
2. Examples of hybrid systems

- 1. Hysteresis
- 2. Manual transmission
- 3. Water-level monitor
- 4. Supervisor
- 5. Two-carts system
- 6. Boost converter

2.1 Hysteresis

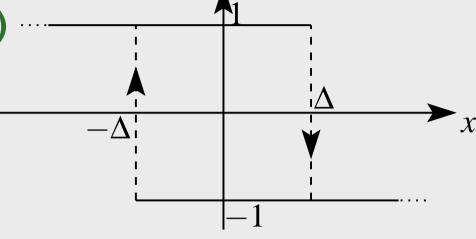
Control system with hysteresis element in the feedback loop:

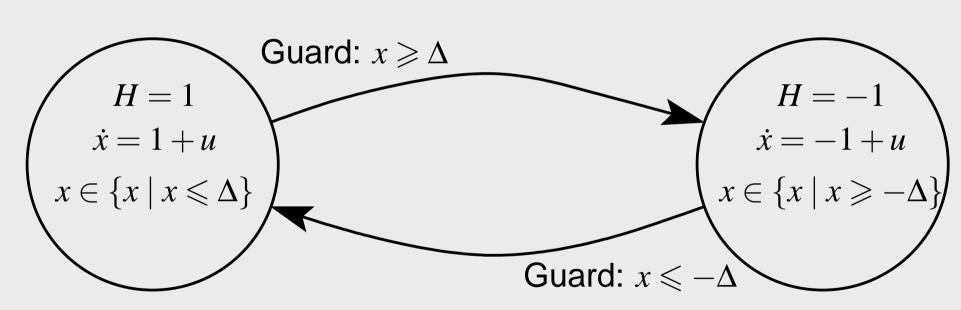
$$\dot{x} = H(x) + u$$



2.1 Hysteresis (continued)

$$\dot{x} = H(x) + u$$





2.2 Manual transmission

Simple model of manual transmission

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = \frac{-ax_2 + u}{1 + v}$$

with v: gear shift position $v \in \{1, 2, 3, 4\}$

u: acceleration

a: parameter

→ hybrid system with four modes, 2-dimensional continuous state, controlled transitions (switchings), and no resets

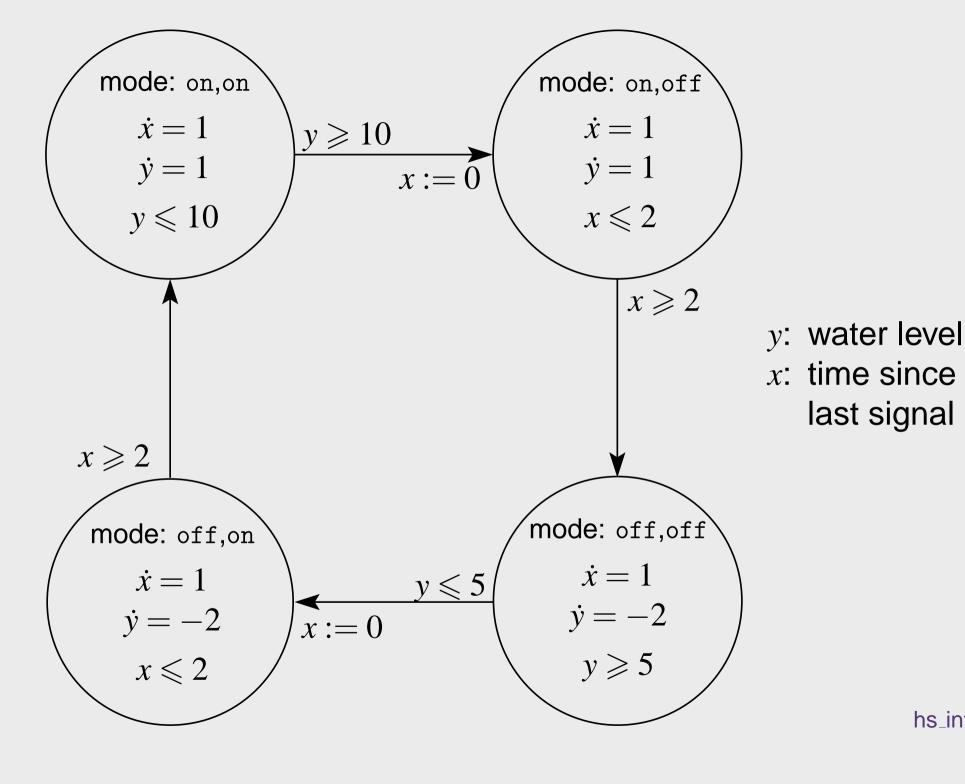
2.3 Water-level monitor

variables:

- -y(t): water level, continuous
- -x(t): time elapsed since last signal was sent by monitor, continuous
- -P(t): status of pump, $\in \{\text{on}, \text{off}\}$
- -S(t): nature of signal last sent by monitor, $\in \{\text{on}, \text{off}\}$

• dynamics of system:

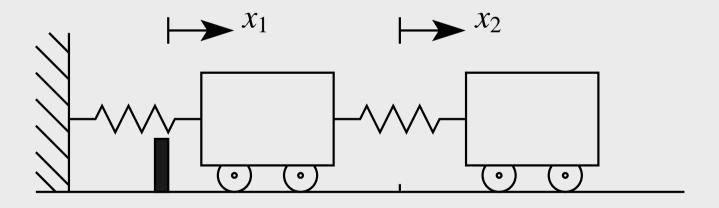
- water level rises 1 unit per second when pump is on and falls 2 units per second when pump is off
- when water level rises to 10 units, monitor sends switch-off signal; after delay of 2 seconds pump turns off
- when water level falls to 5 units, monitor sends switch-on signal; after delay of 2 seconds pump switches on



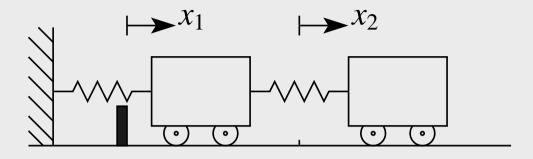
hs_intro.27

2.4 Two-carts system

- Two carts connected by spring
- Left cart attached to wall by spring;
 motion constrained by completely inelastic stop
 Stop is placed at equilibrium position of left cart
- Masses of carts and spring constants = 1



2.4 Two-carts system (continued)

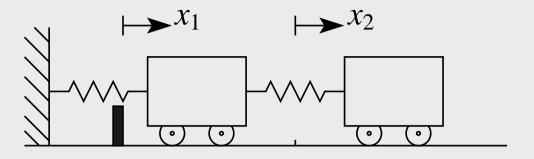


- x_1, x_2 : deviations of left and right cart from equilibrium position
- x_3, x_4 : velocities of left and right cart
- z: reaction force exerted by stop

• Evolution:
$$\dot{x}_1(t) = x_3(t)$$

 $\dot{x}_2(t) = x_4(t)$
 $\dot{x}_3(t) = -2x_1(t) + x_2(t) + z(t)$
 $\dot{x}_4(t) = x_1(t) - x_2(t)$

2.4 Two-carts system (continued)



To model stop:

- define $w(t) = x_1(t)$
- $w(t) \ge 0$ (since w is position of left cart w.r.t. stop)
- force exerted by stop can act only in positive direction $\rightarrow z(t) \geqslant 0$
- if left cart not at stop (w(t) > 0), reaction force vanishes: z(t) = 0
- if z(t) > 0 then cart must necessarily be at the stop: w(t) = 0

$$0 \leqslant w(t) \perp z(t) \geqslant 0$$

2.4 Two-carts system (continued)

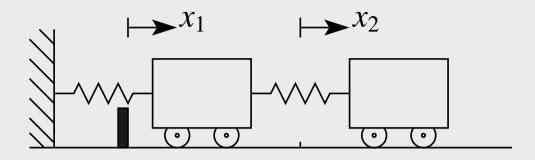
System can be represented by two modes (stop active or not)

$$\begin{array}{cccc} \hline z=0 & \underline{\text{unconstrained}} & \underline{\text{constrained}} & \overline{w}=0 \\ & \dot{x}_1(t)=x_3(t) & \dot{x}_1(t)=x_3(t) \\ & \dot{x}_2(t)=x_4(t) & \dot{x}_2(t)=x_4(t) \\ & \dot{x}_3(t)=-2x_1(t)+x_2(t) & \dot{x}_3(t)=-2x_1(t)+x_2(t)+z(t) \\ & \dot{x}_4(t)=x_1(t)-x_2(t) & \dot{x}_4(t)=x_1(t)-x_2(t) \\ & z(t)=0 & w(t)=x_1(t)=0 \\ & \text{ODE (in state)} & \text{DAE (as z is not explicit)} \\ \hline \end{array}$$

System stays in mode as long as

<u>unconstrained</u>	<u>constrained</u>	
(t) = 0, w(t) > 0	w(t) = 0, z(t) > 0	

Mode transitions for two-carts system

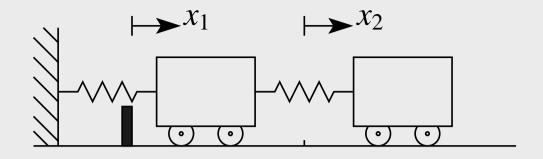


Unconstrained → constrained

Suppose $x(\tau) = (0^+, -1, -1, 0)^T \rightarrow w(t) > 0$ tends to be violated Left cart hits stop and stays there. Velocity of left cart is reduced to zero instantaneously (purely inelastic collision)

Constrained → unconstrained

Suppose $x(\tau) = (0,0,0,1)^T \rightarrow z(t) > 0$ tends to be violated Right cart is moving to right of its equilibrium position, so spring between carts pulls left cart away from stop



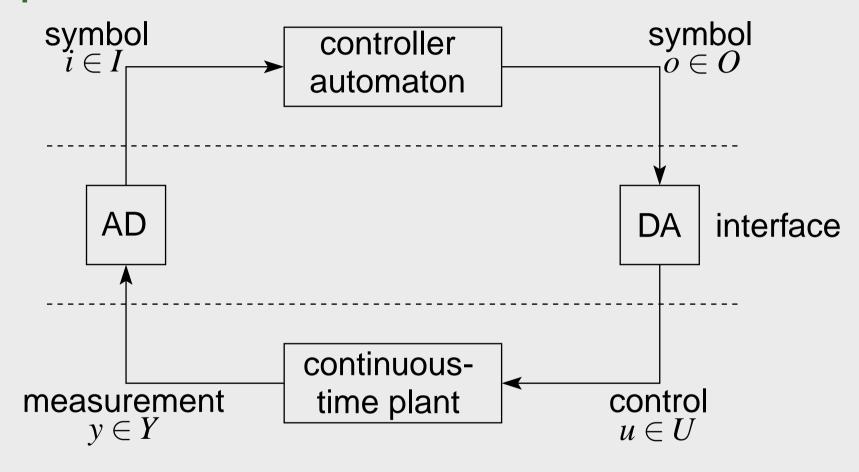
Unconstrained → unconstrained with re-initialization according to constrained mode

Consider $x(\tau) = (0^+, 1, -1, 0)^{\mathsf{T}} \to w(t) > 0$ tends to be violated At impact, velocity of left cart is reduced to 0, i.e., state reset to $(0, 1, 0, 0)^{\mathsf{T}}$

Right cart is at right of its equilibrium position, pulls left cart away from stop → smooth continuation in unconstrained mode

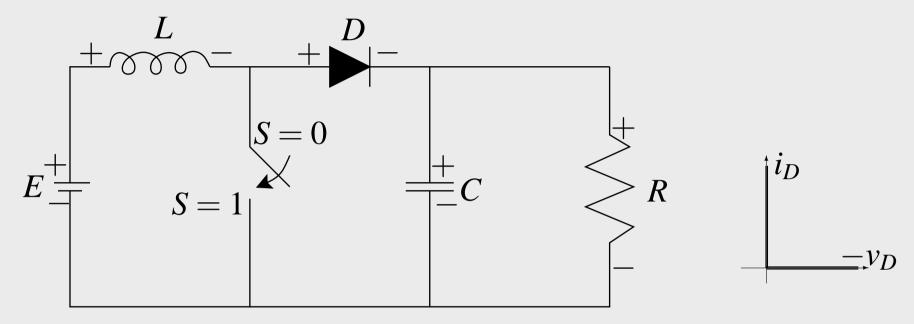
So: After the reset, no smooth continuation is possible in constrained mode → second mode change, back to unconstrained mode

2.5 Supervisor model



Controller is input-output automaton: $q^{\#} = v(q,i)$ $o = \eta(q,i)$

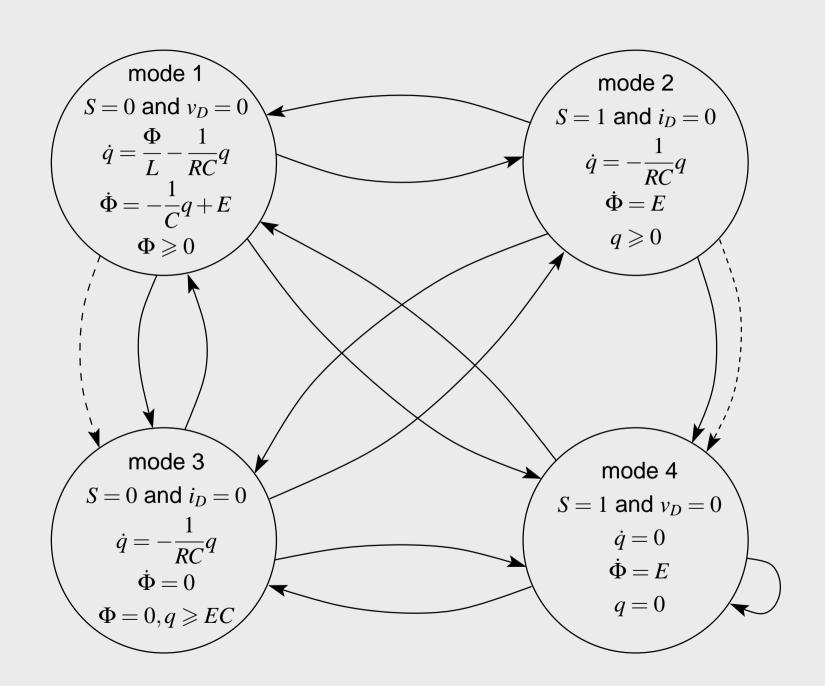
2.6 Boost converter



- presence of switch and diode introduces hybrid dynamics
- 4 modes:

$$(v_S = 0, v_D = 0), (v_S = 0, i_D = 0), (i_S = 0, v_D = 0), (i_S = 0, i_D = 0)$$

transition	guard	reset
mode 1→mode 2	$S=1$ and $q\geqslant 0$	
mode 1→mode 3	$\phi = 0$ and $q > CE$	
mode 1→mode 3	$\phi < 0$	$\phi^+ = 0$
mode 1→mode 4	$S=1$ and $q\leqslant 0$	$q^+ = 0$
mode 2→mode 1	$S=0$ and $\phi\geqslant 0$	
mode 2→mode 3	$S=0$ and $\phi\leqslant 0$	$\phi^+ = 0$
mode 2→mode 4	q = 0	
mode 2→mode 4	q < 0	$q^+ = 0$
mode 3→mode 1	q = CE	
mode 3→mode 2	$S=1$ and $q\geqslant 0$	
mode 3→mode 4	$S=1$ and $q\leqslant 0$	$q^+ = 0$
mode 4→mode 1	$S=0$ and $\phi\geqslant 0$	
mode 4→mode 3	$S=0$ and $\phi\leqslant 0$	$\phi^+ = 0$
mode 4→mode 4	q < 0	$q^+ = 0$



hs_intro.37

2.6 Boost converter (continued)

Hybrid automaton model is very involved Alternatively, one may use the more compact model

$$\dot{q} = -\frac{1}{RC}q + i_{D}$$

$$\dot{\phi} = v_{S} + E$$

$$-v_{D} = \frac{1}{C}q + v_{S}$$

$$i_{S} = \frac{1}{L}\phi - i_{D}$$

$$0 \leqslant i_{D} \perp -v_{D} \geqslant 0$$

$$v_{S} \perp i_{S}$$

→ also complementarity relation (as in two-carts system)

3. Examples with Zeno behavior

- Zeno behavior: infinitely many mode switches in finite time interval
- Examples
 - 1. bouncing ball
 - 2. reversed Filippov's system
 - 3. two-tank system
 - 4. three-balls example

3.1 Bouncing ball

- Dynamics: $\ddot{x} = -g$ subject to $x \ge 0$ (x(t)): height)
- Newton's restitution rule (0 < e < 1):

$$\dot{x}(\tau+) = -e\dot{x}(\tau-)$$
 when $x(\tau-) = 0$, $\dot{x}(\tau-) < 0$

• Assuming x(0) = 0, $\dot{x}(0) > 0$, event times are related through

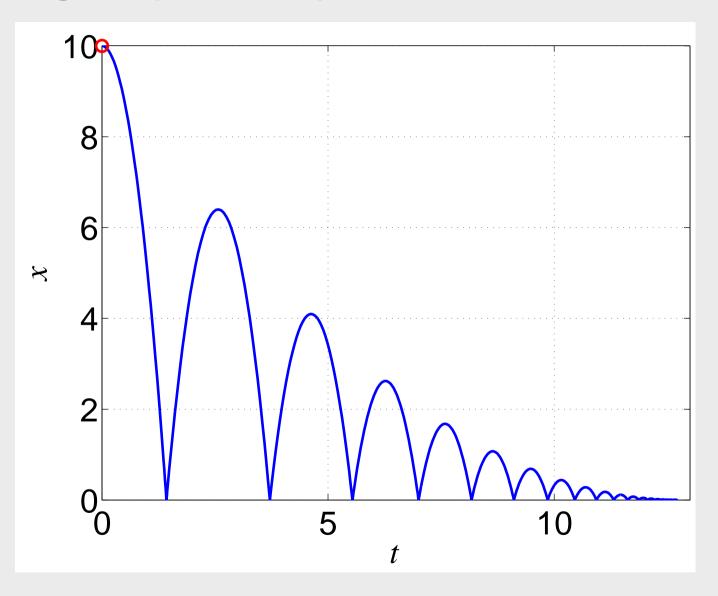
$$\tau_{i+1} = \tau_i + \frac{2e^i\dot{x}(0)}{g}$$

- Sequence has finite limit $au^* = rac{2\dot{x}(0)}{g-ge} < \infty$ (geometric series)
- Physical interpretation: ball is at rest within finite time span, but after infinitely many bounces → Zeno behavior

In this case: infinite number of state re-initializations, set of event times contains *right-accumulation point*

hs_intro.40

3.1 Bouncing ball (continued)



3.2 Reversed Filippov's example

Dynamics:

$$\dot{x}_1 = -\operatorname{sgn}(x_1) + 2\operatorname{sgn}(x_2)$$

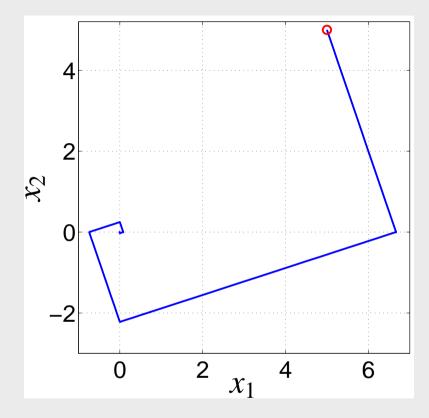
$$\dot{x}_2 = -2\operatorname{sgn}(x_1) - \operatorname{sgn}(x_2),$$

with

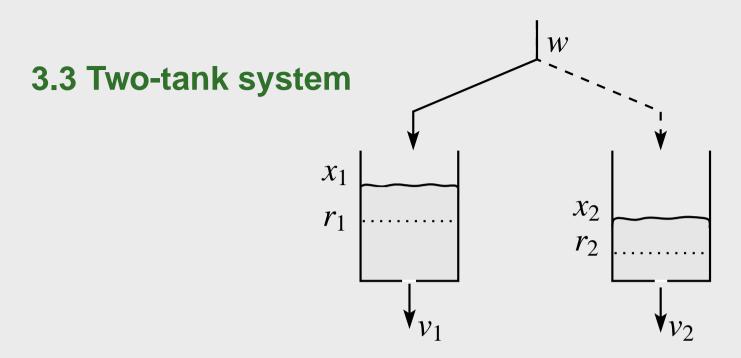
$$\begin{cases} \operatorname{sgn}(x) = 1 & \text{if } x > 0 \\ \operatorname{sgn}(x) = -1 & \text{if } x < 0 \\ \operatorname{sgn}(x) \in [-1, 1] & \text{when } x = 0 \end{cases}$$

Solutions system are spiraling towards origin, which is an equilibrium

3.2 Reversed Filippov's example (continued)

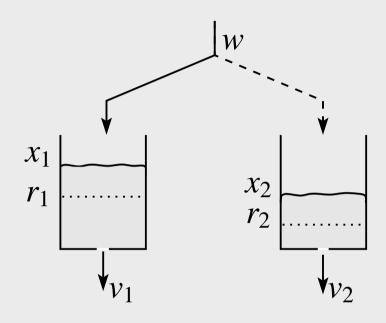


- Since $\frac{d}{dt}(|x_1(t)| + |x_2(t)|) = -2$, solutions reach origin in finite time
- Solutions go through infinite number of mode transitions (relay switches) → Zeno behavior



- Two tanks (x_i: volume of water in tank)
- Tanks are leaking at constant rate $v_i > 0$
- Water is added at constant rate w through hose, which at any point in time is dedicated to either one tank or the other
- ullet Objective: keep water volumes above r_1 and r_2
- Controller that switches inflow to tank 1 whenever $x_1 \le r_1$ and to tank 2 whenever $x_2 \le r_2$

Description of two-tank system as hybrid automaton



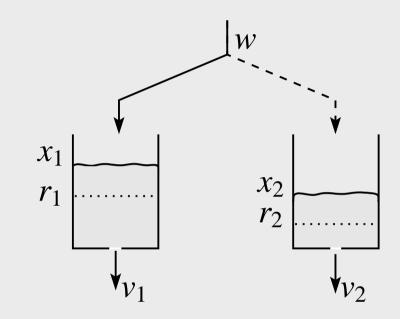
- Two modes: filling tank 1 (mode q_1) or tank 2 (mode q_2)
- Evolution of continuous state:

$$\begin{cases} \dot{x}_1 = w - v_1 \\ \dot{x}_2 = -v_2 \end{cases} \quad \text{in mode } q_1 \qquad \begin{cases} \dot{x}_1 = -v_1 \\ \dot{x}_2 = w - v_2 \end{cases} \quad \text{in mode } q_2$$

• Init = $\{q_1, q_2\} \times \{(x_1, x_2) \mid x_1 \geqslant r_1 \text{ and } x_2 \geqslant r_2\}$

Description of two-tank system as hybrid automaton (cont.)

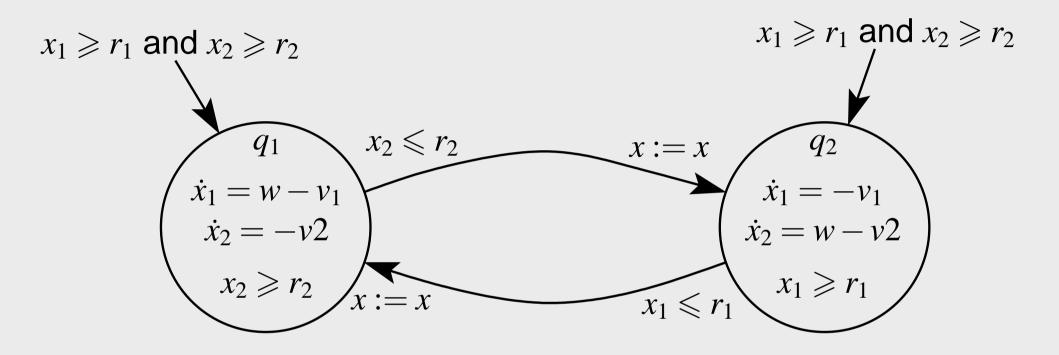
- Invariants: $Inv(q_1) = \{x \in \mathbb{R}^2 \mid x_2 \ge r_2\}$ $Inv(q_2) = \{x \in \mathbb{R}^2 \mid x_1 \ge r_1\}$
- Guards: $G(q_1, q_2) = \{x \in \mathbb{R}^2 \mid x_2 \leqslant r_2\}$ $G(q_2, q_1) = \{x \in \mathbb{R}^2 \mid x_1 \leqslant r_1\}$



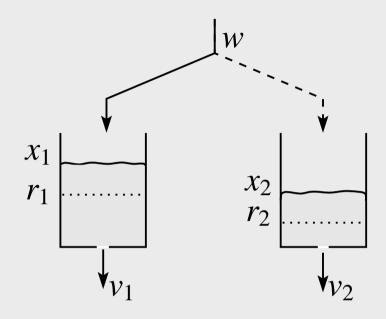
• No resets:

$$R(q_1,q_2) = R(q_2,q_1) = \{(x^-,x^+) \mid x^-,x^+ \in \mathbb{R}^2 \text{ and } x^- = x^+\}$$

Description of two-tank system as hybrid automaton (cont.)

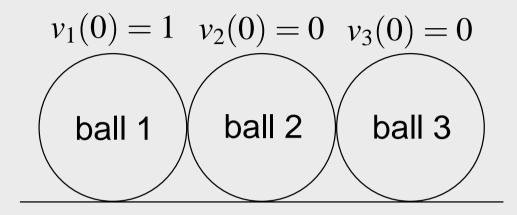


Two-tank system and Zeno behavior



- Assume total outflow $v_1 + v_2 > w$
- Control objective cannot be met and tanks will empty in finite time
- Infinitely many switchings in finite time → Zeno behavior

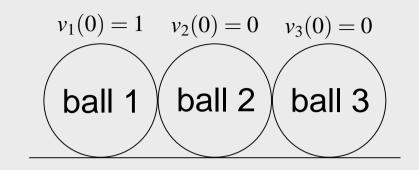
3.4 Three-balls example



- System consisting of three balls
- Inelastic impacts modeled by successions of simple impacts
- Suppose unit masses, touching at time 0, and $v_1(0) = 1$, $v_2(0) = v_3(0) = 0$
- We model all impacts separately →
 - first, inelastic collision between balls 1 and 2, resulting in $v_1(0+) = v_2(0+) = 0.5$, $v_3(0+) = 0$

3.4 Three-balls example (continued)

- next, ball 2 hits ball 3, resulting in $v_1(0++) = \frac{1}{2}$, $v_2(0++) = v_3(0++) = \frac{1}{4}$



- next, ball 1 hits ball 2 again, etc.
 - ightarrow sequence of resets: $v_1: 1 \quad \frac{1}{2} \quad \frac{1}{2} \quad \frac{3}{8} \quad \frac{3}{8} \quad \frac{11}{32} \dots$ $v_2: 0 \quad \frac{1}{2} \quad \frac{1}{4} \quad \frac{3}{8} \quad \frac{5}{16} \quad \frac{11}{32} \dots$ $v_3: 0 \quad 0 \quad \frac{1}{4} \quad \frac{1}{4} \quad \frac{5}{16} \quad \frac{5}{16} \dots$ converges to $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})^{\mathsf{T}}$
- Afterwards, smooth continuation is possible with constant and equal velocity for all balls
- Infinite number of events (resets) at one time instant, sometimes called live-lock → another special case of Zeno behavior