Modeling & Control of Hybrid Systems

Chapter 2 — Modeling frameworks

e Many modeling frameworks for hybrid systems
= trade-off: modeling power « decision power, tractability

e Hybrid automata:

—very general, high modeling power, but low decision power

—analysis and control — computationally hard
(NP-hard, undecidable problems)
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Overview

. Piecewise affine systems (PWA)

. Mixed Logical Dynamical systems (MLD)

. Linear Complementarity systems (LC)

. Extended Linear Complementarity systems (ELC)

. Max-Min-Plus-Scaling systems (MMPS)

. Equivalence of MLD, LC, ELC, PWA and MMPS systems
. Timed automata
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. Timed Petri nets
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e Computer simulation and verification tools: Modelica, HyTech,
KRONOS, Chi, 20-sim, UPPAAL, ...

+ simulation models can represent plant with high degree of
detail (high modeling power)

- computationally very demanding for large systems

- difficult to understand from simulation how behavior depends
on model parameters

e In this chapter: special classes of hybrid systems for which
tractable analysis and control design techniques are available
(cf. next chapters)
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1. Piecewise affine (PWA) systems

¢ PWA systems are described by
x(k+1) = Ax(k) + Bju(k) + f; for {x(k)
y(k) = Gix(k) +Diu(k) + g u(k)

e Q;,...,Qn: convex polyhedra (i.e., given by finite number of linear
inequalities) in input/state space, non-overlapping interiors

:| €eQ,i=1...,N

e PWA can be used as approximation of nonlinear model
x(k-+1) = A(x(k), u(k))
y(K) = Ay (x(k), u(k))
— “simplest” extension of linear systems that can still model

non-linear & non-smooth processes with arbitrary accuracy
+ are capable of handling hybrid phenomena
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Example of PWA model
Integrator with upper saturation:

xm+g:{“@+ww if x(k) + u(K)

1
if x(K)+u(k) > 1

VoA

u(k)

e Associate with literal X; logical variable & € {0,1}:
d=1iff X,=T,5=0iff Xi=F
— compound statement can be transformed into
linear integer program
e Examples:

* X1 A Xy equivalentto &, =0, =
* X1V Xp equivalentto &+ &, >

* ~X; equivalentto 6, =0
* X1 = Xz equivalentto 6, — & <0
* X1 < X; equivalentto 6,— &, =0
* X1 X, equivalentto +d =1

efFor f :R"— R and x € 2" with 2" bounded, define

M & maxf (x)

m% min f(x)
xeZ XeZ
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2. Mixed Logical Dynamical (MLD) systems
2.1 Preliminaries

e Boolean operators:
A (and), Vv (or), ~ (not), = (implies), < (iff), & (xor)
XiAXe XV X ~X1 Xi=Xo X1 Xo Xi8X
T F T T

mmH X
47K
nm—--
M=

F F F F
r T T F
F T T T

e Properties:
— X1 = Xy is same as ~X; V X
— X1 = Xy is same as ~X; = ~X;

— X1 < Xz is same as (X3 = Xo) A (X2 = X1)
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e Equivalences:

f(x) <O A[d=1] trueiff f(X)—9d <

f(x) <O]V[d0=1] trueiff f(x)<Md
*~[f(x) < O] trueiff f(x)>¢€ (with € machine precision)

*[f(X) <0 =[0=1] trueiff f(x)>e+(m—¢)d

*[f(x) <0< [6=1] true iff {:Ex; ; mmi)a

e Product 6,6, can be replaced by auxiliary variable ;3 = 5,6,
Since (=1 [h=1A[0=1],

*

—1+m(1-9)

*

—_— —

-5 +8&<0
—%+08:<0
O+%H—-0<1

k=00, Iisequivalentto
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¢ 0f(x) can be replaced by auxiliary real variable y = o f (x) 2.2 Mixed logical dynamical (MLD) systems
with [ =0] = [y=0], [0 = 1] = [y = f(x)], or equivalently o (K1) = AX(K) -+ Byu(K) + Bo3(K) + Bsz(K)
)

y<Mo y(k) = Cx(k) + D1u(k) + D23 (k) + D3z(k)

z z T(i mios) Exx(K) + Eou(K) + Esd(K) + Eaz(K) < gs,

y> f(x)— M(1— ) e X(K) = [%.T(K) %," (k) ]" with x,(k) real-valued, x,(k) boolean
z(k): real-valued auxiliary variables
0(Kk): boolean auxiliary variables

e Applications: PWA systems, systems with discrete inputs, quali-
tative inputs, bilinear systems, finite state machines

e Reference: A. Bemporad and M. Morari, “Control of systems integrating
logic, dynamics, and constraints,” Automatica, vol. 35, no. 3, pp. 407-427,

March 1999.
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2.3 Example o Xx(k+1) =1.60(k)x(k) — 0.8x(k) 4+ u(k)
e Consider PWA system: ¢ Define new variable z(k) = d(k)x(k) or
~ Josx(k)+u(k) ifx(k) =0 z(k) < Mo (k)
x(kt1) = {—O.8x(k) Fuk)  ifx(k) <0 2(k) > md (k)
2(k) < x(K) — (1 - 3(K))
where x(k) € [-10,10] and u(k) € [-1,1] 2(K) = x(K) = M(1 = 3(K))

e Associate binary variable &(k) to condition x(k) > 0 PWA svst b
such that [d(k) = 1] < [x(k) > 0] or . system now becomes

—ma(K) < x(k)—m X(k+1) = 1.6z(k) — 0.8x(k) + u(k)
~(M+£)5(K) < —x(K) — ¢ subject to linear constraints above — MLD
where M = —m= 10, and ¢ is machine precision
e PWA system can be rewritten as
X(k+1) = 1.63(k)x(k) — 0.8x(k) +u(k) hs_mod.11 hs_mod.12



3. Linear Complementarity (LC) systems

¢ LC systems:

X(k+1) Ax(k)+Blu( k) + Bow(k)

y(k) = Cx(K) +Dsu(K) +Daw(k)

V(k) = Eix(K) + Eau(K) + Esw(k) + €4
0<v(k) L wk)>0

o v(k), w(k): “complementarity variables” (real-valued)

¢ Applications: constrained mechanical systems, electrical networks
with ideal diodes, dynamical systems with PWA relations, variable-
structure systems, projected dynamical systems

e Examples: two-cars system, boost converter (continuous-time
LC systems)

hs_mod.13

5. Max-Min-Plus-Scaling (MMPS) systems
e Max-min-plus-scaling expression:
f = x| max(fk, fi)[ min(fy, fi)| fii+ fi| B f
with a, B € R and fy, fj again MMPS expressions.
e Example: 5x; — 3%, + 7+ maxmin(2x, —8x%z), Xz — 3X3)
¢ MMPS systems:

X(k+1) = .#(x(k),u(k),d(k))

(
y(k) = 4y (x(k), u(k), d(k))
A(x(k),u(k),d(k)) < c

with 4, 4y, 4. MMPS expressions
e d(Kk): real-valued auxiliary variables

hs_mod.15

4. Extended Linear Complementarity (ELC) systems
e ELC systems:

X(k+ 1) = Ax(k) 4+ Byu(k) 4 Bd(K) (2)

y(K) = Cx(k) + D1u(k) + D2d(K) (2)

Ej_X(k) + EzU(k) + E3d(k) <& (3)

Zl I_I €4 — E1X EzU(k) — E3d(k))J =0 (4)
Ieq

e d(k): real-valued auxiliary variable
e Condition (4) is equivalent to
[] (es— Ex(kK) — Eau(k) — E3d(k>)j =0 foreachic{1,...,p}
j€a
— system of linear inequalities with p groups, in each group
at least one inequality should hold with equality hs. mod. 14

5. Max-Min-Plus-Scaling (MMPS) systems (continued)

e Applications:
—discrete-event systems (also max-plus)
—traffic-signal controlled intersection
—railway networks
—manufacturing systems
—systems with soft & hard synchronization constraints
—logistic systems
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Example of MMPS system

e Integrator with upper saturation:

X“+1%:{mm+uw) if x(K) + u(k) i

VoA

if X(k) +u(k)
y(k) = x(k)
can be recast as
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Equivalence of MLD, LC, ELC, PWA and MMPS systems

e Each subclass has own advantages:

— stability criteria for PWA

—control and verification techniques for MLD

— control techniques for MMPS

—conditions of existence and uniqueness of solutions for LC

— transfer technigues from one class to other

e It depends on the application which class is best suited
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6. Equivalence of MLD, LC, ELC, PWA and MMPS systems

Equivalence between model classes v and #:
for each model € & there exists model € % with same input/output
behavior (+ vice versa)
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6.1 MLD and LC systems
Proposition Every MLD system can be written as LC system.

e 3(k) € {0,1} is equivalentto 0< &(k) L 1—4&(k) >0
— introduce auxiliary variable p(k) =[1 1... 1]" — &(k) with

0<d(k) L pk) =0

e For constraint E;x(K) + Exu(K) + E3d (K) + E4z(K) < gs, introduce
auxiliary variables q(k) = g5 — Exx(k) — Exu(k) — E3d(K) —E4z(k) >0
and r(k) = O with

0<q(k) L r(k) >0
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e For LC: all variables > 0
— split real-valued variable z(k) in “positive” and “negative part”:
z(k) = z" (k) — z_ (k) with z" (k) = max(0,z(k)), z (k) = max0, —z(k))
or0<z (k) Lz (k)>0

e Results in LC system:

X(k+ 1) = Ax(k) + Byu(k) 4 [B2 0 B3 —Bg|w(k)
y(k) = CX(k) + D1U(k) + [Dz 0 D3 —D3]W(k)
I

p(k) e -0 0 O o(k)
a9 | _ | s~ Ex)—Eau) | | [ Es 0 —EuEa] [ r(k)
sk) | ~ 0 000 I ||z
t(k) 0 001 0/ \z(k
SN—— ——
=:v(K) =w(k)
0<v(k)Lw(k) >0
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e Note: Upper bounds usually known in practice due to physical
reasons/insight.

¢ Finally results in MLD model
X(k+1) = AX(k) + Byu(k) + Boz(k)
y(K) = Cx(K) + Dyu(k) + D2z(k)

0 0 —My I 0
E: E> M, Es Me— ey
0 x(K) + 0 u(k) + 0 o(k) + O z(k) < 0
= —BE> 0 —E3 €4
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Proposition Every LC system can be written as MLD provided that
w(k) and v(k) are bounded.

e LC complementarity condition 0 < v(k) Lw(k) > 0 implies that
for each i we have vi(k) =0, wi(k) > 0 or vi(k) > 0, wi(k) =0
e Introduce boolean vector d(k) such that
Vi(k) =0, wi(k) >0 — &(k=1
vi(k) >0, wi(k) =0 « &(k)=0
e Can be achieved by introducing constraints
w(k) < M3 (K)
v(k) <M([11...1]" = (k)
w(k),v(k) >0

with My, M, diagonal matrices containing upper bounds on w(k), v(k)
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6.2 LC and ELC systems

Proposition Every LC system can be written as ELC system.

e v(k) Lw(k) is equivalent to Z vi(kywi(k) =0
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6.3 PWA and MLD systems

Proposition Well-posed PWA system can be rewritten as MLD sys-
tem assuming that set of feasible states and inputs is bounded.

o Cf. examples.

Proposition Completely well-posed MLD can be rewritten as PWA.
e If 5(k) € {0, 1}° — 2° possible combinations
e For each combination MLD constraint
Exx(K) + Eau(K) + Esd(K) + Eaz(K) < gs
defines polyhedral region in x/u/z space

e For each combination, z(k) is linear function of u(k) and x(k) due
to well-posedness + linearity of all constraints

¢ Results in linear state space model for each polyhedral region
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6.4 MMPS and ELC systems (continued)
ELC C MMPS

e Linear equations are MMPS expressions (albeit without max or
min)

e Complementarity condition can be rewritten as
vi,3j € @ such that (e, — Exx(k) — Eou(k) — Esd(k)), = 0

-—
>0

So

min(es — Exx(k) — Eou(k) — E3d(k))j =0 foreachi
ica
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6.4 MMPS and ELC systems
Proposition The classes of MMPS and ELC systems coincide.
MMPS C ELC

¢ Basic constructors for MMPS expressions fit ELC framework:

—Expressions of form f =x;, f =a, f = fy+ f;, f = Bfcresultin
linear equations

— f =max(fy, f|) = —min(—fy, — f;) can be rewritten as
f—fk=>0 f—f>0, (f—"f)(f—"f)=0
— is ELC expression
e Two or more ELC systems can be combined into one large ELC
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6.5 MLD and ELC systems
Proposition Every MLD system can be rewritten as ELC system.
e Condition &(k) € {0,1} is equivalent to ELC conditions

—a(k) <0
a(k) <1
&(k)(1—4(k)) =0

¢ Note: condition & (k) € {0,1} also equivalent to MMPS constraints
max—&(k), (k) —1) =0

or

min(& (), 1— &(k)) = 0
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Proposition Every ELC system can be written as MLD system, pro-
vided that e, — Ejx(k) — Eou(k) — Ezd(K) is bounded.

e Introduce conditions
(e); — (Exx(K) + Eu(k) + Esd(k)); < M;Jj(k)  for each j € @
Z Oj(k) <#p-1
j€a
with d;(k) € {0,1} auxiliary variables,
and M; upper bound for (e; — Esx(k) — Exu(k) — Ezd(K));
¢ By last condition at least one J,(K) is zero for some he€ @
— 1st inequality and ELC inequality (es); — (Eax(K) + Exu(K)
+Ezd(k));j > 0 degenerate to equality condition for j =h

e Hence, (nonlinear) ELC complementarity condition can be re-

placed by above (linear) equations — MLD system
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6.6 Example (continued)

e Consider
0.8x(k) +-u(k) ifx(k) >0
X(k+1) = { —0.8x(K)+ u(k) if x(K) <0
o C:
X(k+1) = —0.8x(k) + u(k) + 1.6z(k)
0 < w(k) = —x(k)+2z(k) L z(k) >0
oeELC:
X(k+1) = —0.8x(k) + u(k) + 1.6d(k)
~d() <0, x(K-dk <0, (x(k)—d(K))(~d(K)) =0
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6.6 Example

e Consider
0.8x(K) +u(k)  if x(k) =
X(k+1) = { —0.8x(K)+ u(k) i x(K) <

with m< x(k) <M

o O

e MLD:
x(k+1) = —0.8x(k) + u(k) + 1.6z(k)
—md(k) < x(k)—m X(k) < (M+¢)d(k)—¢
2(k) < M3(K) 2(K) > m3(K)
z(k) < x(k) —m(1—95(k)) z(k) = x(k) =M(1—2(k))
with &(k) € {0,1}
e MMPS:

X(k4+ 1) = —0.8x(k) + 1.6 max 0, x(k)) + u(k) hs.mod.30

7. Timed automata

e Timed automata involve simple continuous dynamics:

—all differential equations of form x=1
—all invariants, guards, etc. involve comparison of real-valued
states with constants (e.g., x=1, x< 2, x>0, etc.)

e Timed automata are limited for modeling physical systems

e However, very well suited for encoding timing constraints such as
“event A must take place at least 2 seconds after event B and not
more than 5 seconds before event C”

¢ Applications: multimedia, Internet, audio protocol verification
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7.1 Rectangular sets

e Subset of R" set is called rectangular if it can be written as finite
boolean combination of constraints of form

x<a x<b, x=c x>d x>e

e Rectangular sets are “rectangles” or “boxes” in R" whose sides
are aligned with the axes, or unions of such rectangles/boxes
e Examples:
—{(XX%) [ Z 0N <2)A (> 1)A (X< 2)}
—{(x1,%) [ (= 0) A (2= 0)) V((xa =0) A (x2 > 0))}
—empty set (.., @ = {(x.%) | (x> 1) A (x4 < 0))}
e However, set {(x1,X) | Xg = 2Xp} is not rectangular
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7.3 Example of timed automaton

X =% =0
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7.2 Timed automaton

e Timed automaton is hybrid automaton with following characteris-
tics:

—automaton involves differential equations of form x; =1
continuous variables governed by this differential equation are
called “clocks” or “timers”

—sets involved in definition of initial states, guards, and invari-
ants are rectangular sets

—reset maps involve either rectangular set, or may leave certain
states unchanged
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8. Timed Petri nets
8.1 Petri nets
e Graphical representation: bipartite directed graph
—places (circles) — activities
—transitions (bars) — events, actions
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e marking — tokens are assigned to places

e execution of Petri net:
—transition enabled if all input places (°t) contain at least 1 token
—enabled transition can fire:

* one token is removed from each input place (°t)
x one token is deposited in each output place (t*)

e synchronization & choice
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8.2 Timed Petri nets (continued)

e Transition t becomes enabled at

rpethmln Me(pP)

e Then transition t may fire at some time

NS [matxmin Mg(p) + L(t),matxmin Mg (p) +U (t)]
pe pe

provided t is enabled during whole interval

e If enabling condition is still valid at final time of firing interval, then
transition is forced to fire

e Many techniques for untimed Petri nets can be extended to timed
Petri nets

e However, many problems are undecidable or NP-hard
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8.2 Timed Petri nets
e Untimed Petri net describes order in which events can occur,
but no timing

e Timed Petri — timing, transition should be executed within cer-
tain time interval after it becomes enabled

—discrete state variables (markings, mg(p))
—continuous state variables (arrival times, Mg(p))

e Mg(p) :={64,..., 9m9(p)} with arrival times 6; < 6, < ... < Oy () Of
me(p) tokens in place p

e For each transition t we define interval [L(t),U (t)]
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