Modeling & Control of Hybrid Systems

Chapter 2 — Modeling frameworks

e Many modeling frameworks for hybrid systems
= trade-off: modeling power < decision power, tractability

e Hybrid automata:

—very general, high modeling power, but low decision power

—analysis and control — computationally hard
(NP-hard, undecidable problems)
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e Computer simulation and verification tools: Modelica, HyTech,
KRONOS, Chi, 20-sim, UPPAAL, ...

+ simulation models can represent plant with high degree of
detail (high modeling power)

- computationally very demanding for large systems

- difficult to understand from simulation how behavior depends
on model parameters

e In this chapter: special classes of hybrid systems for which
tractable analysis and control design techniques are available
(cf. next chapters)
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Overview

1. Piecewise affine systems (PWA)

. Mixed Logical Dynamical systems (MLD)

. Linear Complementarity systems (LC)

. Extended Linear Complementarity systems (ELC)

. Max-Min-Plus-Scaling systems (MMPS)

. Equivalence of MLD, LC, ELC, PWA and MMPS systems
. Timed automata
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. Timed Petri nets
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1. Piecewise affine (PWA) systems

e PWA systems are described by
X(k+1) = AX(K)+ Bju(k) + fi for [x(k)
y(k) = Gix(k) + Diu(k) + g u(k)

e Q,,...,Qp: convex polyhedra (i.e., given by finite number of linear
Inequalities) in input/state space, non-overlapping interiors

] cQi,1=1,...,N

e PWA can be used as approximation of nonlinear model
X(k+1) = A(x(k), u(k))
y(k) = A (x(k),u(k))
— “simplest” extension of linear systems that can still model

non-linear & non-smooth processes with arbitrary accuracy
+ are capable of handling hybrid phenomena
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Example of PWA model
Integrator with upper saturation:

x(k+1) = {X(k) +u(k) if x(k) +u(k)

1
. if x(K)+u(k) > 1

VoA
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2. Mixed Logical Dynamical (MLD) systems
2.1 Preliminaries

e Boolean operators:
A (and), Vv (or), ~ (not), = (implies), < (iff), & (xor)

X1 X0l X I AXo X1V Xo ~X1 X=X X1 X XD X
T T T T F T T F
TF F T F F F T
F T F T T T F T
FFF FoooT T T F

e Properties:

— X1 = Xy 1S same as ~X1V X,
— X1 = Xy IS same as ~Xo = ~X;

— X1 & Xz is same as (X; = Xo) A (X2 = Xp)
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e Associate with literal X logical variable & € {0,1}:
G=1iffX,=T,5=0ifft X =F
— compound statement can be transformed into
linear integer program

e Examples:
*XiA Xy equivalentto o, =0,=1
*X1V X, equivalentto 0+, >1
*~X; equivalentto 6, =0
*X1= X, equivalentto o6,— 3 <0
*X1< Xy equivalentto 6,— =0
*X1b X, equivalentto 1+ =1

eFor f:R"— R and x& 2 with 2 bounded, define

M= maxf (x) mE min f(X)
Xe Xet hs_mod.7



e Equivalences:
*[f(X) <O[A[0=1] trueiff f(X)—0<—-1+m(1-9)

*1f(x) <O V[d=1] trueiff f(x) <M
*~[f(X) <O] trueiff f(x)>¢€ (with € machine precision)
*f(X) <0 = [0=1] trueiff f(x)>e+(m—-¢)d

| o | < _
*[f(x) <0 < [5=1] true iff {f(x) M(1=9)

f(xX) >e+(m—¢g)d

e Product 0,0, can be replaced by auxiliary variable d; = 6,0,
Since [3=1] < |01 =1 A [0 =1],

—01+03<0
»=05,0, isequivalentto —0+ %<0
0+0—03<1
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e 0 f(X) can be replaced by auxiliary real variable y = o f (x)
with [0 =0] = [y=0], [0 = 1] = [y= f(X)], or equivalently

(y<Md

y > mo

y< f(X)—m(1—9)

Y= f(x) —M(1-9)
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2.2 Mixed logical dynamical (MLD) systems

o X(k+1) = Ax(k) + Byu(k) + B20(k) + Baz(k)
y(K) = Cx(k) + D1u(k) + D26 (k) + D3z(k)
E1x(k) + Eou(k) + E30(k) + E4z(k) < g5,
e X(k) = [x."(K) %" (k)]" with x,(k) real-valued, x,(k) boolean
Z(k): real-valued auxiliary variables
0(k): boolean auxiliary variables

e Applications: PWA systems, systems with discrete inputs, quali-
tative inputs, bilinear systems, finite state machines

e Reference: A. Bemporad and M. Morari, “Control of systems integrating
logic, dynamics, and constraints,” Automatica, vol. 35, no. 3, pp. 407-427,
March 19909.
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2.3 Example
e Consider PWA system:

X(k+1) {

where x(k) € |[—10,10 and u(k)

0.8x(k) 4+ u(k) If X(k) >0
—0.8x(k) +u(k) ifx(k) <O

e [—1,1]

e Associate binary variable &(k) to condition x(k) > 0

such that [0(k) = 1] & [x(k) > O

—m0(
—(M+¢€)5(

or

K) < X(K) —m

K) < —X(k) — €

where M = —m= 10, and € Is machine precision

e PWA system can be rewritten as
X(k+1) = 1.60(k)x(k) — 0.8x(k) + u(k)
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o X(k+1) =1.60(k)x(k) —0.8x(k) + u(k)
e Define new variable z(k)

|
1
/N
o)
2
—
N——"
@)
-

Z(k) < Mo(Kk)
z(k) > md(k
z(k) < x(k) —m(1—95(k))
Z(k) > x(k) =M (1—-9d(k))

e PWA system now becomes
X(k+ 1) = 1.6z(k) — 0.8x(k) + u(k)

subject to linear constraints above — MLD
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3. Linear Complementarity (LC) systems

o L C systems:

O<v(k) L wk)>0

e V(k), w(k): “complementarity variables” (real-valued)

e Applications: constrained mechanical systems, electrical networks
with ideal diodes, dynamical systems with PWA relations, variable-
structure systems, projected dynamical systems

e Examples: two-cars system, boost converter (continuous-time
LC systems)
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4. Extended Linear Complementarity (ELC) systems
e ELC systems:

X(k+ 1) = AX(K) + Byu(k) + Bod(k) (1)

y(K) = Cx(K) + Dau(k) + Dodl(k) @

E1X(k) -+ EgU(k) =F Egd(k) <& (3)

ZI |_| €1 — E]_X EgU(k) — Egd(k))J =0 (4)
leq

e d(k): real-valued auxiliary variable

e Condition (4) is equivalent to
[] (&2 — Exx(k) — Eou(k) —Egd(k)), =0 foreachie {1,...,p}
j€q
— system of linear inequalities with p groups, in each group
at least one inequality should hold with equality hs mod.14



5. Max-Min-Plus-Scaling (MMPS) systems

e Max-min-plus-scaling expression:
f:=x|a|maxfy, fi)|min(fy, f)|fk+ fi|B f«
with a, B € R and fy, f, again MMPS expressions.
e Example: 5x; — 3xo + 7+ max(min(2xg, —8Xz), X, — 3X3)
e MMPS systems:
X(k+1) = Ax(x(k), u(k),d(k))
y(k) = .y(x(k),u(k),d(k))
A(x(K), u(k),d (k) < C
with 4y, #y, #. MMPS expressions
e d(k): real-valued auxiliary variables
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5. Max-Min-Plus-Scaling (MMPS) systems (continued)

e Applications:

— discrete-event systems (also max-plus)
—traffic-signal controlled intersection

— railway networks

— manufacturing systems

—systems with soft & hard synchronization constraints
— logistic systems
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Example of MMPS system

e |Integrator with upper saturation:

) x(k)+u(k) if x(k) +u(k
xk+ )= {1 if x(K) + u(K)
y(k) = x(k)

can be recast as

N——"

VoA

1
1

/N
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6. Equivalence of MLD, LC, ELC, PWA and MMPS systems

Equivalence between model classes < and %
for each model € o7 there exists model € £ with same input/output
behavior (+ vice versa)
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Equivalence of MLD, LC, ELC, PWA and MMPS systems

e Each subclass has own advantages:

— stabllity criteria for PWA

—control and verification techniques for MLD

—control techniques for MMPS

—conditions of existence and uniqueness of solutions for LC

— transfer techniques from one class to other

e |t depends on the application which class is best suited
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6.1 MLD and LC systems
Proposition Every MLD system can be written as LC system.

e 0(k) € {0,1} is equivalentto 0< &(k) L 1—d(k) >0
— introduce auxiliary variable p(k) =[1 1... 1] — d(k) with

0<o(k) L p(k) >0

e For constraint E;x(k) + Exu(k) + E3d (k) + E4z(K) < gs, introduce
auxiliary variables q(k) = g5 — E1x(k) — Exu(k) — E30(k) — E4z(k) >0
and r (k) = 0 with

0<q(k) Lr(ky>0
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e For LC: all variables > 0
— split real-valued variable z(k) in “positive” and “negative part”:
z(k) =z" (k) —z (k) with z" (k) = max(0,z(k)), z" (k) = max0, —z(k))
or0<z (k) Lz(k)>0

e Results in LC system:

X(k+ 1) = Ax(k) + Bsu(k) + [B2 0 B3 —Bg]w(k)
y(k) = Cx(k) +D1u(k) + [D2 0 D3 —D3]w(k)

p(k) e —1 0 0 O 0 (K)
(CI(Q\ _ | 95— Eax(k) — Ezu(k)\ n /—E3 0 —E4 E4\ (r(k) \
i) o ) Nood o)y

t(K) 0 0 01 0/)\z

0 ; v(k) Lw(k) >0
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Proposition Every LC system can be written as MLD provided that
w(k) and v(k) are bounded.

e LC complementarity condition 0 < v(k) Lw(k) > 0 implies that
for each i we have vi(k) =0, wi(k) >0 or v;j(k) >0, wi(k) =0
e Introduce boolean vector (k) such that
Vi(k) =0, wi(k) >0 < &(k)=1
Vi(k) =0, wi(k) =0 « &(k)=0
e Can be achieved by introducing constraints
w(k) < Myd(K)
v(k) <My([11... 1]" - (k)
w(k),v(k) > 0

with My, M, diagonal matrices containing upper bounds on w(k), v(k)
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e Note: Upper bounds usually known in practice due to physical
reasons/insight.

e Finally results in MLD model

X(k+ 1) = Ax(k) + Biu(k) + Boz(k)

y(K) = Cx(k) + D1u(k) + D2z(k)

X(K) +

0
E,
0

—E

u(k) +

M
My
0
0
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6.2 LC and ELC systems
Proposition Every LC system can be written as ELC system.

e V(K)_Lw(k) is equivalent to Z vi(K)wi(k) =0

hs_mod.24



6.3 PWA and MLD systems

Proposition Well-posed PWA system can be rewritten as MLD sys-
tem assuming that set of feasible states and inputs is bounded.

e Cf. examples.

Proposition Completely well-posed MLD can be rewritten as PWA.
o If 5(k) € {0, 1}°> — 2° possible combinations
e For each combination MLD constraint
E;x(K) + Bau(k) + B30 (k) + Eqz(k) < g5
defines polyhedral region in x/u/z space

e For each combination, z(k) is linear function of u(k) and x(k) due
to well-posedness + linearity of all constraints

e Results in linear state space model for each polyhedral region
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6.4 MMPS and ELC systems
Proposition The classes of MMPS and ELC systems coincide.
MMPS C ELC

e Basic constructors for MMPS expressions fit ELC framework:

—EXxpressions of form f =x;, f =a, f = fy+ f;, f = B fx result in
linear equations

— f =max(fy, fj) = —min(—fx, —f;) can be rewritten as
f—f>0 f-—f2>0 (f—Ff)(f—"F)=0
— IS ELC expression
e Two or more ELC systems can be combined into one large ELC
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6.4 MMPS and ELC systems (continued)
ELC C MMPS
e Linear equations are MMPS expressions (albeit without max or
min)
e Complementarity condition can be rewritten as
Vi,3j € @ such that (es— Eix(k) — Eou(k) — Egd(k))j =0

\ 4

>0
So

min(es — Exx(k) — Eou(k) — Egd(k))j =0 foreachi
icq
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6.5 MLD and ELC systems
Proposition Every MLD system can be rewritten as ELC system.

e Condition & (k) € {0,1} is equivalent to ELC conditions

—8(k) <0
a(k) <1
a(k)(1-a(k)=0

e Note: condition & (k) € {0,1} also equivalent to MMPS constraints
max—&(k),a(k)—1)=0

or

min(3(k),1— &(k)) = 0
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Proposition Every ELC system can be written as MLD system, pro-
vided that e, — Exx(k) — Eou(k) — Esd(K) is bounded.

e Introduce conditions
(€1)j — (Exx(k) + Equ(k) + Ezd(k)); < M;9;(k) for each j e @
Y Oi(k) <#p—1
i€q
with d;(k) € {0,1} auxiliary variables,
and M; upper bound for (e;s — Exx(k) — Exu(k) — Ezd(K));

e By last condition at least one (k) is zero for some h e @
— 1st inequality and ELC inequality (es); — (E1x(k) + Eau(k)
+Esd(k)); > 0 degenerate to equality condition for j = h

e Hence, (nonlinear) ELC complementarity condition can be re-

placed by above (linear) equations — MLD system
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6.6 Example

e Consider
[ 0.8x(k)+u(k) ifx(k)=>0
X(kt+1) = { —0.8x(k) +u(k) ifx(k) <0

with m< x(k) <M

e MLD:
X(k+1) = —0.8x(k) + u(k) + 1.6z(Kk)
—md(k) < x(k) —m X(k) < (M+¢)d(k)—¢
zZ(k) < Mo(k) Z(k) > mod(k)
zZ(k) < x(k)—m(1-95(k)) zZ(k) > x(k) =M(1—-9(k))
with (k) € {0,1}
e MMPS:

X(k+1) = —0.8x(k) + 1.6 max 0, x(k)) + u(k) hs mod.30



6.6 Example (continued)

e Consider
0.8x(k) +u(k) if x(k) >0
X(kt+1) = { —0.8x(k) +u(k) if x(k) <0
o LC:
X(k+1) = —0.8x(K) + u(k) + 1.6z(Kk)
0 <w(k) =—x(k)+2z(k) L z(k) >0
o ELC:

X(k+1) = —0.8x(k) + u(k) + 1.6d (k)
~d(K <0, x(K-dK <0,  (x(k)—d(K)(~d(k) =0
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7. Timed automata

e Timed automata involve simple continuous dynamics:

— all differential equations of form x=1

—all invariants, guards, etc. involve comparison of real-valued
states with constants (e.g., x=1, x< 2, x> 0, etc.)

e Timed automata are limited for modeling physical systems

e However, very well suited for encoding timing constraints such as

“event A must take place at least 2 seconds after event B and not
more than 5 seconds before event C”

e Applications: multimedia, Internet, audio protocol verification
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7.1 Rectangular sets

e Subset of R" set is called rectangular if it can be written as finite
boolean combination of constraints of form

X<a X<b Xx=c x>d x>e
e Rectangular sets are “rectangles” or “boxes” in R" whose sides
are aligned with the axes, or unions of such rectangles/boxes
e Examples:
—{(x1,%2) [ (1 2 0) A (X1 S 2)A (X2 2 DA < 2)}
—{(x1,%2) [ (32 2 0) A (2 = 0)) V ((x2 = 0) A (Xz >0))}
—empty set (e.9., @ ={(Xg,X2) | X1 > 1) A (X <0))}
e However, set {(X3,X2) | Xg = 2%} IS not rectangular
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7.2 Timed automaton

e Timed automaton is hybrid automaton with following characteris-
tics:
—automaton involves differential equations of form x; = 1

continuous variables governed by this differential equation are
called “clocks” or “timers”

—sets involved in definition of initial states, guards, and invari-
ants are rectangular sets

—reset maps involve either rectangular set, or may leave certain
states unchanged
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7.3 Example of timed automaton

X=X =0

X1:=3AX%X =0
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8. Timed Petri nets
8.1 Petri nets

e Graphical representation: bipartite directed graph

— places (circles) — activities
—transitions (bars) — events, actions
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e marking — tokens are assigned to places
e execution of Petri net:

—transition enabled if all input places (°t) contain at least 1 token
—enabled transition can fire:

x one token is removed from each input place (°t)
* one token is deposited in each output place (t°)

P1 P2
F*@ t, @ﬁ

1l P3 5 _

| Pa tzl |t3 Ps A

e synchronization & choice
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8.2 Timed Petri nets
e Untimed Petri net describes order in which events can occur,
but no timing

e Timed Petri — timing, transition should be executed within cer-
tain time interval after it becomes enabled

—discrete state variables (markings, mg(p))
— continuous state variables (arrival times, Mg(p))

® Mg(p) :={64,...,0m,p  With arrival times 6, < 6> < ... < Gy, (p) Of
my(p) tokens in place p

e For each transition t we define interval [L(t),U (t)]
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8.2 Timed Petri nets (continued)

e Transition t becomes enabled at

maxminMg(p)
peet

e Then transition t may fire at some time

0 € [matxmin Mg(p) + L(t), matxmin Mg(p) +U (t)]
pe* pe*

provided t is enabled during whole interval

e If enabling condition is still valid at final time of firing interval, then
transition is forced to fire

e Many techniques for untimed Petri nets can be extended to timed
Petri nets

e However, many problems are undecidable or NP-hard
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