
Modeling & Control of Hybrid Systems

Chapter 2 — Modeling frameworks

• Many modeling frameworks for hybrid systems
⇒ trade-off: modeling power ↔ decision power, tractability

• Hybrid automata:

– very general, high modeling power, but low decision power
– analysis and control → computationally hard

(NP-hard, undecidable problems)
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• Computer simulation and verification tools: Modelica, HyTech,
KRONOS, Chi, 20-sim, UPPAAL, . . .

+ simulation models can represent plant with high degree of
detail (high modeling power)

- computationally very demanding for large systems
- difficult to understand from simulation how behavior depends

on model parameters

• In this chapter: special classes of hybrid systems for which
tractable analysis and control design techniques are available
(cf. next chapters)
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Overview

1. Piecewise affine systems (PWA)

2. Mixed Logical Dynamical systems (MLD)

3. Linear Complementarity systems (LC)

4. Extended Linear Complementarity systems (ELC)

5. Max-Min-Plus-Scaling systems (MMPS)

6. Equivalence of MLD, LC, ELC, PWA and MMPS systems

7. Timed automata

8. Timed Petri nets
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1. Piecewise affine (PWA) systems

• PWA systems are described by

x(k +1) = Aix(k)+Biu(k)+ fi

y(k) = Cix(k)+Diu(k)+gi
for

[
x(k)
u(k)

]

∈ Ωi, i = 1, . . . ,N

• Ω1, . . . ,ΩN: convex polyhedra (i.e., given by finite number of linear
inequalities) in input/state space, non-overlapping interiors

• PWA can be used as approximation of nonlinear model

x(k +1) = Nx(x(k),u(k))
y(k) = Ny(x(k),u(k))

→ “simplest” extension of linear systems that can still model
non-linear & non-smooth processes with arbitrary accuracy
+ are capable of handling hybrid phenomena
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Example of PWA model
Integrator with upper saturation:

x(k +1) =

{

x(k)+u(k) if x(k)+u(k) 6 1

1 if x(k)+u(k) > 1

y(k) = x(k)
u(k)

x(k)x(k)+u(k) < 1

x(k)+u(k) > 1
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2. Mixed Logical Dynamical (MLD) systems
2.1 Preliminaries

• Boolean operators:
∧ (and), ∨ (or), ∼ (not), ⇒ (implies), ⇔ (iff), ⊕ (xor)

X1 X2 X1∧X2 X1∨X2 ∼X1 X1 ⇒ X2 X1 ⇔ X2 X1⊕X2

T T T T F T T F
T F F T F F F T
F T F T T T F T
F F F F T T T F

• Properties:

– X1 ⇒ X2 is same as ∼X1∨X2

– X1 ⇒ X2 is same as ∼X2 ⇒∼X1

– X1 ⇔ X2 is same as (X1 ⇒ X2)∧ (X2 ⇒ X1)
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• Associate with literal Xi logical variable δi ∈ {0,1}:
δi = 1 iff Xi = T, δi = 0 iff Xi = F
→ compound statement can be transformed into

linear integer program

• Examples:

* X1∧X2 equivalent to δ1 = δ2 = 1

* X1∨X2 equivalent to δ1+δ2 > 1

* ∼X1 equivalent to δ1 = 0

* X1 ⇒ X2 equivalent to δ1−δ2 6 0

* X1 ⇔ X2 equivalent to δ1−δ2 = 0

* X1⊕X2 equivalent to δ1+δ2 = 1

• For f : R
n → R and x ∈ X with X bounded, define

M
def
= max

x∈X

f (x) m
def
= min

x∈X
f (x)
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• Equivalences:

* [ f (x) 6 0]∧ [δ = 1] true iff f (x)−δ 6 −1+m(1−δ )

* [ f (x) 6 0]∨ [δ = 1] true iff f (x) 6 Mδ
* ∼[ f (x) 6 0] true iff f (x) > ε (with ε machine precision)
* [ f (x) 6 0] ⇒ [δ = 1] true iff f (x) > ε +(m− ε)δ

* [ f (x) 6 0] ⇔ [δ = 1] true iff

{

f (x) 6 M(1−δ )

f (x) > ε +(m− ε)δ

• Product δ1δ2 can be replaced by auxiliary variable δ3 = δ1δ2

Since [δ3 = 1] ⇔ [δ1 = 1]∧ [δ2 = 1],

δ3 = δ1δ2 is equivalent to







−δ1+δ3 6 0

−δ2+δ3 6 0

δ1+δ2−δ3 6 1
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• δ f (x) can be replaced by auxiliary real variable y = δ f (x)
with [δ = 0] ⇒ [y = 0], [δ = 1] ⇒ [y = f (x)], or equivalently







y 6 Mδ
y > mδ
y 6 f (x)−m(1−δ )

y > f (x)−M(1−δ )
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2.2 Mixed logical dynamical (MLD) systems

• x(k +1) = Ax(k)+B1u(k)+B2δ (k)+B3z(k)

y(k) = Cx(k)+D1u(k)+D2δ (k)+D3z(k)

E1x(k)+E2u(k)+E3δ (k)+E4z(k) 6 g5,

• x(k) = [ xr
T(k) xb

T(k) ]T with xr(k) real-valued, xb(k) boolean
z(k): real-valued auxiliary variables
δ (k): boolean auxiliary variables

• Applications: PWA systems, systems with discrete inputs, quali-
tative inputs, bilinear systems, finite state machines

• Reference: A. Bemporad and M. Morari, “Control of systems integrating

logic, dynamics, and constraints,” Automatica, vol. 35, no. 3, pp. 407–427,

March 1999.
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2.3 Example

• Consider PWA system:

x(k +1) =

{

0.8x(k)+u(k) if x(k) > 0

−0.8x(k)+u(k) if x(k) < 0

where x(k) ∈ [−10,10] and u(k) ∈ [−1,1]

• Associate binary variable δ (k) to condition x(k) > 0
such that [δ (k) = 1] ⇔ [x(k) > 0] or

−mδ (k) 6 x(k)−m

−(M + ε)δ (k) 6 −x(k)− ε

where M = −m = 10, and ε is machine precision

• PWA system can be rewritten as

x(k +1) = 1.6δ (k)x(k)−0.8x(k)+u(k) hs mod.11



• x(k +1) = 1.6δ (k)x(k)−0.8x(k)+u(k)

• Define new variable z(k) = δ (k)x(k) or

z(k) 6 Mδ (k)
z(k) > mδ (k)
z(k) 6 x(k)−m(1−δ (k))
z(k) > x(k)−M(1−δ (k))

• PWA system now becomes

x(k +1) = 1.6z(k)−0.8x(k)+u(k)

subject to linear constraints above → MLD
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3. Linear Complementarity (LC) systems

• LC systems:

x(k +1) = Ax(k)+B1u(k)+B2w(k)
y(k) = Cx(k)+D1u(k)+D2w(k)
v(k) = E1x(k)+E2u(k)+E3w(k)+ e4

0 6 v(k) ⊥ w(k) > 0

• v(k), w(k): “complementarity variables” (real-valued)

• Applications: constrained mechanical systems, electrical networks
with ideal diodes, dynamical systems with PWA relations, variable-
structure systems, projected dynamical systems

• Examples: two-cars system, boost converter (continuous-time
LC systems)
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4. Extended Linear Complementarity (ELC) systems

• ELC systems:

x(k +1) = Ax(k)+B1u(k)+B2d(k) (1)
y(k) = Cx(k)+D1u(k)+D2d(k) (2)
E1x(k)+E2u(k)+E3d(k) 6 e4 (3)

p

∑
i=1

∏
j∈φi

(
e4−E1x(k)−E2u(k)−E3d(k)

)

j
= 0 (4)

• d(k): real-valued auxiliary variable

• Condition (4) is equivalent to

∏
j∈φi

(
e4−E1x(k)−E2u(k)−E3d(k)

)

j
= 0 for each i ∈ {1, . . . , p}

→ system of linear inequalities with p groups, in each group
at least one inequality should hold with equality hs mod.14



5. Max-Min-Plus-Scaling (MMPS) systems

• Max-min-plus-scaling expression:

f := xi|α|max( fk, fl)|min( fk, fl)| fk + fl|β fk

with α, β ∈ R and fk, fl again MMPS expressions.

• Example: 5x1−3x2+7+max(min(2x1,−8x2),x2−3x3)

• MMPS systems:

x(k +1) = Mx(x(k),u(k),d(k))
y(k) = My(x(k),u(k),d(k))
Mc(x(k),u(k),d(k)) 6 c

with Mx, My, Mc MMPS expressions

• d(k): real-valued auxiliary variables

hs mod.15



5. Max-Min-Plus-Scaling (MMPS) systems (continued)

• Applications:

– discrete-event systems (also max-plus)
– traffic-signal controlled intersection
– railway networks
– manufacturing systems
– systems with soft & hard synchronization constraints
– logistic systems
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Example of MMPS system

• Integrator with upper saturation:

x(k +1) =

{

x(k)+u(k) if x(k)+u(k) 6 1

1 if x(k)+u(k) > 1

y(k) = x(k)

can be recast as

x(k +1) = min(x(k)+u(k),1)

y(k) = x(k)
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6. Equivalence of MLD, LC, ELC, PWA and MMPS systems

Equivalence between model classes A and B:
for each model ∈ A there exists model ∈ B with same input/output
behavior (+ vice versa)

*

*
*

*

MLD

LC

ELC

PWA MMPS
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Equivalence of MLD, LC, ELC, PWA and MMPS systems

• Each subclass has own advantages:

– stability criteria for PWA
– control and verification techniques for MLD
– control techniques for MMPS
– conditions of existence and uniqueness of solutions for LC

→ transfer techniques from one class to other

• It depends on the application which class is best suited
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6.1 MLD and LC systems
Proposition Every MLD system can be written as LC system.

• δi(k) ∈ {0,1} is equivalent to 0 6 δi(k) ⊥ 1−δi(k) > 0
→ introduce auxiliary variable p(k) = [1 1 . . . 1]T−δ (k) with

0 6 δ (k) ⊥ p(k) > 0

• For constraint E1x(k)+E2u(k)+E3δ (k)+E4z(k) 6 g5, introduce
auxiliary variables q(k) = g5−E1x(k)−E2u(k)−E3δ (k)−E4z(k) > 0
and r(k) = 0 with

0 6 q(k) ⊥ r(k) > 0
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• For LC: all variables > 0
→ split real-valued variable z(k) in “positive” and “negative part”:
z(k) = z+(k)−z−(k) with z+(k) = max(0,z(k)), z−(k) = max(0,−z(k))
or 0 6 z+(k) ⊥ z−(k) > 0

• Results in LC system:

x(k +1) = Ax(k)+B1u(k)+ [B2 0 B3 −B3]w(k)

y(k) = Cx(k)+D1u(k)+ [D2 0 D3 −D3]w(k)






p(k)
q(k)
s(k)
t(k)







︸ ︷︷ ︸
=:v(k)

=







e
g5−E1x(k)−E2u(k)

0
0







+







−I 0 0 0
−E3 0 −E4 E4

0 0 0 I
0 0 I 0













δ (k)
r(k)

z+(k)
z−(k)







︸ ︷︷ ︸
=:w(k)

0 6 v(k)⊥w(k) > 0
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Proposition Every LC system can be written as MLD provided that
w(k) and v(k) are bounded.

• LC complementarity condition 0 6 v(k)⊥w(k) > 0 implies that
for each i we have vi(k) = 0, wi(k) > 0 or vi(k) > 0, wi(k) = 0

• Introduce boolean vector δ (k) such that

vi(k) = 0, wi(k) > 0 ↔ δi(k) = 1

vi(k) > 0, wi(k) = 0 ↔ δi(k) = 0

• Can be achieved by introducing constraints

w(k) 6 Mwδ (k)

v(k) 6 Mv([1 1 . . . 1]T−δ (k))
w(k),v(k) > 0

with Mw,Mv diagonal matrices containing upper bounds on w(k),v(k)
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• Note: Upper bounds usually known in practice due to physical
reasons/insight.

• Finally results in MLD model

x(k +1) = Ax(k)+B1u(k)+B2z(k)

y(k) = Cx(k)+D1u(k)+D2z(k)






0
E1

0
−E1







x(k)+







0
E2

0
−E2







u(k)+







−Mw

Mv

0
0







δ (k)+







I
E3

−I
−E3







z(k) 6







0
Mve− e4

0
e4
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6.2 LC and ELC systems

Proposition Every LC system can be written as ELC system.

• v(k)⊥w(k) is equivalent to ∑
i

vi(k)wi(k) = 0
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6.3 PWA and MLD systems

Proposition Well-posed PWA system can be rewritten as MLD sys-
tem assuming that set of feasible states and inputs is bounded.

• Cf. examples.

Proposition Completely well-posed MLD can be rewritten as PWA.

• If δ (k) ∈ {0, 1}s → 2s possible combinations

• For each combination MLD constraint

E1x(k)+E2u(k)+E3δ (k)+E4z(k) 6 g5

defines polyhedral region in x/u/z space

• For each combination, z(k) is linear function of u(k) and x(k) due
to well-posedness + linearity of all constraints

• Results in linear state space model for each polyhedral region
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6.4 MMPS and ELC systems

Proposition The classes of MMPS and ELC systems coincide.

MMPS ⊆ ELC

• Basic constructors for MMPS expressions fit ELC framework:

– Expressions of form f = xi, f = α, f = fk + fl, f = β fk result in
linear equations

– f = max( fk, fl) = −min(− fk,− fl) can be rewritten as

f − fk > 0, f − fl > 0, ( f − fk)( f − fl) = 0

→ is ELC expression

• Two or more ELC systems can be combined into one large ELC
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6.4 MMPS and ELC systems (continued)

ELC ⊆ MMPS

• Linear equations are MMPS expressions (albeit without max or
min)

• Complementarity condition can be rewritten as

∀i,∃ j ∈ φi such that
(
e4−E1x(k)−E2u(k)−E3d(k)

)

j
︸ ︷︷ ︸

>0

= 0

So

min
j∈φi

(
e4−E1x(k)−E2u(k)−E3d(k)

)

j
= 0 for each i
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6.5 MLD and ELC systems

Proposition Every MLD system can be rewritten as ELC system.

• Condition δi(k) ∈ {0,1} is equivalent to ELC conditions

−δi(k) 6 0
δi(k) 6 1
δi(k)(1−δi(k)) = 0

• Note: condition δi(k)∈{0,1} also equivalent to MMPS constraints

max(−δi(k),δi(k)−1) = 0

or
min(δi(k),1−δi(k)) = 0
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Proposition Every ELC system can be written as MLD system, pro-
vided that e4−E1x(k)−E2u(k)−E3d(k) is bounded.

• Introduce conditions

(e4) j − (E1x(k)+E2u(k)+E3d(k)) j 6 M jδ j(k) for each j ∈ φi

∑
j∈φi

δ j(k) 6 #φi−1

with δ j(k) ∈ {0,1} auxiliary variables,
and M j upper bound for (e4−E1x(k)−E2u(k)−E3d(k)) j

• By last condition at least one δh(k) is zero for some h ∈ φi

→ 1st inequality and ELC inequality (e4) j − (E1x(k)+E2u(k)
+E3d(k)) j > 0 degenerate to equality condition for j = h

• Hence, (nonlinear) ELC complementarity condition can be re-
placed by above (linear) equations → MLD system

hs mod.29



6.6 Example

• Consider

x(k +1) =

{
0.8x(k)+u(k) if x(k) > 0
−0.8x(k)+u(k) if x(k) < 0

with m 6 x(k) 6 M

• MLD:
x(k +1) = −0.8x(k)+u(k)+1.6z(k)
−mδ (k) 6 x(k)−m x(k) 6 (M + ε)δ (k)− ε

z(k) 6 Mδ (k) z(k) > mδ (k)
z(k) 6 x(k)−m(1−δ (k)) z(k) > x(k)−M(1−δ (k))

with δ (k) ∈ {0,1}

• MMPS:

x(k +1) = −0.8x(k)+1.6max(0,x(k))+u(k) hs mod.30



6.6 Example (continued)

• Consider

x(k +1) =

{
0.8x(k)+u(k) if x(k) > 0
−0.8x(k)+u(k) if x(k) < 0

• LC:

x(k +1) = −0.8x(k)+u(k)+1.6z(k)
0 6 w(k) = −x(k)+ z(k) ⊥ z(k) > 0

• ELC:

x(k +1) = −0.8x(k)+u(k)+1.6d(k)
−d(k) 6 0, x(k)−d(k) 6 0,

(
x(k)−d(k)

)(
−d(k)

)
= 0
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7. Timed automata

• Timed automata involve simple continuous dynamics:

– all differential equations of form ẋ = 1

– all invariants, guards, etc. involve comparison of real-valued
states with constants (e.g., x = 1, x < 2, x > 0, etc.)

• Timed automata are limited for modeling physical systems

• However, very well suited for encoding timing constraints such as
“event A must take place at least 2 seconds after event B and not
more than 5 seconds before event C”

• Applications: multimedia, Internet, audio protocol verification
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7.1 Rectangular sets

• Subset of R
n set is called rectangular if it can be written as finite

boolean combination of constraints of form

xi 6 a, xi < b, xi = c, xi > d, xi > e

• Rectangular sets are “rectangles” or “boxes” in R
n whose sides

are aligned with the axes, or unions of such rectangles/boxes

• Examples:

– {(x1,x2) | (x1 > 0)∧ (x1 6 2)∧ (x2 > 1)∧ (x2 6 2)}

– {(x1,x2) | ((x1 > 0)∧ (x2 = 0))∨ ((x1 = 0)∧ (x2 > 0))}

– empty set (e.g., ∅ = {(x1,x2) | (x1 > 1)∧ (x1 6 0))}

• However, set {(x1,x2) | x1 = 2x2} is not rectangular
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7.2 Timed automaton

• Timed automaton is hybrid automaton with following characteris-
tics:

– automaton involves differential equations of form ẋi = 1
continuous variables governed by this differential equation are
called “clocks” or “timers”

– sets involved in definition of initial states, guards, and invari-
ants are rectangular sets

– reset maps involve either rectangular set, or may leave certain
states unchanged
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7.3 Example of timed automaton

q1

ẋ1 = 1
ẋ2 = 1

x2 6 3

q2

ẋ1 = 1
ẋ2 = 1

x1 6 5

x2 > 2

x1 > 4

x1 := 3∧ x2 := 0

x1 := 0

x1 = x2 = 0
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8. Timed Petri nets
8.1 Petri nets

• Graphical representation: bipartite directed graph

– places (circles) → activities
– transitions (bars) → events, actions

p1 p2

p3

p4 p5

t1

t2 t3

t4 t5
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• marking → tokens are assigned to places

• execution of Petri net:

– transition enabled if all input places (•t) contain at least 1 token
– enabled transition can fire:
∗ one token is removed from each input place (•t)
∗ one token is deposited in each output place (t•)

p1p1 p2p2

p3p3

p4p4 p5p5

t1t1

t2t2 t3t3

t4t4 t5t5

• synchronization & choice
hs mod.37



8.2 Timed Petri nets

• Untimed Petri net describes order in which events can occur,
but no timing

• Timed Petri → timing, transition should be executed within cer-
tain time interval after it becomes enabled

– discrete state variables (markings, mθ(p))
– continuous state variables (arrival times, Mθ(p))

• Mθ(p) := {θ1, . . . ,θmθ (p)} with arrival times θ1 6 θ2 6 . . . 6 θmθ (p) of
mθ(p) tokens in place p

• For each transition t we define interval [L(t),U(t)]
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8.2 Timed Petri nets (continued)

• Transition t becomes enabled at

max
p∈•t

minMθ(p)

• Then transition t may fire at some time

θ ∈ [max
p∈•t

minMθ(p)+L(t),max
p∈•t

minMθ(p)+U(t)]

provided t is enabled during whole interval

• If enabling condition is still valid at final time of firing interval, then
transition is forced to fire

• Many techniques for untimed Petri nets can be extended to timed
Petri nets

• However, many problems are undecidable or NP-hard
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