
Modeling & Control of Hybrid Systems

Chapter 2 — Modeling frameworks

• Many modeling frameworks for hybrid systems
⇒ trade-off: modeling power ↔ decision power, tractability

• Hybrid automata:

– very general, high modeling power, but low decision power
– analysis and control → computationally hard

(NP-hard, undecidable problems)

hs mod.1

• Computer simulation and verification tools: Modelica, HyTech,
KRONOS, Chi, 20-sim, UPPAAL, . . .

+ simulation models can represent plant with high degree of
detail (high modeling power)

- computationally very demanding for large systems
- difficult to understand from simulation how behavior depends

on model parameters

• In this chapter: special classes of hybrid systems for which
tractable analysis and control design techniques are available
(cf. next chapters)

hs mod.2

Overview

1. Piecewise affine systems (PWA)

2. Mixed Logical Dynamical systems (MLD)

3. Linear Complementarity systems (LC)

4. Extended Linear Complementarity systems (ELC)

5. Max-Min-Plus-Scaling systems (MMPS)

6. Equivalence of MLD, LC, ELC, PWA and MMPS systems

7. Timed automata

8. Timed Petri nets

hs mod.3

1. Piecewise affine (PWA) systems

• PWA systems are described by

x(k +1) = Aix(k)+Biu(k)+ fi

y(k) = Cix(k)+Diu(k)+gi
for

[
x(k)
u(k)

]

∈ Ωi, i = 1, . . . ,N

• Ω1, . . . ,ΩN: convex polyhedra (i.e., given by finite number of linear
inequalities) in input/state space, non-overlapping interiors

• PWA can be used as approximation of nonlinear model

x(k +1) = Nx(x(k),u(k))
y(k) = Ny(x(k),u(k))

→ “simplest” extension of linear systems that can still model
non-linear & non-smooth processes with arbitrary accuracy
+ are capable of handling hybrid phenomena

hs mod.4

Example of PWA model
Integrator with upper saturation:

x(k +1) =

{

x(k)+u(k) if x(k)+u(k) 6 1

1 if x(k)+u(k) > 1

y(k) = x(k)
u(k)

x(k)x(k)+u(k) < 1

x(k)+u(k) > 1

hs mod.5

2. Mixed Logical Dynamical (MLD) systems
2.1 Preliminaries

• Boolean operators:
∧ (and), ∨ (or), ∼ (not), ⇒ (implies), ⇔ (iff), ⊕ (xor)

X1 X2 X1∧X2 X1∨X2 ∼X1 X1 ⇒ X2 X1 ⇔ X2 X1⊕X2

T T T T F T T F
T F F T F F F T
F T F T T T F T
F F F F T T T F

• Properties:

– X1 ⇒ X2 is same as ∼X1∨X2

– X1 ⇒ X2 is same as ∼X2 ⇒∼X1

– X1 ⇔ X2 is same as (X1 ⇒ X2)∧ (X2 ⇒ X1)
hs mod.6

• Associate with literal Xi logical variable δi ∈ {0,1}:
δi = 1 iff Xi = T, δi = 0 iff Xi = F
→ compound statement can be transformed into

linear integer program

• Examples:

* X1∧X2 equivalent to δ1 = δ2 = 1

* X1∨X2 equivalent to δ1+δ2 > 1

* ∼X1 equivalent to δ1 = 0

* X1 ⇒ X2 equivalent to δ1−δ2 6 0

* X1 ⇔ X2 equivalent to δ1−δ2 = 0

* X1⊕X2 equivalent to δ1+δ2 = 1

• For f : R
n → R and x ∈ X with X bounded, define

M
def
= max

x∈X

f (x) m
def
= min

x∈X
f (x)

hs mod.7

• Equivalences:

* [f (x) 6 0]∧ [δ = 1] true iff f (x)−δ 6 −1+m(1−δ)

* [f (x) 6 0]∨ [δ = 1] true iff f (x) 6 Mδ
* ∼[f (x) 6 0] true iff f (x) > ε (with ε machine precision)
* [f (x) 6 0] ⇒ [δ = 1] true iff f (x) > ε +(m− ε)δ

* [f (x) 6 0] ⇔ [δ = 1] true iff

{

f (x) 6 M(1−δ)

f (x) > ε +(m− ε)δ

• Product δ1δ2 can be replaced by auxiliary variable δ3 = δ1δ2

Since [δ3 = 1] ⇔ [δ1 = 1]∧ [δ2 = 1],

δ3 = δ1δ2 is equivalent to







−δ1+δ3 6 0

−δ2+δ3 6 0

δ1+δ2−δ3 6 1

hs mod.8

• δ f (x) can be replaced by auxiliary real variable y = δ f (x)
with [δ = 0] ⇒ [y = 0], [δ = 1] ⇒ [y = f (x)], or equivalently







y 6 Mδ
y > mδ
y 6 f (x)−m(1−δ)

y > f (x)−M(1−δ)

hs mod.9

2.2 Mixed logical dynamical (MLD) systems

• x(k +1) = Ax(k)+B1u(k)+B2δ (k)+B3z(k)

y(k) = Cx(k)+D1u(k)+D2δ (k)+D3z(k)

E1x(k)+E2u(k)+E3δ (k)+E4z(k) 6 g5,

• x(k) = [xr
T(k) xb

T(k)]T with xr(k) real-valued, xb(k) boolean
z(k): real-valued auxiliary variables
δ (k): boolean auxiliary variables

• Applications: PWA systems, systems with discrete inputs, quali-
tative inputs, bilinear systems, finite state machines

• Reference: A. Bemporad and M. Morari, “Control of systems integrating

logic, dynamics, and constraints,” Automatica, vol. 35, no. 3, pp. 407–427,

March 1999.

hs mod.10

2.3 Example

• Consider PWA system:

x(k +1) =

{

0.8x(k)+u(k) if x(k) > 0

−0.8x(k)+u(k) if x(k) < 0

where x(k) ∈ [−10,10] and u(k) ∈ [−1,1]

• Associate binary variable δ (k) to condition x(k) > 0
such that [δ (k) = 1] ⇔ [x(k) > 0] or

−mδ (k) 6 x(k)−m

−(M + ε)δ (k) 6 −x(k)− ε

where M = −m = 10, and ε is machine precision

• PWA system can be rewritten as

x(k +1) = 1.6δ (k)x(k)−0.8x(k)+u(k) hs mod.11

• x(k +1) = 1.6δ (k)x(k)−0.8x(k)+u(k)

• Define new variable z(k) = δ (k)x(k) or

z(k) 6 Mδ (k)
z(k) > mδ (k)
z(k) 6 x(k)−m(1−δ (k))
z(k) > x(k)−M(1−δ (k))

• PWA system now becomes

x(k +1) = 1.6z(k)−0.8x(k)+u(k)

subject to linear constraints above → MLD

hs mod.12

3. Linear Complementarity (LC) systems

• LC systems:

x(k +1) = Ax(k)+B1u(k)+B2w(k)
y(k) = Cx(k)+D1u(k)+D2w(k)
v(k) = E1x(k)+E2u(k)+E3w(k)+ e4

0 6 v(k) ⊥ w(k) > 0

• v(k), w(k): “complementarity variables” (real-valued)

• Applications: constrained mechanical systems, electrical networks
with ideal diodes, dynamical systems with PWA relations, variable-
structure systems, projected dynamical systems

• Examples: two-cars system, boost converter (continuous-time
LC systems)

hs mod.13

4. Extended Linear Complementarity (ELC) systems

• ELC systems:

x(k +1) = Ax(k)+B1u(k)+B2d(k) (1)
y(k) = Cx(k)+D1u(k)+D2d(k) (2)
E1x(k)+E2u(k)+E3d(k) 6 e4 (3)

p

∑
i=1

∏
j∈φi

(
e4−E1x(k)−E2u(k)−E3d(k)

)

j
= 0 (4)

• d(k): real-valued auxiliary variable

• Condition (4) is equivalent to

∏
j∈φi

(
e4−E1x(k)−E2u(k)−E3d(k)

)

j
= 0 for each i ∈ {1, . . . , p}

→ system of linear inequalities with p groups, in each group
at least one inequality should hold with equality hs mod.14

5. Max-Min-Plus-Scaling (MMPS) systems

• Max-min-plus-scaling expression:

f := xi|α|max(fk, fl)|min(fk, fl)| fk + fl|β fk

with α, β ∈ R and fk, fl again MMPS expressions.

• Example: 5x1−3x2+7+max(min(2x1,−8x2),x2−3x3)

• MMPS systems:

x(k +1) = Mx(x(k),u(k),d(k))
y(k) = My(x(k),u(k),d(k))
Mc(x(k),u(k),d(k)) 6 c

with Mx, My, Mc MMPS expressions

• d(k): real-valued auxiliary variables

hs mod.15

5. Max-Min-Plus-Scaling (MMPS) systems (continued)

• Applications:

– discrete-event systems (also max-plus)
– traffic-signal controlled intersection
– railway networks
– manufacturing systems
– systems with soft & hard synchronization constraints
– logistic systems

hs mod.16

Example of MMPS system

• Integrator with upper saturation:

x(k +1) =

{

x(k)+u(k) if x(k)+u(k) 6 1

1 if x(k)+u(k) > 1

y(k) = x(k)

can be recast as

x(k +1) = min(x(k)+u(k),1)

y(k) = x(k)

hs mod.17

6. Equivalence of MLD, LC, ELC, PWA and MMPS systems

Equivalence between model classes A and B:
for each model ∈ A there exists model ∈ B with same input/output
behavior (+ vice versa)

*

*
*

*

MLD

LC

ELC

PWA MMPS
hs mod.18

Equivalence of MLD, LC, ELC, PWA and MMPS systems

• Each subclass has own advantages:

– stability criteria for PWA
– control and verification techniques for MLD
– control techniques for MMPS
– conditions of existence and uniqueness of solutions for LC

→ transfer techniques from one class to other

• It depends on the application which class is best suited

hs mod.19

6.1 MLD and LC systems
Proposition Every MLD system can be written as LC system.

• δi(k) ∈ {0,1} is equivalent to 0 6 δi(k) ⊥ 1−δi(k) > 0
→ introduce auxiliary variable p(k) = [1 1 . . . 1]T−δ (k) with

0 6 δ (k) ⊥ p(k) > 0

• For constraint E1x(k)+E2u(k)+E3δ (k)+E4z(k) 6 g5, introduce
auxiliary variables q(k) = g5−E1x(k)−E2u(k)−E3δ (k)−E4z(k) > 0
and r(k) = 0 with

0 6 q(k) ⊥ r(k) > 0

hs mod.20

• For LC: all variables > 0
→ split real-valued variable z(k) in “positive” and “negative part”:
z(k) = z+(k)−z−(k) with z+(k) = max(0,z(k)), z−(k) = max(0,−z(k))
or 0 6 z+(k) ⊥ z−(k) > 0

• Results in LC system:

x(k +1) = Ax(k)+B1u(k)+ [B2 0 B3 −B3]w(k)

y(k) = Cx(k)+D1u(k)+ [D2 0 D3 −D3]w(k)






p(k)
q(k)
s(k)
t(k)







︸ ︷︷ ︸
=:v(k)

=







e
g5−E1x(k)−E2u(k)

0
0







+







−I 0 0 0
−E3 0 −E4 E4

0 0 0 I
0 0 I 0













δ (k)
r(k)

z+(k)
z−(k)







︸ ︷︷ ︸
=:w(k)

0 6 v(k)⊥w(k) > 0

hs mod.21

Proposition Every LC system can be written as MLD provided that
w(k) and v(k) are bounded.

• LC complementarity condition 0 6 v(k)⊥w(k) > 0 implies that
for each i we have vi(k) = 0, wi(k) > 0 or vi(k) > 0, wi(k) = 0

• Introduce boolean vector δ (k) such that

vi(k) = 0, wi(k) > 0 ↔ δi(k) = 1

vi(k) > 0, wi(k) = 0 ↔ δi(k) = 0

• Can be achieved by introducing constraints

w(k) 6 Mwδ (k)

v(k) 6 Mv([1 1 . . . 1]T−δ (k))
w(k),v(k) > 0

with Mw,Mv diagonal matrices containing upper bounds on w(k),v(k)
hs mod.22

• Note: Upper bounds usually known in practice due to physical
reasons/insight.

• Finally results in MLD model

x(k +1) = Ax(k)+B1u(k)+B2z(k)

y(k) = Cx(k)+D1u(k)+D2z(k)






0
E1

0
−E1







x(k)+







0
E2

0
−E2







u(k)+







−Mw

Mv

0
0







δ (k)+







I
E3

−I
−E3







z(k) 6







0
Mve− e4

0
e4







hs mod.23

6.2 LC and ELC systems

Proposition Every LC system can be written as ELC system.

• v(k)⊥w(k) is equivalent to ∑
i

vi(k)wi(k) = 0

hs mod.24

6.3 PWA and MLD systems

Proposition Well-posed PWA system can be rewritten as MLD sys-
tem assuming that set of feasible states and inputs is bounded.

• Cf. examples.

Proposition Completely well-posed MLD can be rewritten as PWA.

• If δ (k) ∈ {0, 1}s → 2s possible combinations

• For each combination MLD constraint

E1x(k)+E2u(k)+E3δ (k)+E4z(k) 6 g5

defines polyhedral region in x/u/z space

• For each combination, z(k) is linear function of u(k) and x(k) due
to well-posedness + linearity of all constraints

• Results in linear state space model for each polyhedral region
hs mod.25

6.4 MMPS and ELC systems

Proposition The classes of MMPS and ELC systems coincide.

MMPS ⊆ ELC

• Basic constructors for MMPS expressions fit ELC framework:

– Expressions of form f = xi, f = α, f = fk + fl, f = β fk result in
linear equations

– f = max(fk, fl) = −min(− fk,− fl) can be rewritten as

f − fk > 0, f − fl > 0, (f − fk)(f − fl) = 0

→ is ELC expression

• Two or more ELC systems can be combined into one large ELC

hs mod.26

6.4 MMPS and ELC systems (continued)

ELC ⊆ MMPS

• Linear equations are MMPS expressions (albeit without max or
min)

• Complementarity condition can be rewritten as

∀i,∃ j ∈ φi such that
(
e4−E1x(k)−E2u(k)−E3d(k)

)

j
︸ ︷︷ ︸

>0

= 0

So

min
j∈φi

(
e4−E1x(k)−E2u(k)−E3d(k)

)

j
= 0 for each i

hs mod.27

6.5 MLD and ELC systems

Proposition Every MLD system can be rewritten as ELC system.

• Condition δi(k) ∈ {0,1} is equivalent to ELC conditions

−δi(k) 6 0
δi(k) 6 1
δi(k)(1−δi(k)) = 0

• Note: condition δi(k)∈{0,1} also equivalent to MMPS constraints

max(−δi(k),δi(k)−1) = 0

or
min(δi(k),1−δi(k)) = 0

hs mod.28

Proposition Every ELC system can be written as MLD system, pro-
vided that e4−E1x(k)−E2u(k)−E3d(k) is bounded.

• Introduce conditions

(e4) j − (E1x(k)+E2u(k)+E3d(k)) j 6 M jδ j(k) for each j ∈ φi

∑
j∈φi

δ j(k) 6 #φi−1

with δ j(k) ∈ {0,1} auxiliary variables,
and M j upper bound for (e4−E1x(k)−E2u(k)−E3d(k)) j

• By last condition at least one δh(k) is zero for some h ∈ φi

→ 1st inequality and ELC inequality (e4) j − (E1x(k)+E2u(k)
+E3d(k)) j > 0 degenerate to equality condition for j = h

• Hence, (nonlinear) ELC complementarity condition can be re-
placed by above (linear) equations → MLD system

hs mod.29

6.6 Example

• Consider

x(k +1) =

{
0.8x(k)+u(k) if x(k) > 0
−0.8x(k)+u(k) if x(k) < 0

with m 6 x(k) 6 M

• MLD:
x(k +1) = −0.8x(k)+u(k)+1.6z(k)
−mδ (k) 6 x(k)−m x(k) 6 (M + ε)δ (k)− ε

z(k) 6 Mδ (k) z(k) > mδ (k)
z(k) 6 x(k)−m(1−δ (k)) z(k) > x(k)−M(1−δ (k))

with δ (k) ∈ {0,1}

• MMPS:

x(k +1) = −0.8x(k)+1.6max(0,x(k))+u(k) hs mod.30

6.6 Example (continued)

• Consider

x(k +1) =

{
0.8x(k)+u(k) if x(k) > 0
−0.8x(k)+u(k) if x(k) < 0

• LC:

x(k +1) = −0.8x(k)+u(k)+1.6z(k)
0 6 w(k) = −x(k)+ z(k) ⊥ z(k) > 0

• ELC:

x(k +1) = −0.8x(k)+u(k)+1.6d(k)
−d(k) 6 0, x(k)−d(k) 6 0,

(
x(k)−d(k)

)(
−d(k)

)
= 0

hs mod.31

7. Timed automata

• Timed automata involve simple continuous dynamics:

– all differential equations of form ẋ = 1

– all invariants, guards, etc. involve comparison of real-valued
states with constants (e.g., x = 1, x < 2, x > 0, etc.)

• Timed automata are limited for modeling physical systems

• However, very well suited for encoding timing constraints such as
“event A must take place at least 2 seconds after event B and not
more than 5 seconds before event C”

• Applications: multimedia, Internet, audio protocol verification

hs mod.32

7.1 Rectangular sets

• Subset of R
n set is called rectangular if it can be written as finite

boolean combination of constraints of form

xi 6 a, xi < b, xi = c, xi > d, xi > e

• Rectangular sets are “rectangles” or “boxes” in R
n whose sides

are aligned with the axes, or unions of such rectangles/boxes

• Examples:

– {(x1,x2) | (x1 > 0)∧ (x1 6 2)∧ (x2 > 1)∧ (x2 6 2)}

– {(x1,x2) | ((x1 > 0)∧ (x2 = 0))∨ ((x1 = 0)∧ (x2 > 0))}

– empty set (e.g., ∅ = {(x1,x2) | (x1 > 1)∧ (x1 6 0))}

• However, set {(x1,x2) | x1 = 2x2} is not rectangular

hs mod.33

7.2 Timed automaton

• Timed automaton is hybrid automaton with following characteris-
tics:

– automaton involves differential equations of form ẋi = 1
continuous variables governed by this differential equation are
called “clocks” or “timers”

– sets involved in definition of initial states, guards, and invari-
ants are rectangular sets

– reset maps involve either rectangular set, or may leave certain
states unchanged

hs mod.34

7.3 Example of timed automaton

q1

ẋ1 = 1
ẋ2 = 1

x2 6 3

q2

ẋ1 = 1
ẋ2 = 1

x1 6 5

x2 > 2

x1 > 4

x1 := 3∧ x2 := 0

x1 := 0

x1 = x2 = 0

hs mod.35

8. Timed Petri nets
8.1 Petri nets

• Graphical representation: bipartite directed graph

– places (circles) → activities
– transitions (bars) → events, actions

p1 p2

p3

p4 p5

t1

t2 t3

t4 t5

hs mod.36

• marking → tokens are assigned to places

• execution of Petri net:

– transition enabled if all input places (•t) contain at least 1 token
– enabled transition can fire:
∗ one token is removed from each input place (•t)
∗ one token is deposited in each output place (t•)

p1p1 p2p2

p3p3

p4p4 p5p5

t1t1

t2t2 t3t3

t4t4 t5t5

• synchronization & choice
hs mod.37

8.2 Timed Petri nets

• Untimed Petri net describes order in which events can occur,
but no timing

• Timed Petri → timing, transition should be executed within cer-
tain time interval after it becomes enabled

– discrete state variables (markings, mθ(p))
– continuous state variables (arrival times, Mθ(p))

• Mθ(p) := {θ1, . . . ,θmθ (p)} with arrival times θ1 6 θ2 6 . . . 6 θmθ (p) of
mθ(p) tokens in place p

• For each transition t we define interval [L(t),U(t)]

hs mod.38

8.2 Timed Petri nets (continued)

• Transition t becomes enabled at

max
p∈•t

minMθ(p)

• Then transition t may fire at some time

θ ∈ [max
p∈•t

minMθ(p)+L(t),max
p∈•t

minMθ(p)+U(t)]

provided t is enabled during whole interval

• If enabling condition is still valid at final time of firing interval, then
transition is forced to fire

• Many techniques for untimed Petri nets can be extended to timed
Petri nets

• However, many problems are undecidable or NP-hard

hs mod.39

