
Modeling & Control of Hybrid Systems

Chapter 3 — Dynamics &
Well-Posedness
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1. Smooth systems: Differential equations

2. Switched systems: Discontinuous differential equations

3. Event times

4. Well-posedness for hybrid automata

5. Well-posedness for complementarity systems
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Key issues

• Solution concepts

• Well-posedness: Existence & uniqueness of solutions
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1. Smooth systems: differential equations
1.1 Solution concept

Description format / syntax / model
↓

solutions / trajectories / executions/ semantics/ behavior

Example : ẋ = f (t,x) x(t0) = x0

A solution trajectory is a function x : [t0, t1] → R
n that is continuous,

differentiable and satisfies x(t0) = x0 and

ẋ(t) = f (t,x(t)) for all t ∈ (t0, t1)

Issue of well-posedness: given initial conditions does there exist
a solution and is it unique ?
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1.2 Well-posedness

Example : ẋ = 2
√

x with x(0) = 0

Two solutions: x(t) = 0 and x(t) = t2

Theorem for local existence and uniqueness of solutions given ini-
tial condition:

Let f (t,x) be piecewise continuous in t and satisfy the following
Lipschitz condition: there exist L > 0 and r > 0 such that

‖ f (t,x)− f (t,y)‖ 6 L‖x− y‖
for all x and y in neighborhood B := {x ∈ R

n | ‖x−x0‖< r} of x0 and
for all t ∈ [t0, t1].

Then there exists δ > 0 such that unique solution exists on [t0, t0+
δ ] starting in x0 at t0.
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1.3 Global well-posedness
Example : ẋ = x2 + 1 with x(0) = 0 has as solution x(t) = tant which
is only locally defined on [0,π/2)

Note that we have limt↑π/2x(t) = ∞ → Finite escape time!

Theorem (Global Lipschitz condition)

Suppose f (t,x) is piecewise continuous in t and satisfies

‖ f (t,x)− f (t,y)‖ 6 L‖x− y‖
for all x, y in R

n and for all t ∈ [t0, t1].

Then unique solution exists on [t0, t1] for any initial state x0 at t0.

Not necessary: ẋ = −x3 is not globally Lipschitz, but has unique
global solutions
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1.3 Global well-posedness (continued)
These “smooth” phenomena also occur in hybrid systems, but for
hybrid systems there is even more awkward stuff due to mode switch-
ing (a.o. Zeno)
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2. Switched systems: Discontinuous differential equations

ẋ =

{

f+(x) if x ∈C+ := {x | φ(x) > 0}
f−(x) if x ∈C− := {x | φ(x) < 0}

• if x in interior of C− or C+: just follow!

• if f−(x) and f+(x) point in same direction: just follow!

• if f+(x) points towards C+ and f−(x) points towards C−: At least
two trajectories
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2.1 Sliding modes

f+(x) points towards C−and f−(x) points towards C+

→ no classical solution

• Relaxation: spatial (hysteresis) ∆, time delay τ, smoothing ε
• Chattering / infinitely fast switching (limit case ∆,ε,τ ↓ 0)

Filippov’s convex definition : convex combination of both dynam-
ics

ẋ = λ f+(x)+(1−λ ) f−(x) with 0 6 λ 6 1

such that x moves (“slides”) along surface φ(x) = 0 hs dyn.8



2.2 Differential inclusions

ẋ = λ f+(x)+(1−λ ) f−(x) with











λ = 1, if φ(x) > 0

0 6 λ 6 1, if φ(x) = 0

λ = 0, if φ(x) < 0,

i.e., λ ∈ 1
2 + 1

2sgn(φ(x)) with sgn(a) :=











{1}, if a > 0

[−1,1], if a = 0

{−1}, if a < 0

Differential inclusion ẋ ∈ F(x) with set-valued

F(x) = { f+(x)} (φ(x) > 0)

F(x) = { f−(x)} (φ(x) < 0),

F(x) = {λ f1(x)+(1−λ ) f2(x) | λ ∈ [0,1]} (φ(x) = 0),

Definition : Function x : [a,b]→ R
n is solution of ẋ ∈ F(x) if x is abso-

lutely continuous and satisfies ẋ(t) ∈ F(x(t)) for almost all t ∈ [a,b]
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Example

φ(x) = x2, f+(x) = (x2
1,−x1+ 1

2x2
1)

T, f−(x) = (1,x2
1)

T

Sliding for x0 = (1,0)T as f+(x0) = (1,−1
2)

T and f−(x0) = (1,1)T

Sliding behavior: find convex combination such that φ(x) = 0

dφ
dt

(x(t)) =
dφ
dx

ẋ(t) = ẋ2(t) = λ (−x1+ 1
2x2

1)+(1−λ )x2
1 = 0 →

λ (x) =
x1

1
2x1+1

Sliding mode is valid as long as λ (x) ∈ [0,1], “invariant”

ẋ1 = λx2
1+(1−λ ) =

2x3
1− x1+2
x1+2

as long as 0 6 x1 6 2
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Example (continued)
Initial state (0,−1

3), at time t = 1 the surface x2 = 0 is hit in (1,0)T,
trajectory slides along surface till time tleave ≈ 1.531 (x1(tleave) = 2),
and then leaves surface again to C+
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2.3 A well-posedness result
for sliding modes

Theorem

Assume

• f− and f+ are continuously differentiable (C1)

• φ is C2, discontinuity vector h(x) := f+(x)− f−(x) is C1

If for each x with φ(x) = 0 at least one of the conditions

• f+(x) points towards C− or

• f−(x) points towards C+

holds (where for different points x a different condition may hold),
then the Filippov solutions exist and are unique
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3. Event times
3.1 Admissible event times

x1 x2

event times set E is {0,1,1+ π
2}

Definition : Set E ⊂ R+ is admissible event times set, if it is closed
and countable, and 0∈ E (0: initial time)
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3.2 Accumulation points

• t ∈ E is said to be left accumulation point of E , if for all t ′ > t
(t, t ′)∩E is not empty

• t is called right accumulation point, if for all t ′ < t (t ′, t)∩E is not
empty

Definition Admissible event times set E (or the corresponding so-
lution) is said to be left (right) Zeno free, if it does not contain any
left (right) accumulation points

• Bouncing ball → right accumulation point

• Time-reversed bouncing ball → left accumulation point
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3.3 Effects of choice of solution concept

Filippov’s example (reverse of Ch. 1):

ẋ1 = sgn(x1)−2sgn(x2)

ẋ2 = 2sgn(x1)+sgn(x2), 0 2 4 6

−2

0

2

4

x1

x2

Left accumulation point → E is not left Zeno free!

Well-posedness:

• If solution concept left Zeno free: only one solution from origin
(Filippov’s example)

• If solution concept right Zeno free: only local existence (bouncing
ball)

• If solution concept allows Zeno, then multiple solutions from ori-
gin (Filippov’s example) and global solutions for bouncing ball
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4. Well-posedness for hybrid automata

Hybrid automaton H = (Q,X , f , Init, Inv,E,G,R)

• Hybrid state: (q,x)

• Evolution of continuous state in mode q: ẋ = f (q,x)

• Invariant Inv: describes conditions that continuous state has to
satisfy at given mode

• Guard G: specifies subset of state space where certain transition
is enabled

• Reset map R: specifies how new continuous states are related to
previous continuous states
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(q0,x0) ∈ Init

q0

ẋ = f (q0,x)
x ∈ Inv(q0)

q1

ẋ = f (q1,x)
x ∈ Inv(q1)

q2

ẋ = f (q2,x)
x ∈ Inv(q2)

G(q0,q1)

G(q1,q0)

G(q1,q2)

G(q2,q1)

G(q0,q2)

G(q2,q0)

R(q0,q1)

R(q1,q0)

R(q1,q2)

R(q2,q1)

R(q0,q2)

R(q2,q0)
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4.1 Hybrid time trajectory

Definition : Hybrid time trajectory τ = {Ii}N
i=0 is finite (N < ∞) or infi-

nite (N = ∞) sequence of intervals of real line, such that

• Ii = [τi,τ ′
i ] with τi 6 τ ′

i = τi+1 for 0 6 i < N;

• if N < ∞, either IN = [τN,τ ′
N] with τN 6 τ ′

N 6= ∞ or IN = [τN,τ ′
N) with

τN 6 τ ′
N 6 ∞.

• For instance,

τ = {[0,2], [2,3],{3},{3}, [3,4.5],{4.5}, [4.5,6]}
τ = {[0,2], [2,3], [3,4.5],{4.5}, [4.5,6], [6,∞)}

Ii = [1− 1
2i

,1− 1
2i+1

]

• E = {τ0,τ1,τ2, . . .}
• Note: No left accumulations of event times! hs dyn.18

4.2 Well-posedness for hybrid automata

• Initial well-posedness : if hybrid automaton is non-blocking +
deterministic, i.e., if there is no

– dead-lock : no smooth continuation and no jump possible
– splitting of trajectories (non-determinism)

→ there exist theoretical conditions, but not easy to check
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4.2 Well-posedness for hybrid automata (continued)

• However, no statements by hybrid automata theory on existence,
absence, or continuation

– beyond live-lock : an infinite number of jumps at one time in-
stant, so no solution on [0,ε) for some ε > 0

– for left accumulations of event times → prevent uniqueness:

– for right accumulations of event times → prevent global exis-
tence
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4.3 Obstruction — local existence
→ Live-lock: Infinitely many jumps at one time instant

ball 1 ball 2 ball 3

v1(0) = 1 v2(0) = 0 v3(0) = 0 v1 : 1 1
2

1
2

3
8

3
8

11
32 . . . 1

3

v2 : 0 1
2

1
4

3
8

5
16

11
32. . . 1

3

v3 : 0 0 1
4

1
4

5
16

5
16. . . 1

3

smooth continuation possible with constant velocity after infinite num-
ber of events
→ exclude live-lock or show convergence of state x for local

existence

Discrete mode is a function of continuous state here!
⇒ not for general hybrid automata!!!
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4.4 Obstruction — global existence: Zenoness
→ Right accumulation of event times

Reversed Filippov’s example:

ẋ1 = − sgn(x1)+2 sgn(x2)

ẋ2 = −2 sgn(x1)− sgn(x2)

0 2 4 6

−2

0

2

4

x1

x2

→ show the existence of the left limit limt↑τ∗ x(t) for global existence

Discrete mode is a function of continuous state!
⇒ not for general hybrid automata!!!
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5. Well-posedness for complementarity systems
(+ MLD, PWA, MMPS,. . . )

5.1 Discrete-time LCS

x(k +1) = Ax(k)+Bz(k)+Eu(k)
w(k) = Cx(k)+Dz(k)+Fu(k)

0 6 w(k) ⊥ z(k) > 0

Well-posedness :
Given x(k), u(k) → x(k +1), z(k), w(k) uniquely determined
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5.1 Discrete-time LCS (continued)

Algebraic problem:
Linear complementarity problem LCP(q,M):
Given vector q ∈ R

m and matrix M ∈ R
m×m find z ∈ R

m such that

0 6 q+Mz ⊥ z > 0

M ∈ R
m×m is P-matrix, if detMII > 0 for all I ⊆ {1, . . . ,m}

Theorem

Discrete-time LCS is well-posed if D is a P-matrix

Necessary in case im[C F ] = R
n
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5.2 Initial well-posedness for continuous-time LCS
Consider LCS:

ẋ(t) = Ax(t)+Bz(t), w(t) = Cx(t)+Dz(t), 0 6 z(t) ⊥ w(t) > 0

Define G(s) := C(sI −A)−1B+D Q(s) = C(sI −A)−1

LCS is initially well-posed if and only if for all x0 LCP(Q(σ)x0,G(σ))
is uniquely solvable for sufficiently large σ ∈ R

• dynamical properties can now be linked to static results on LCPs
which are abundant in literature!

• G(σ) being P-matrix for sufficiently large σ is sufficient condition
for initial well-posedness
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