Modeling & Control of Hybrid Systems

Chapter 3 — Dynamics &
Well-Posedness

Overview

1. Smooth systems: Differential equations

2. Switched systems: Discontinuous differential equations
3. Event times

4. Well-posedness for hybrid automata

5. Well-posedness for complementarity systems
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1. Smooth systems: differential equations
1.1 Solution concept

Description format / syntax / model

l

solutions / trajectories / executions/ semantics/ behavior

Example: x= f(t,x)  X(to) = Xo

A solution trajectory is a function x: [to,t;]) — R" that is continuous,
differentiable and satisfies x(to) = X and

x(t) = f(t,x(t)) for all t € (to,t1)

Issue of well-posedness: given initial conditions does there exist
a solution and is it unique ?
hs_dyn.3

Key issues

e Solution concepts
e Well-posedness: Existence & uniqueness of solutions
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1.2 Well-posedness
Example : x=2,/x with x(0) =0

Two solutions: x(t) = 0 and x(t) =t

Theorem for local existence and uniqueness of solutions given ini-
tial condition:

Let f(t,x) be piecewise continuous in t and satisfy the following
Lipschitz condition: there exist L > 0 and r > 0 such that

1t %) — fE Y < LlIx—yl|

for all x and y in neighborhood B:= {x € R" | |[x—Xo|| < r} of o and
for all t € [to,ta].

Then there exists > 0 such that unique solution exists on [to, to+
0] starting in X at to.
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1.3 Global well-posedness
Example : x = x?+ 1 with x(0) = 0 has as solution x(t) = tant which
is only locally defined on [0, 17/2)

Note that we have lim;;,X(t) =« — Finite escape time!

Theorem (Global Lipschitz condition)

Suppose f(t,X) is piecewise continuous in t and satisfies
1f(t.x) — f(E )l <Llx—y]
for all x, y in R" and for all t € [to, t,].

Then unique solution exists on [to,t;] for any initial state xo at to.

Not necessary: x = —x3 is not globally Lipschitz, but has unique
global solutions
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2. Switched systems: Discontinuous differential equations
C+
X' = £.(x) g d 100 ifxeCyi={x| p(x) >0}
0=0 TTf () ifxeCli={x| o(x) < 0}

T
x'=f(x)

e if xin interior of C_ or C,: just follow!
o if f_(x) and f,(x) point in same direction: just follow!

e if f,(X) points towards C; and f_(x) points towards C_: At least
two trajectories
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1.3 Global well-posedness (continued)

These “smooth” phenomena also occur in hybrid systems, but for
hybrid systems there is even more awkward stuff due to mode switch-
ing (a.o0. Zeno)
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2.1 Sliding modes

f.(X,)

f.(x) points towards C_and f_(x) points towards C

— no classical solution

¢ Relaxation: spatial (hysteresis) A, time delay 7, smoothing €
e Chattering / infinitely fast switching (limit case A, &,1 | 0)

Filippov’s convex definition : convex combination of both dynam-
ics

X=Af,(X)+(1-A)f_(X) withO<A <1
such that x moves (“slides”) along surface @(x) =0 hs_dyn.8



2.2 Differential inclusions A =1, if @(x) >0
X=Af () +(L1-A)f-(x)with {0<A <1, ifg(x)=0
A =0, if @(x) <0,

{1}, ifa>0

i.e., A € 1+1sgn(e(x)) with sgn(a) := ¢ [-1,1], ifa=0

{-1}, ifa<O
Differential inclusion X (x) with set-valued

€F
FX={f:®}  (ox)>0)
F={f-(0}  (p(x) <0),
FX) ={Afi})+(1-A)fa(x) [A €[0,1]}  (p(x) =0),

Definition : Function x: [a,b] — R" is solution of x € F(x) if X is abso-
lutely continuous and satisfies x(t) € F(x(t)) for almost all t € [a, b]
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Example (continued)

Initial state (0,—3), at time t = 1 the surface x, = 0 is hitin (1,0)T,
trajectory slides along surface till time tie,ye &~ 1.531 (X3 (tieave) = 2),
and then leaves surface again to C,

Simulation of system with sliaing mode
T T T
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Example

P(xX) =X, F1.(X) = (o, —x + x0T, f-(x) = (1,59)"
Sliding for xo = (1,0)" as f,.(X) = (1,—3)" and f_(xo) = (1,1)"
Sliding behavior: find convex combination such that ¢(x) =0
99 ) = 29x(t) = %olt) = A (—x+ B8) + (1- A =0 —

dt dx
A(X) = a

%Xl—{—l

Sliding mode is valid as long as A (x) € [0, 1], “invariant”

. 2X3—X1—|—2
XI=A+(1-A)="2"="C
1 1+ ( ) L2
aslongas 0<x; <2
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O
X' =1,(x)

2.3 A well-posedness result
for sliding modes

o(x)=0
e
X' =f(x)

e f_and f, are continuously differentiable (C?)

Theorem

Assume

e @ is C?, discontinuity vector h(x) := f, (x) — f_(x) is Ct
If for each x with ¢(x) = 0 at least one of the conditions
e f,(X) points towards C_ or

e f_(X) points towards C,

holds (where for different points x a different condition may hold),
then the Filippov solutions exist and are unique
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3. Event times
3.1 Admissible event times

|_>X1 |_>x2
—
| M~ ] 3—«% VA
L'\J \ / l ONONENEEE OO
‘,ﬁ ——

0 =
s

T\/ |

event times set & is {0,1,1+ 7}

Definition : Set & C R, is admissible event times set, if it is closed
and countable, and 0 € & (O: initial time)
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3.3 Effects of choice of solution concept 2
Filippov’'s example (reverse of Ch. 1): ’ 0
X1 =sgn(xy) — 2sgn(xy) ,
Xp = 25gN(X1) + sgn(xy), S E—

Left accumulation point — & is not left Zeno free!

Well-posedness:
e If solution concept left Zeno free: only one solution from origin
(Filippov’s example)
e If solution concept right Zeno free: only local existence (bouncing
ball)

e If solution concept allows Zeno, then multiple solutions from ori-
gin (Filippov’'s example) and global solutions for bouncing ball
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3.2 Accumulation points

et € & is said to be left accumulation point of &, if for all t’ >t
(t,t')N & is not empty

e t is called right accumulation point, if for all t’ <t (t',t) N & is not
empty

Definition Admissible event times set & (or the corresponding so-
lution) is said to be left (right) Zeno free, if it does not contain any
left (right) accumulation points

e Bouncing ball — right accumulation point
e Time-reversed bouncing ball — left accumulation point
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4. Well-posedness for hybrid automata
Hybrid automaton H = (Q, X, f,Init,Inv,E,G,R)
e Hybrid state: (q,x)
e Evolution of continuous state in mode g: x= f(q,x)

e Invariant Inv: describes conditions that continuous state has to
satisfy at given mode

e Guard G: specifies subset of state space where certain transition
is enabled

e Reset map R: specifies how new continuous states are related to
previous continuous states
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(Co, Xo) € Init

\ R(do, o)

R(d2, o) R(0p, 1)

G(0o, %) G(a1,02)

G(02,00)
G(q27 ql

R(q17 QZ)
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4.2 Well-posedness for hybrid automata

e Initial well-posedness : if hybrid automaton is non-blocking +
deterministic, i.e., if there is no

—dead-lock : no smooth continuation and no jump possible
—splitting of trajectories (non-determinism)

— there exist theoretical conditions, but not easy to check
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4.1 Hybrid time trajectory

Definition : Hybrid time trajectory T = {I;}}, is finite (N < o) or infi-
nite (N = o) sequence of intervals of real line, such that

eli=[n,f]with<t/=r1,,for0O<i<N;
e if N < oo, either Iy = [Ty, Ty] With Ty < T # © or Iy = [T, TY) With
TN < Ty < .
e For instance,
1 ={][0,2],[2,3],{3},{3},[3,4.5],{4.5},[4.5,6]}
T ={[0,2],[2,3],[3,4.5],{4.5},[4.5,6],[6,0)}

1 1

o 8 ={10,T1,T2,...}

_ . . |
e Note: No left accumulations of event times! hs.dyn.18

4.2 Well-posedness for hybrid automata (continued)

e However, no statements by hybrid automata theory on existence,
absence, or continuation

—beyond live-lock : an infinite number of jumps at one time in-
stant, so no solution on [0, €) for some € >0

—for left accumulations of event times — prevent uniqueness:
0 %

—for right accumulations  of event times — prevent global exis-
tence
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4.3 Obstruction — local existence
— Live-lock: Infinitely many jumps at one time instant

Vi(0)=1%(0)=0v3(0)=0  viil 333 3 5

AA V3:0041-1

smooth continuation possible with constant velocity after infinite num-
ber of events

— exclude live-lock or show convergence of state x for local
existence

Wl

1
3

ENP
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.
»

Discrete mode is a function of continuous state here!
=- not for general hybrid automata!!!
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5. Well-posedness for complementarity systems
(+ MLD, PWA, MMPS,...)

5.1 Discrete-time LCS

X(k+ 1) = Ax(k) 4+ Bz(K)
w(k) =
0<w(k) L z(k) >

Well-posedness :
Given x(k), u(k) — x(k+1), z(k), w(k) uniquely determined
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4.4 Obstruction — global existence: Zenoness
— Right accumulation of event times

Reversed Filippov’'s example:

X1 = — sgn(Xy) + 2 sgn(xy) o
Xp = —2sgNn(X1) — sgn(xz)

0 2 4 6
x1

— show the existence of the left limit lim¢;X(t) for global existence

Discrete mode is a function of continuous state!
=- not for general hybrid automata!!!
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5.1 Discrete-time LCS (continued)

Algebraic problem:
Linear complementarity problem  LCP(qg,M):
Given vector g € R™ and matrix M € R™™ find z€ R™ such that

0<g+Mzl1z>0

M € R™™Mis P-matrix, if detM;, >O0forall | C{1,...,m}

Theorem

Discrete-time LCS is well-posed if D is a P-matrix

Necessary in case im[C F| =R"
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5.2 Initial well-posedness for continuous-time LCS
Consider LCS:

X(t) = AX(t) +Bz(t), w(t) =Cx(t)+Dz(t), 0<z(t) Lw(t)>0
Define G(s) :=C(s# —A)"'B+D Q(s)=C(s¥ —A)!
LCS is initially well-posed if and only if for all X, LCP(Q(0)x0,G(0))
is uniquely solvable for sufficiently large o € R

e dynamical properties can now be linked to static results on LCPs
which are abundant in literature!

e G(0) being P-matrix for sufficiently large o is sufficient condition
for initial well-posedness
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