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1. Switched systems

ẋ = fσ(x)

{ f1(x), f2(x), . . . , fN(x)} family of smooth vector fields from R
n to R

n

Switching signal σ : [0,∞) →{1, . . . ,N} piecewise constant function

• of time t: σ(t)

• of state x(t): σ(x)

• of time and state: σ(t,x)

• or extensions involving memory (like hysteresis)
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1.1 Switched linear systems

Switched linear system : ẋ = Aσx

Special case: Piecewise or multi-modal linear system :
Switching is only state-dependent ẋ = Aix when x ∈ Xi

Well-posedness: cells form partitioning of the state space R
n (nec-

essary condition only)
n

⋃

i=1

Xi = R
n and interior(Xi)∩ interior(X j) = ∅

Piecewise affine (PWA) systems: Xi polyhedra

ẋ = Aix+ai, when Eix > ei, i ∈ I := {1, . . . ,N}
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1.2 Problem formulation
Global asymptotic stability (GAS) of a system with state x:

Something like lim
t→∞

x(t) = 0 for all initial states x0.

GUAS: global uniform asymptotic stability: uniform in σ

Problem A : Find conditions for which the switched system is GAS
for any switching signal (GUAS)

Problem B : Show that the switched system is GAS for a given
switching strategy or a class of switching strategies

Problem C : Construct switching signal that makes the switched
system GAS (i.e. stabilization problem)

→ Problem C will be treated in Chapter 5
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2. Back to basics: Lyapunov theory for stability of smooth sy s-
tems
Theorem
Let x = 0 be equilibrium of ẋ = f (x) (i.e., f (0) = 0) and let V : R

n →R

be a continuously differentiable function such that

• V (x) → ∞ as ‖x‖→ ∞ (i.e., V is radially unbounded)

• V (0) = 0 and V (x) > 0, if x 6= 0 (i.e., V is positive definite), and

• V̇ (x) = L fV (x) := ∂V
∂x ẋ = ∂V

∂x f (x) < 0 for all x 6= 0,

then system is GAS for x = 0

Under suitable “technical” conditions (mainly smoothness of f ):
Converse theorem : If x = 0 is GAS equilibrium of ẋ = f (x) (i.e.,
f (0) = 0), then there exists radially unbounded Lyapunov function
V (x)
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2.1 Stability of linear systems

Consider linear system ẋ = Ax and consider quadratic Lyapunov
function V (x) = xTPx with P symmetric (P = PT ) and positive defi-
nite, i.e.,

• xTPx > 0 for all x 6= 0

• (if P symmetric) equivalent: all eigenvalues are positive

• (if P symmetric) equivalent: all leading principal minors detPJJ > 0
for all J = {1, . . . , j} for j = 1, . . . ,n

Note that V̇ (x) = LAxV (x) = xT(AT P+PA)x

hs stab.6

2.1 Stability of linear systems (continued)

Theorem
The following statements are equivalent:

• ẋ = Ax is asymptotically stable;

• there is a quadratic Lyapunov function V (x) = xT Px for some
positive definite matrix P such that AT P+PA < 0

Moreover, for every asymptotically stable A and for any Q > 0 there
is a P > 0 such that the following Lyapunov equality holds

AT P+PA = −Q

Note: system is asymptotically stable if A has only eigenvalues in
the open left half-plane
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2.2 Connection of stability of nonlinear system and its line ariza-
tion
Theorem
Let x = a be equilibrium of ẋ = f (x) (i.e., f (a) = 0) with f : D → R

n

continuously differentiable and D a neighborhood of a. Take

A =
∂ f
∂x

(x)

∣

∣

∣

∣

x=a

• Equilibrium a is locally asymptotically stable, if A is asymptoti-
cally stable (i.e., all eigenvalues in open left half-plane)

• Equilibrium a is unstable (not stable), if there is an eigenvalue
of A that lies in open right half-plane

Note: no statements in case all eigenvalues in closed left half-plane
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2.3 Combining stable dynamics → stable?

ẋ =

{

A1x, if x1x2 < 0

A2x, if x1x2 > 0

A1 =

(

−1 10
−100 −1

)

; A2 =

(

−1 100
−10 −1

)

Eigenvalues = −1±31.6 j

→ combined system unstable!
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3. Global asymptotic stability for any switching signal
(→ GUAS)?

Also for constant switching signals σ(t) = i for all t

⇓

ẋ = fi(x) should be globally asymptotically stable

⇓

There is a radially unbounded Lyapunov function for each i!
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3.1 Common Lyapunov function approach
→ Try to find one shared Lyapunov function that decreases along
any of the submodels

A C1 function V : R
n → R is called common Lyapunov function for

ẋ = fσ(x) with σ ∈ {1, . . . ,N} if

V̇ (x) = L fiV (x) =
∂V
∂x

fi(x) < 0, when x 6= 0 and for all i = 1, . . . ,N

Theorem
If all smooth submodels share positive definite radially unbounded
common Lyapunov function, then switched system is globally uni-
formly asymptotically stable (GUAS)
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Converse theorem

Necessary and sufficient condition:

Theorem
If switched system is GUAS, then all fi share positive definite ra-
dially unbounded common Lyapunov function.

Hence, no conservatism in result!
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3.2 Switched linear systems: Common quadratic Lyapunov func-
tion approach
Stability of switched linear systems of the form

ẋ = Aσx, σ ∈ {1, . . . ,N}

Common Lyapunov function of quadratic type V (x) = xT Px for posi-
tive definite P?

V̇ (x) = L fiV (x) :=
∂V
∂x

fi(x) = xT[PAi +AT
i P]x < 0 for all x 6= 0 and i

Hence, we obtain linear matrix inequalities (LMIs)

AT
i P+PAi < 0 for all i = 1, . . . ,N and P > 0

Quadratic stability: there exists a quadratic Lyapunov function V (x)=
xT Px with V̇ (x) 6 −ε‖x‖2 for some ε > 0
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Infeasibility test for common quadratic Lyapunov function

AT
i P+PAi < 0 for all i = 1, . . . ,N and P > 0

Dual theorem :
The set of LMIs is infeasible (i.e., no quadratic stability) if and only
if there exist positive definite matrices Ri, i = 1, . . . ,N such that

N

∑
i=1

(AT
i Ri +RiAi) > 0
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Converse quadratic Lyapunov function theorem?
Asymptotic stability of switched linear system ẋ = Aσx ⇒ existence
of common quadratic Lyapunov function???

Answer is negative

A1 =

(

−1 −1
1 −1

)

, A2 =

(

−1 −10
0.1 −1

)

is GUAS, but no common quadratic Lyapunov function by infeasibil-
ity condition

R1 =

(

0.2996 0.7048
0.7048 2.4704

)

, R2 =

(

0.2123 −0.5532
−0.5532 1.9719

)

However, there is common Lyapunov function of form
V (x) = max

i=1,2,...,k
(lT

i x)2
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Conditions for existence of common quadratic Lyapunov func-
tion
Theorem
If matrices {A1, . . . ,AN} commute pairwise (i.e., AiA j = A jAi) for all
i, j and are all stable, then there exists common quadratic Lya-
punov function P = PN, that can be found from solving following
set of Lyapunov equalities successively:

AT
1P1+P1A1 = −I

AT
2P2+P2A2 = −P1

AT
3P3+P3A3 = −P2

...
AT

NPN +PNAN = −PN−1

More involved conditions exist (cf. references in lecture notes!)
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4. Global asymptotic stability for given switching strategy?
4.1 Multiple Lyapunov approach
Switched system with ẋ = fi(x), i = 1,2 are GAS with Lyapunov func-
tion Vi(x)

Assumption: no common Lyapunov function → not GUAS

Let switching times be given by tk, k = 0,1,2, . . . and suppose that

Vσ(tk−1)(x(tk)) = Vσ(tk)(x(tk)) for all k = 1,2, . . .

Vσ is now continuous Lyapunov function ⇒ switched system is GAS

i =2i =1=2i=1i t

V1

V2

V
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4.2 Most general theorem
Theorem
Consider switched system with all submodels ẋ = fi(x) GAS with
corresponding Lyapunov function Vi

Suppose that for every pair of switching times (tk, tl), k < l with
σ(tk) = σ(tl) = i and σ(tm) 6= i for tk < tm < tl, we have

Vi(x(tl))−Vi(x(tk)) 6 −ρ(‖x(tk)‖) < 0,

then switched system is GAS

i =2i =1=2i=1i

V

t

V

V

1

2
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4.3 State-dependent switchings: Single Lyapunov function

ẋ =

{

A1x, if x1x2 6 0

A2x, if x1x2 > 0
with A1 =

(

−1 −1
1 −1

)

; A2 =

(

−1 −10
0.1 −1

)

• No common quadratic Lyapunov function
• However, for V (x) = x2

1 + x2
2 it holds that V̇ < 0 along the nonzero

solutions of the switched system, which implies GAS

Relaxation w.r.t. common Lyapunov function approach : Indeed,
we only need

LA1xV (x) < 0 if x1x2 6 0 and LA2xV (x) < 0 if x1x2 > 0

Hence, general set-up:
Find V such that L fiV (x) is only negative where ẋ = fi(x) can be
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4.4 State-dependent switchings: Multiple Lyapunov functio n

ẋ =

{

A1x, if x1 6 0

A2x, if x1 > 0,
where A1 =

(

−5 −4
−1 −2

)

; A2 =

(

−2 −4
20 −2

)

No common Lyapunov function and no quadratic function as in pre-
vious example

However, consider 2 quadratic Lyapunov functions Vi(x) = xTPix with

P1 =

(

1 0
0 3

)

, P2 =

(

10 0
0 3

)

Vi is Lyapunov function for ẋ = Aix

Vσ (with σ = 1 if x1 6 0 and σ = 2 when x1 > 0) is continuous and
strictly decreasing
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4.5 More general set-up for piecewise linear systems

ẋ = Aix if x ∈ Xi

Several relaxations possible w.r.t. common quadratic Lyapunov func-
tion:

• One can require that derivative L fi(x)V (x) of V (x) = xT Px is only
negative in region where subsystem is active

• One can use multiple Lyapunov functions, say Vi(x) = xT Pix, for
each submodel and “connect them” in a suitable way

• One can require that the Lyapunov function Vi(x) = xT Pix is only
positive definite in its active region
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4.6 Relaxation: S-procedure

Aim: V (x) = xT Px, P > 0 such that xT [AT
i P+PAi]x < 0 for 0 6= x ∈ Xi

Find: Si(x) based on Xi with Si(x) > 0 when x ∈ Xi

Next: search for β > 0 satisfying

xT AT
i Px+ xT PAix+βSi(x) < 0 for all x

Result: Since Si(x) might be negative outside Xi, so less conser-
vative than AT

i P+PAi < 0 (i.e., xT AT
i Px+ xT PAix < 0 for all x)

Computationally interesting : Si(x) = xT Six, then LMI:

Find βi > 0 and P > 0 such that AT
i P+PAi +βiSi < 0

+ other relaxations (cf. lecture notes)
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