Modeling & Control of Hybrid Systems
Chapter 4 — Stability

Overview

1. Switched systems

2. Lyapunov theory for smooth and linear systems
3. Stabllity for any switching signal

4. Stability for given switching signal
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1. Switched systems

X= fg(X)

{f1(x), f2(x), ..., fn(X)} family of smooth vector fields from R" to R"

Switching signal o : [0,0) — {1,...,N} piecewise constant function
e Of time t: o(t)
e Of state x(t): o(X)
e Of time and state: o(t,x)

e Or extensions involving memory (like hysteresis)
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1.1 Switched linear systems
Switched linear system : Xx= AgX

Special case: Piecewise or multi-modal linear system
Switching is only state-dependent x= Axwhen x e Z;

Well-posedness: cells form partitioning of the state space R" (nec-
essary condition only)

n
| ) 2i =R" and interior(.27) Ninterior(2j) = @
=1

Piecewise affine (PWA) systems: Z; polyhedra

X=AX+a, whenEx>¢,iel:={1,...,N}
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1.2 Problem formulation
Global asymptotic stability (GAS) of a system with state x:
Something like tIim X(t) = O for all initial states Xo.

GUAS: global uniform asymptotic stability: uniform in o

Problem A : Find conditions for which the switched system is GAS
for any switching signal (GUAS)

Problem B: Show that the switched system is GAS for a given
switching strategy or a class of switching strategies

Problem C . Construct switching signal that makes the switched
system GAS (i.e. stabilization problem)

— Problem C will be treated in Chapter 5
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2. Back to basics: Lyapunov theory for stability of smooth sy S-
tems

Theorem

Let x=0be equilibrium of x= f(x) (i.e., f(0O)=0)andletV:R"— R
be a continuously differentiable function such that

e V(X) — o as ||X|| — o (i.e., V is radially unbounded)
eV(0)=0and V(x) >0, if x#£ 0 (i.e., V is positive definite), and
o V(X) =LV (x) = 2ex = 24 f(x) < O for all x #£ O,

then system is GAS for x=0

Under suitable “technical” conditions (mainly smoothness of f):

Converse theorem : If x=0is GAS equilibrium of x = f(x) (i.e.,
f(0) = 0), then there exists radially unbounded Lyapunov function

v (X) hs_stab.5



2.1 Stability of linear systems

Consider linear system x = Ax and consider quadratic Lyapunov
function V(x) = x"Px with P symmetric (P = P") and positive defi-
nite, I.e.,

o X'Px > 0forall x#£0
e (If P symmetric) equivalent: all eigenvalues are positive

e (If P symmetric) equivalent: all leading principal minors detP;; >0
forallJ={1,...,j}for j=1,...,n

Note that V (X) = LaV (X) = X" (ATP+ PA)x
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2.1 Stability of linear systems (continued)

Theorem
The following statements are equivalent:

e X = Ax Is asymptotically stable;

e there is a quadratic Lyapunov function V(x) = x"Px for some
positive definite matrix P such that ATP+PA < 0

Moreover, for every asymptotically stable A and for any Q > O there
IS a P > 0 such that the following Lyapunov equality holds

A'P+PA=-Q

Note: system is asymptotically stable if A has only eigenvalues in
the open left half-plane
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2.2 Connection of stablility of nonlinear system and its line ariza-
tion

Theorem

Let x = a be equilibrium of x= f(x) (i.e., f(a) =0) with f : D — R"
continuously differentiable and D a neighborhood of a. Take

A= ﬂ(x)
22 X=a
e Equilibrium a is locally asymptotically stable, if A is asymptoti-

cally stable (i.e., all eigenvalues in open left half-plane)

e Equilibrium a is unstable (not stable), if there is an eigenvalue
of A that lies in open right half-plane

Note: no statements in case all eigenvalues in closed left half-plane
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2.3 Combining stable dynamics — stable?

«— Arx, If X% <0
B AoX, If Xy%> > 0
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3. Global asymptotic stablility for  any switching signal
(— GUAS)?

Also for constant switching signals o(t) =i for all t

Y
X = fj(x) should be globally asymptotically stable

4

There Is a radially unbounded Lyapunov function for each I!
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3.1 Common Lyapunov function approach

— Try to find one shared Lyapunov function that decreases along
any of the submodels

A C! function V : R" — R is called common Lyapunov function for
X= fs(X) with o € {1,...,N} if
oV

V(X) = LtV (X) = 5 fi) <0, when x#0and foralli=1,...,N

Theorem
If all smooth submodels share positive definite radially unbounded

common Lyapunov function, then switched system is globally uni-
formly asymptotically stable (GUAS)

hs_stab.11



Converse theorem
Necessary and sufficient condition:

Theorem

If switched system is GUAS, then all fj share positive definite ra-
dially unbounded common Lyapunov function.

Hence, no conservatism in result!
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3.2 Switched linear systems: Common  quadratic Lyapunov func-
tion approach

Stability of switched linear systems of the form
X=AgsX, ge{l,...,N}

Common Lyapunov function of quadratic type V(x) = x' Px for posi-
tive definite P?
oV

V(X) =LtV (X) == = i) = x' [PA +A'P]x < O for all x 0 and i

Hence, we obtain linear matrix inequalities  (LMIs)
A'P+PA <Oforalli=1,...,Nand P> 0

Quadratic stability: there exists a quadratic Lyapunov function V (x) =

x"Px with V (x) < —&][X||2 for some & > 0 hs stab.13



Infeasiblility test for common quadratic Lyapunov function

A'P+PA <0 foralli=1,....Nand P >0

Dual theorem
The set of LMIs is infeasible (i.e., no quadratic stability) if and only
If there exist positive definite matrices R, 1 = 1,...,N such that

N

Z(A-TR +RA) >0
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Converse quadratic Lyapunov function theorem?
Asymptotic stability of switched linear system x = A;X = existence
of common quadratic Lyapunov function???

Answer IS negative

-1 -1 ~1-10
A= ( 1 —1>’ Fo= (O.l —1>

IS GUAS, but no common guadratic Lyapunov function by infeasibil-
ity condition

~ _ (0.2996 07048 ~ _ ( 02123 05532
1= \0.7048 24704)> "2 \ —0.5532 19719

However, there is common Lyapunov function of form

V(X)) = max |-TX 2
( ) iI=12,..., k(I )
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Conditions for existence of common  quadratic Lyapunov func-
tion

Theorem

If matrices {Ay,...,An} commute pairwise (i.e., AA; = AjA) for all
I, ] and are all stable, then there exists common quadratic Lya-
punov function P = Ry, that can be found from solving following
set of Lyapunov equalities successively:

AP +PA = I
AP+ PoA, = —P
ALP;+ P3A; = —P,

AP+ PvANY = —Ry_1

More involved conditions exist (cf. references in lecture notes!)
hs_stab.16



4. Global asymptotic stablility for  given switching strategy?
4.1 Multiple Lyapunov approach

Switched system with x = fj(x), i = 1,2 are GAS with Lyapunov func-
tion V;(x)

Assumption: no common Lyapunov function — not GUAS

Let switching times be given by t, k=10, 1,2, ... and suppose that
Vo'(tk_l)<x<tk)) = Va(tk)(x(tk)) for all k = 1,2,...

Vs IS how continuous Lyapunov function = switched system is GAS
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4.2 Most general theorem
Theorem

Consider switched system with all submodels x = fj(x) GAS with
corresponding Lyapunov function V

Suppose that for every pair of switching times (t,t), k < | with
o(ty) =o(t) =1iand o(ty) #i for ty <ty < t;, we have
Vi(x(t)) —Vilx(t)) < —p(lIx(t) ) <O,
then switched system is GAS
v A

2 - hs stab.18



4.3 State-dependent switchings: Single Lyapunov function
. Aix, ifxpxe<0 . (—1 —1) (—1 —10)
X = with A; = Ay =
{AzX, If X12x0 >0 . 1 -1 ? 01 -1

e No common quadratic Lyapunov function
e However, for V(x) = x2+ x5 it holds that V < 0 along the nonzero
solutions of the switched system, which implies GAS

Relaxation w.r.t. common Lyapunov function approach . Indeed,
we only need

LaxV (X) < O if xgx2 < 0 and LaxV (X) < O if xgx2 > 0

Hence, general set-up:

Find V such that LtV (X) is only negative where x = fj(x) can be
active hs_stab.19



4.4 State-dependent switchings: Multiple Lyapunov functio n

- Aix, 1fx; <0 (—5 —4) (—2 —4)
X = where A; = , Ap =
{Azx, if X, > 0, T \-1 -2 ? 20 -2

No common Lyapunov function and no quadratic function as in pre-
vious example

However, consider 2 quadratic Lyapunov functions V;(x) = x" Px with
10 10 0
i-(03) 2= (03

Vi Is Lyapunov function for x = Aix

Vg (With o =1 1f x; <0 and o = 2 when x; > 0) Is continuous and
strictly decreasing
hs_stab.20
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4.5 More general set-up for piecewise linear systems

X=AXxifxe Z;
Several relaxations possible w.r.t. common quadratic Lyapunov func-
tion:

e One can require that derivative LV (x) of V(x) = x"Px is only
negative in region where subsystem is active

e One can use multiple Lyapunov functions, say V.(x) = x' Px, for
each submodel and “connect them” in a suitable way

e One can require that the Lyapunov function V;(x) = x"Bx is only
positive definite in its active region
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4.6 Relaxation: S-procedure
Aim: V(x) = x"Px, P > 0 such that x" [ATP+ PAIx < 0for 0 # x € Z;

Find: §(x) based on Z; with §(x) > 0 when x € Z;

Next: search for > 0 satisfying
X' A Px+ x"PAX+ BS(x) < 0 for all x

Result: Since S(x) might be negative outside Zi, so less conser-
vative than AP+ PA; < 0 (i.e., X" ATPx+x"PAx < 0 for all x)

Computationally interesting : §(x) = x' §x, then LMI:
Find 3 > 0and P > 0 such that A'P+PA +3S < 0

+ other relaxations (cf. lecture notes)
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