
Modeling & Control of Hybrid Systems

Chapter 5 – Switched Control
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3. Time-controlled switching & pulse width modulation

4. Sliding mode control

5. Stabilization by switching control
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1. Introduction & motivation for hybrid control

Several “classical” control methods for continuous-time systems are
hybrid:

• variable structure control

• sliding mode control

• relay control

• gain scheduling

• bang-bang time-optimal control

• fuzzy control

→ common characteristic: switching
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1.1 Motivation for switched controllers

Theorem (Brockett’s necessary condition)

Consider system

ẋ = f (x,u) with x ∈ R
n
, u ∈ R

m
, f (0,0) = 0

where f is smooth function.
If system is asymptotically stabilizable (around x = 0) using con-
tinuous feedback law u = α(x),
then image of every open neighborhood of (x,u) = (0,0) under f
contains open neighborhood of x = 0

hs switched ctrl.3

1.1 Motivation for switched controllers (continued)

• For non-holonomic integrator: ẋ = u
ẏ = v
ż = xv− yu

• Is asymptotically stabilizable (see later)

• Satisfies Brockett’s necessary condition?

– if f1 = f2 = 0 then f3 = 0

– hence, (0,0,ε) cannot belong to image of f for any ε 6= 0
→ image of open neighborhood of (x,u) = (0,0) under f does

not contain open neighborhood of (x,y,z) = (0,0,0)

– so non-holonomic integrator cannot be stabilized by continu-
ous feedback

→ hybrid control schemes necessary to stabilize it!
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1.2 Switching control/logic
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1.2 Switching control/logic (continued)
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→ shared controller state variables
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1.2 Switching control/logic (continued)

Main problem: Chattering (i.e., very fast switching)

1. Hysteresis switching logic

- Let h > 0, let πσ be a performance criterion (to be minimized)
- If supervisor changes value of σ to q, then σ is held fixed at q

until πp +h < πq for some p
→ σ is set equal to p
⇒ threshold parameter h > 0 prevents infinitely fast switching

- Similar idea: boundary layer around switching surface in
sliding mode control

2. Dwell-time switching logic
once symbol σ is chosen by supervisor it remains constant for at
least τ > 0 time units (τ: “dwell time”)
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2. Stabilization of switched linear systems via suitable
switching (Problem C)

ẋ = Aix, i ∈ I := {1,2, . . . ,N}

Find switching rule σ as function of time/state such that closed-loop
system is asymptotically stable

2.1 Quadratic stabilization via single Lyapunov function

Select σ(x) : R
n → I := {1,2, . . . ,N} such that closed-loop system

has single quadratic Lyapunov function xT Px

One solution: if some convex combination of Ai is stable:

A := ∑αiAi (αi > 0, ∑αi = 1) is stable

Select Q > 0 and let P > 0 be solution of AT P+PA = −Q
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Quadratic stabilization (continued)

• From xT(AT P+PA)x = −xT Qx < 0 it follows that

∑
i

αi[x
T(AT

i P+PAi)x] < 0

• For each x there is at least one mode with xT(AT
i P + PAi)x < 0 or

stronger
⋃

i∈I

{x | xT(AT
i P+PAi)x 6 −

1
N

xT Qx} = R
n

• Switching rule:

i(x) := arg minxT(AT
i P+PAi)x

• Leads possibly to sliding modes. Alternative?
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Alternative switching rule for quadratic stabilization

• Modified switching rule (based on hysteresis switching logic):

– stay in mode i as long as xT(AT
i P+PAi)x 6 −

1
2N

xT Qx

– when bound reached, switch to a new mode j that satisfies

xT(AT
j P+PA j)x 6 −

1
N

xT Qx

• There is a lower bound on the duration in each mode!

• No conservatism for 2 modes (necessary & sufficient for this
case):

Theorem : If there exists a quadratically stabilizing state-dependent
switching law for the switched linear system with N = 2, then ma-
trices A1 and A2 have a stable convex combination
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2.2 Stabilization via multiple Lyapunov functions (Problem C)

Main idea : Find function Vi(x) = xT Pix that decreases for ẋ = Aix in
some region

Define Xi := {x | xT [AT
i Pi +PiAi]x < 0}

If X1∪X2 = R
n, try to switch to satisfy multiple Lyapunov criterion

to guarantee asymptotic stability.

Find P1 and P2 such that they satisfy the coupled conditions:

xT(P1A1+AT
1P1)x < 0 when xT(P1−P2)x > 0, x 6= 0

and
xT(P2A2+AT

2P2)x < 0 when xT(P2−P1)x > 0, x 6= 0

Then σ(t) = arg max{Vi(x(t)) | i = 1,2} is stabilizing (Vσ will be con-
tinuous)
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2.3 S-procedure

S-procedure If there exist β1, β2 > 0 such that

−P1A1−AT
1P1+β1(P2−P1) > 0

−P2A2−AT
2P2+β2(P1−P2) > 0

then σ(t) = arg max{Vi(x(t)) | i = 1,2}

→ only finds switching sequence (discrete inputs)!
What if also continuous inputs are present?
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2.4 Stabilization of switched linear systems with continuous
inputs

Switched linear system with inputs:

ẋ = Aix+Biu, i ∈ I = {1, . . . ,N}

Now both σ : [0,∞) → I and feedback controllers u = Kix are to de-
termined

Case 1: Determine Ki such that closed loop stable under arbitrary
switching (assuming we know mode)!

Case 2: Determine both σ : [0,∞) → I and Ki

Case 3 (for PWL systems): Given σ as function of state, determine
Ki
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Case 1: Stabilization of switched linear system under arbitra ry
switching

ẋ = Aix+Biu, i ∈ I = {1, . . . ,N}

Sufficient condition: find common quadratic Lyapunov function V (x)=
xT Px for some positive definite matrix P and K1, . . . ,KN

(Ai +BiKi)
T P+P(Ai +BiKi) < 0 for all i = 1, . . . ,N and P > 0

→ LMIs (also for Cases 2 and 3)

−→ state-based switching in this section, ... next ...
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3. Time-controlled switching & pulse width modulation

If dynamical system switches between several subsystems
→ stability properties of total system may be quite different

from those of subsystems

mode 1
ẋ = A1x
Ṫ = 1

T 6
1
2

ε

mode 2
ẋ = A2x
Ṫ = 1

T 6
1
2

ε

T >
1
2ε

T >
1
2ε

T := 0

T := 0

T = 0,x = x0
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3.1 Time-controlled switching
ẋ = A1x
Ṫ = 1

T 6
1
2

ε

ẋ = A2x
Ṫ = 1

T 6
1
2

ε

T >
1
2ε

T >
1
2ε

T := 0

T := 0

T = 0, x = x0

• x(t0+ 1
2ε) = exp(1

2εA1)x0 = x0+ ε
2A1x0+ ε2

8 A2
1x0+ · · ·

x(t0+ ε) = (I + ε
2A2+ ε2

8 A2
2+ · · ·)(I + ε

2A1+ ε2

8 A2
1+ · · ·)x0

= (I + ε[1
2A1+ 1

2A2]+
ε2

8 [A2
1+A2

2+2A2A1]+ · · ·)x0.

• Compare with

exp[ε(1
2A1+ 1

2A2)] = I +ε[1
2A1+ 1

2A2]+
ε2

8 [A2
1+A2

2+A1A2+A2A1]+ · · ·

→ same for ε ≈ 0

• So for ε → 0 solution of switched system tends to solution of

ẋ = (1
2A1+ 1

2A2)x (“averaged” system)

• Possible that A1 and A2 are stable, whereas matrix 1
2A1 + 1

2A2 is
unstable, or vice versa hs switched ctrl.16



Example

ẋ = A1x
Ṫ = 1

T 6
1
2

ε

ẋ = A2x
Ṫ = 1

T 6
1
2

ε

T >
1
2ε

T >
1
2ε

T := 0

T := 0

T = 0, x = x0

• Consider

A1 =

[

−0.5 1
100 −1

]

, A2 =

[

−1 −100
−0.5 −1

]

• A1, A2 unstable, but matrix 1
2(A1+A2) is stable

→ switched system should be stable if frequency of switching is
sufficiently high

• Minimal switching frequency found by computing eigenvalues of
the mapping exp(1

2εA1)exp(1
2εA2) (Why?)
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Example (continued)
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→ maximal value of ε: 0.04 (=50 Hz) hs switched ctrl.18

Example (continued)
for ε =0.02
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3.2 Pulse width modulation

• Assume mode 1 followed during hε, and mode 2 during (1−h)ε
→ behavior of system is well approximated by system

ẋ =
(

hA1+(1−h)A2
)

x

• Parameter h might be considered as control input

• If h varies, should be on time scale that is much slower than the
time scale of switching

• If mode 1 is “power on” and mode 2 is “power off”, then h is known
as duty ratio

• Power electronics: fast switching theoretically provides possibility
to regulate power without loss of energy
→ used in power converters (e.g., Boost converter)
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3.2 Pulse width modulation (continued)

• System: ẋ = f (x,u), u ∈ {0,1}

• Duty cycle: ∆ (fixed)

• u is switched exactly one time from 1 to 0 in each cycle

• Duty ration α: fraction of duty cycle for which u = 1

u(τ) = 1 for t 6 τ < t +α∆
u(τ) = 0 for t +α∆ 6 τ < t +∆

• Hence, x(t +∆) = x(t)+
∫ t+α∆

t
f (x(τ),1)dτ +

∫ t+∆

t+α∆
f (x(τ),0)dτ

• Ideal averaged model (∆ → 0):

ẋ(t) = lim
∆→0

x(t +∆)− x(t)
∆

= α f (x(t),1)+(1−α) f (x(t),0)
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4. Sliding mode control

• Consider ẋ(t) = f (x(t),u(t)) with u scalar

• Suppose switching feedback control scheme:

u(t) =

{

φ+(x(t)) if h(x(t)) > 0

φ−(x(t)) if h(x(t)) < 0

• Surface {x | h(x) = 0} is called switching surface

• Let f+(x) = f (x,φ+(x)) and f−(x) = f (x,φ−(x)), then

ẋ =
1
2
(1+ v) f+(x)+

1
2
(1− v) f−(x), v = sgn(h(x))

• Use solutions in Filippov’s sense if “chattering”
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4. Sliding mode control (continued)

• Assume “desired behavior” whenever constraint s(x) = 0 is
satisfied

• Set {x | s(x) = 0} is called sliding surface

• Find control law u such that
1
2

d
dt

s2
6 −α|s|

where α > 0
→ squared “distance” to sliding surface decreases

along all system trajectories
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Properties of sliding mode control

• Quick succession of switches may occur
→ increased wear, high-frequency vibrations
⇒ - embed sliding surface in thin boundary layer

- smoothen discontinuity by replacing sgn by steep
sigmoid function

- Note: modifications may deteriorate performance of
closed-loop system

• Main advantages of sliding mode control:

– conceptually simple
– robustness w.r.t. uncertainty in system data

• Possible disadvantage:

– excitation of unmodeled high-frequency modes
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5. Stabilization by switching control

• For multi-model linear systems
→ use techniques for quadratic stabilization using single or

multiple Lyapunov function

• Stabilization of non-holonomic systems using hybrid feedback
control (e.g., non-holonomic integrator)
→ rather ad hoc

not structured
complicated analysis and proofs
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Stabilization of non-holonomic integrator

• System: ẋ = u , ẏ = v , ż = xv− yu

• Sliding mode control: u = −x+ y sgn(z)
v = −y− x sgn(z)

• Lyapunov function for (x,y) subspace: V (x,y) = 1
2(x

2+ y2)

⇒ V̇ = −x2+ xy sgn(z)− y2− xy sgn(z) = −(x2+ y2) = −2V
⇒ x,y → 0

• ż = xv− yu = −(x2+ y2) sgn(z) = −2V sgn(z)

So |z| will decrease and reach 0 provided that

2
∫ ∞

0
V (τ)dτ > |z(0)|

→ z will reach 0 in finite time
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Stabilization of non-holonomic integrator (continued)

• Since V (t) = V (0)e−2t = 1
2(x

2(0)+ y2(0))e−2t

condition for system to be asymptotically stable is
1
2
(x2(0)+ y2(0)) > |z(0)|

→ defines parabolic region P = {(x,y,z) | 0.5(x2+ y2) 6 |z|}

• If initial conditions do not belong to P then sliding mode control
asymptotically stabilizes system

• If initial state is inside P:

– first use control law (e.g., nonzero constant control) to steer
system outside P

– then use sliding mode control
→ hybrid control scheme
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