Modeling & Control of Hybrid Systems Chapter 5–Switched Control

Overview

- 1. Introduction & motivation for hybrid control
- 2. Stabilization of switched linear systems
- 3. Time-controlled switching & pulse width modulation
- 4. Sliding mode control
- 5. Stabilization by switching control

hs_switched_ctrl.1

1.1 Motivation for switched controllers

Theorem (Brockett's necessary condition)

Consider system

 $\dot{x} = f(x, u)$ with $x \in \mathbb{R}^n, u \in \mathbb{R}^m, f(0, 0) = 0$

where f is smooth function.

If system is asymptotically stabilizable (around x = 0) using *continuous* feedback law $u = \alpha(x)$,

then image of every open neighborhood of (x,u) = (0,0) under *f* contains open neighborhood of x = 0

1. Introduction & motivation for hybrid control

Several "classical" control methods for continuous-time systems are hybrid:

- variable structure control
- sliding mode control
- relay control
- gain scheduling
- bang-bang time-optimal control
- fuzzy control
- \rightarrow common characteristic: **switching**

hs_switched_ctrl.2

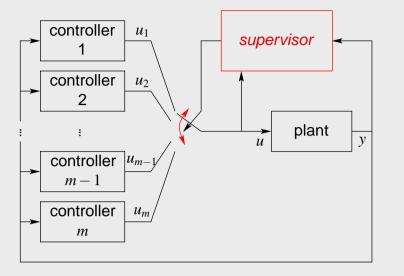
1.1 Motivation for switched controllers (continued)

• For non-holonomic integrator: $\dot{x} = u$

 $\dot{y} = v$ $\dot{z} = xv - yu$

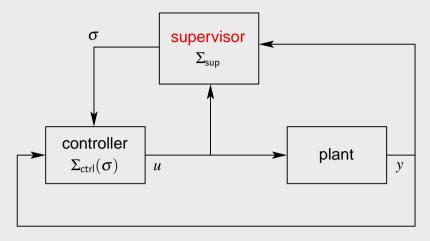
- Is asymptotically stabilizable (see later)
- Satisfies Brockett's necessary condition?
 - $\text{ if } f_1 = f_2 = 0 \text{ then } f_3 = 0$
 - hence, $(0,0,\varepsilon)$ cannot belong to image of f for any $\varepsilon \neq 0$
 - → image of open neighborhood of (x,u) = (0,0) under *f* does not contain open neighborhood of (x,y,z) = (0,0,0)
 - so non-holonomic integrator cannot be stabilized by continuous feedback
- \rightarrow hybrid control schemes necessary to stabilize it!

1.2 Switching control/logic



hs_switched_ctrl.5

1.2 Switching control/logic (continued)



 \rightarrow shared controller state variables

hs_switched_ctrl.6

1.2 Switching control/logic (continued)

Main problem: Chattering (i.e., very fast switching)

1. Hysteresis switching logic

- Let h > 0, let π_{σ} be a performance criterion (to be minimized)
- If supervisor changes value of σ to q, then σ is held *fixed* at q until $\pi_p + h < \pi_q$ for some p
- $\rightarrow \sigma$ is set equal to p
- \Rightarrow threshold parameter h > 0 prevents infinitely fast switching
- Similar idea: boundary layer around switching surface in sliding mode control

2. Dwell-time switching logic

once symbol σ is chosen by supervisor it remains constant for at least $\tau > 0$ time units (τ : "dwell time")

2. Stabilization of switched linear systems via suitable switching (Problem C)

$$\dot{x} = A_i x, \quad i \in I := \{1, 2, \dots, N\}$$

Find switching rule σ as function of time/state such that closed-loop system is asymptotically stable

2.1 Quadratic stabilization via single Lyapunov function

Select $\sigma(x) : \mathbb{R}^n \to I := \{1, 2, ..., N\}$ such that closed-loop system has single quadratic Lyapunov function $x^T P x$

One solution: if some convex combination of *A_i* is stable:

 $A := \sum \alpha_i A_i \quad (\alpha_i \ge 0, \ \sum \alpha_i = 1)$ is stable

Select Q > 0 and let P > 0 be solution of $A^T P + PA = -Q$

Quadratic stabilization (continued)

• From $x^T (A^T P + PA)x = -x^T Qx < 0$ it follows that

$$\sum_{i} \alpha_i [x^T (A_i^T P + P A_i) x] < 0$$

• For each x there is at least one mode with $x^T (A_i^T P + PA_i)x < 0$ or stronger

$$\bigcup_{i \in I} \{ x \mid x^T (A_i^T P + P A_i) x \leqslant -\frac{1}{N} x^T Q x \} = \mathbb{R}$$

• Switching rule:

$$i(x) := \arg \min x^T (A_i^T P + P A_i) x$$

• Leads possibly to sliding modes. Alternative?

hs_switched_ctrl.9

Alternative switching rule for quadratic stabilization

• Modified switching rule (based on hysteresis switching logic):

- stay in mode *i* as long as
$$x^T (A_i^T P + PA_i) x \leq -\frac{1}{2N} x^T Q x$$

– when bound reached, switch to a new mode j that satisfies

$$x^{T}(A_{j}^{T}P+PA_{j})x \leqslant -\frac{1}{N}x^{T}Qx$$

- There is a lower bound on the duration in each mode!
- No conservatism for 2 modes (necessary & sufficient for this case):

Theorem: If there exists a quadratically stabilizing state-dependent switching law for the switched linear system with N = 2, then matrices A_1 and A_2 have a stable convex combination

hs_switched_ctrl.10

2.2 Stabilization via *multiple* Lyapunov functions (Problem C)

Main idea: Find function $V_i(x) = x^T P_i x$ that decreases for $\dot{x} = A_i x$ in some region

Define $\mathscr{X}_i := \{x \mid x^T [A_i^T P_i + P_i A_i] x < 0\}$

If $\mathscr{X}_1 \cup \mathscr{X}_2 = \mathbb{R}^n$, try to switch to satisfy multiple Lyapunov criterion to guarantee asymptotic stability.

Find P_1 and P_2 such that they satisfy the coupled conditions:

$$x^{T}(P_{1}A_{1} + A_{1}^{T}P_{1})x < 0$$
 when $x^{T}(P_{1} - P_{2})x \ge 0, x \ne 0$

and

$$x^{T}(P_{2}A_{2}+A_{2}^{T}P_{2})x < 0$$
 when $x^{T}(P_{2}-P_{1})x \ge 0, x \ne 0$

Then $\sigma(t) = \arg \max\{V_i(x(t)) \mid i = 1, 2\}$ is stabilizing (V_σ will be continuous)

2.3 S-procedure

S-procedure If there exist β_1 , $\beta_2 \ge 0$ such that

$$-P_{1}A_{1} - A_{1}^{T}P_{1} + \beta_{1}(P_{2} - P_{1}) > 0$$

$$-P_{2}A_{2} - A_{2}^{T}P_{2} + \beta_{2}(P_{1} - P_{2}) > 0$$

then $\sigma(t) = \arg \max\{V_i(x(t)) \mid i = 1, 2\}$

 \rightarrow only finds switching sequence (discrete inputs)! What if also continuous inputs are present?

2.4 Stabilization of switched linear systems with continuous inputs

Switched linear system with inputs:

 $\dot{x} = A_i x + B_i u, \ i \in I = \{1, \dots, N\}$

Now both $\sigma: [0,\infty) \to I$ and feedback controllers $u = K_i x$ are to determined

Case 1: Determine *K_i* such that closed loop stable under arbitrary switching (assuming we **know** mode)!

Case 2: Determine both $\sigma : [0, \infty) \rightarrow I$ and K_i

Case 3 (for PWL systems): Given σ as function of state, determine K_i

hs_switched_ctrl.13

Case 1: Stabilization of switched linear system under arbitrary switching

$$\dot{x} = A_i x + B_i u, \ i \in I = \{1, \dots, N\}$$

Sufficient condition: find common *quadratic* Lyapunov function $V(x) = x^T P x$ for some positive definite matrix P and K_1, \ldots, K_N

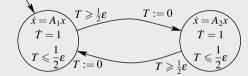
 $(A_i + B_i K_i)^T P + P(A_i + B_i K_i) < 0$ for all i = 1, ..., N and P > 0

 \rightarrow LMIs % (also for Cases 2 and 3) <math display="inline">% (also for Cases 2 and 3)

 \longrightarrow state-based switching in this section, ... next ...

hs_switched_ctrl.14

3.1 Time-controlled switching



•
$$x(t_0 + \frac{1}{2}\varepsilon) = \exp(\frac{1}{2}\varepsilon A_1)x_0 = x_0 + \frac{\varepsilon}{2}A_1x_0 + \frac{\varepsilon^2}{8}A_1^2x_0 + \cdots$$

 $x(t_0 + \varepsilon) = (I + \frac{\varepsilon}{2}A_2 + \frac{\varepsilon^2}{8}A_2^2 + \cdots)(I + \frac{\varepsilon}{2}A_1 + \frac{\varepsilon^2}{8}A_1^2 + \cdots)x_0$
 $= (I + \varepsilon[\frac{1}{2}A_1 + \frac{1}{2}A_2] + \frac{\varepsilon^2}{8}[A_1^2 + A_2^2 + 2A_2A_1] + \cdots)x_0.$

• Compare with

$$\exp[\varepsilon(\frac{1}{2}A_1 + \frac{1}{2}A_2)] = I + \varepsilon[\frac{1}{2}A_1 + \frac{1}{2}A_2] + \frac{\varepsilon^2}{8}[A_1^2 + A_2^2 + A_1A_2 + A_2A_1] + \cdots$$

 \rightarrow same for $\varepsilon \approx 0$

 $T = 0, x = x_0$

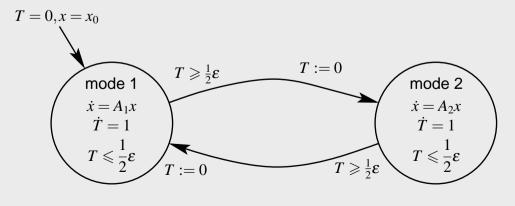
 \bullet So for $\epsilon \to 0$ solution of switched system tends to solution of

 $\dot{x} = (\frac{1}{2}A_1 + \frac{1}{2}A_2)x$ ("averaged" system)

• Possible that A_1 and A_2 are stable, whereas matrix $\frac{1}{2}A_1 + \frac{1}{2}A_2$ is unstable, or vice versa

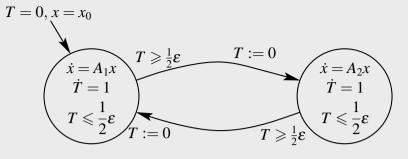
3. Time-controlled switching & pulse width modulation

If dynamical system switches between several subsystems → stability properties of total system may be quite different from those of subsystems



hs_switched_ctrl.15

Example



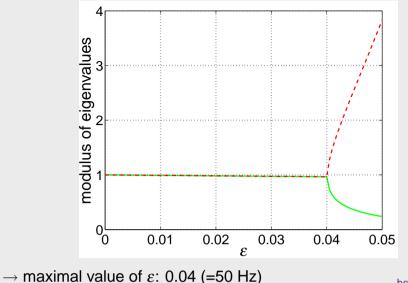
• Consider

$A_1 =$	[-0.5 1]	$A_2 =$	[-1	-100
	$\begin{bmatrix} 100 & -1 \end{bmatrix}$,		0.5	-1

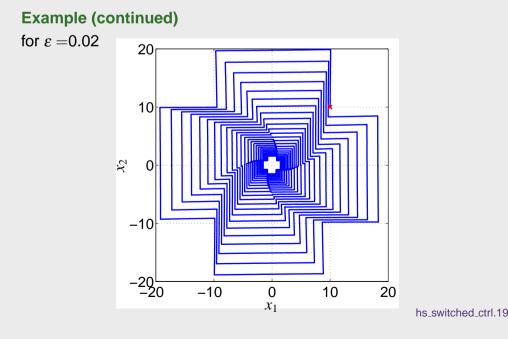
- A_1 , A_2 unstable, but matrix $\frac{1}{2}(A_1 + A_2)$ is stable
- $\rightarrow\,$ switched system should be stable if frequency of switching is sufficiently high
- Minimal switching frequency found by computing eigenvalues of the mapping $\exp(\frac{1}{2}\varepsilon A_1)\exp(\frac{1}{2}\varepsilon A_2)$ (Why?)

hs_switched_ctrl.17

Example (continued)



hs_switched_ctrl.18



3.2 Pulse width modulation

• Assume mode 1 followed during $h\varepsilon$, and mode 2 during $(1-h)\varepsilon$ \rightarrow behavior of system is well approximated by system

$$\dot{x} = \left(hA_1 + (1-h)A_2\right)x$$

- Parameter h might be considered as control input
- If *h* varies, should be on time scale that is much slower than the time scale of switching
- If mode 1 is "power on" and mode 2 is "power off", then *h* is known as *duty ratio*
- Power electronics: fast switching theoretically provides possibility to regulate power without loss of energy
 - \rightarrow used in power converters (e.g., Boost converter)

3.2 Pulse width modulation (continued)

- System: $\dot{x} = f(x, u), \quad u \in \{0, 1\}$
- Duty cycle: Δ (fixed)
- *u* is switched exactly one time from 1 to 0 in each cycle
- Duty ration α : fraction of duty cycle for which u = 1

$$\begin{aligned} u(\tau) &= 1 & \text{ for } t \leqslant \tau < t + \alpha \Delta \\ u(\tau) &= 0 & \text{ for } t + \alpha \Delta \leqslant \tau < t + \Delta \end{aligned}$$

• Hence,
$$x(t + \Delta) = x(t) + \int_{t}^{t+\alpha\Delta} f(x(\tau), 1)d\tau + \int_{t+\alpha\Delta}^{t+\Delta} f(x(\tau), 0)d\tau$$

 \bullet Ideal averaged model ($\Delta \rightarrow 0$):

$$\dot{x}(t) = \lim_{\Delta \to 0} \frac{x(t+\Delta) - x(t)}{\Delta} = \alpha f(x(t), 1) + (1-\alpha)f(x(t), 0)$$

hs_switched_ctrl.21

4. Sliding mode control

- Consider $\dot{x}(t) = f(x(t), u(t))$ with *u* scalar
- Suppose switching feedback control scheme:

$$u(t) = \begin{cases} \phi_+(x(t)) & \text{if } h(x(t)) > 0\\ \phi_-(x(t)) & \text{if } h(x(t)) < 0 \end{cases}$$

• Surface $\{x \mid h(x) = 0\}$ is called *switching surface*

Let
$$f_+(x) = f(x, \phi_+(x))$$
 and $f_-(x) = f(x, \phi_-(x))$, then
 $\dot{x} = \frac{1}{2}(1+v)f_+(x) + \frac{1}{2}(1-v)f_-(x), \quad v = \operatorname{sgn}(h(x))$

• Use solutions in Filippov's sense if "chattering"

hs_switched_ctrl.22

4. Sliding mode control (continued)

- Assume "desired behavior" whenever constraint s(x) = 0 is satisfied
- Set $\{x \mid s(x) = 0\}$ is called *sliding surface*
- Find control law *u* such that

$$\frac{1}{2}\frac{d}{dt}s^2 \leqslant -\alpha|s|$$

where $\alpha > 0$

 \rightarrow squared "distance" to sliding surface decreases along all system trajectories

Properties of sliding mode control

- Quick succession of switches may occur
 - \rightarrow increased wear, high-frequency vibrations
 - \Rightarrow embed sliding surface in thin boundary layer
 - smoothen discontinuity by replacing sgn by steep sigmoid function
 - Note: modifications may deteriorate performance of closed-loop system
- Main advantages of sliding mode control:
 - conceptually simple
 - robustness w.r.t. uncertainty in system data
- Possible disadvantage:
 - excitation of unmodeled high-frequency modes

5. Stabilization by switching control

- For multi-model linear systems
 - \rightarrow use techniques for quadratic stabilization using single or multiple Lyapunov function
- Stabilization of non-holonomic systems using hybrid feedback control (e.g., non-holonomic integrator)
- → rather ad hoc not structured complicated analysis and proofs

Stabilization of non-holonomic integrator

- System: $\dot{x} = u$, $\dot{y} = v$, $\dot{z} = xv yu$
- Sliding mode control: $u = -x + y \operatorname{sgn}(z)$ $v = -y - x \operatorname{sgn}(z)$
- Lyapunov function for (x, y) subspace: $V(x, y) = \frac{1}{2}(x^2 + y^2)$ $\Rightarrow \dot{V} = -x^2 + xy \operatorname{sgn}(z) - y^2 - xy \operatorname{sgn}(z) = -(x^2 + y^2) = -2V$ $\Rightarrow x, y \to 0$

•
$$\dot{z} = xv - yu = -(x^2 + y^2) \operatorname{sgn}(z) = -2V \operatorname{sgn}(z)$$

So $|z|$ will decrease and reach 0 provided that

$$2\int_0^\infty V(\tau)d\tau > |z(0)|$$

 $\rightarrow z$ will reach 0 in finite time

hs_switched_ctrl.25

Stabilization of non-holonomic integrator (continued)

• Since $V(t) = V(0)e^{-2t} = \frac{1}{2}(x^2(0) + y^2(0))e^{-2t}$

condition for system to be asymptotically stable is

$$\frac{1}{2}(x^2(0) + y^2(0)) \ge |z(0)|$$

- \rightarrow defines parabolic region $\mathscr{P} = \{(x, y, z) \mid 0.5(x^2 + y^2) \leqslant |z|\}$
- If initial conditions do *not* belong to \mathscr{P} then sliding mode control asymptotically stabilizes system
- If initial state is inside \mathcal{P} :
 - first use control law (e.g., nonzero constant control) to steer system outside $\mathscr P$
 - then use sliding mode control
- \rightarrow hybrid control scheme

hs_switched_ctrl.27

hs_switched_ctrl.26