Modeling & Control of Hybrid Systems
Chapter 5- Switched Control

Overview

1. Introduction & motivation for hybrid control

2. Stabilization of switched linear systems

3. Time-controlled switching & pulse width modulation
4. Sliding mode control

5. Stabilization by switching control
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1.1 Motivation for switched controllers

Theorem (Brockett's necessary condition)

Consider system
withxe R", ue R™ (0,0)=0

where f is smooth function

If system is asymptotically stabilizable (around x = 0) using con-
tinuous feedback law u= a(x),

then image of every open neighborhood of (x,u) = (0,0) under f
contains open neighborhood of x=0

x= f(x,u)
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1. Introduction & motivation for hybrid control

Several “classical” control methods for continuous-time systems are
hybrid:

e variable structure control

e sliding mode control

e relay control

e gain scheduling

e bang-bang time-optimal control
e fuzzy control

— common characteristic: switching
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1.1 Motivation for switched controllers (continued)

e For non-holonomic integrator: x=u
y=v
Z=XxXv—yu
e Is asymptotically stabilizable (see later)
e Satisfies Brockett's necessary condition?
—if f1: f2:Othen f3:0
—hence, (0,0, ¢) cannot belong to image of f for any € # 0
— image of open neighborhood of (x,y,z u,v) = (0,0,0; 0,0)
under f does not contain open neighborhood of
(x,¥,2) = (0,0,0)
—so non-holonomic integrator cannot be stabilized by continu-
ous feedback
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— hybrid control schemes necessary to stabilize it!



1.2 Switching control/logic
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1.2 Switching control/logic (continued)
Main problem: Chattering (i.e., very fast switching)

1. Hysteresis switching logic

-leth> 0, let 1; be a performance criterion (to be minimized)

- if supervisor changes value of ¢ to g, then o is held fixed at g
until 1, +-h < 1 for some p
— o is set equal to p
= threshold parameter h > 0 prevents infinitely fast switching

- similar idea: boundary layer around switching surface in
sliding mode control

2. Dwell-time switching logic
once symbol ¢ is chosen by supervisor it remains constant for at
least T > 0 time units (7: “dwell time”)
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1.2 Switching control/logic (continued)
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— shared controller state variables
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2. Stabilization of switched linear systems via suitable
switching (Problem C)

x=AX, iel:={12,...,N}

Find switching rule o as function of time/state such that closed-loop
system is asymptotically stable

2.1 Quadratic stabilization via  single Lyapunov function

Select g(x) : R" — | :={1,2,...,N} such that closed-loop system
has single quadratic Lyapunov function x"Px

One solution: if some convex combination of A is stable:

A= ZG‘A‘ (o >0, Yai=1) is stable

Select Q > 0 and let P > 0 be solution of ATP4+PA= —Q
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Quadratic stabilization (continued)

e From xT (ATP+ PA)x = —x"Qx < 0 it follows that

> ailxX (ATP+PA)X < 0

e For each x there is at least one mode with x"(ATP + PA)x < 0 or
stronger

x| XT(ATP+PA)X < —%XTQX} = R"
i€l
e Switching rule:
i(x) := arg minx" (ATP+ PA)x
e Leads possibly to sliding modes. Alternative?
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2.2 Stabilization via multiple Lyapunov functions (Problem C)

Main idea : Find function V;(x) = x"Px that decreases for x = Ax in
some region

Define 2; := {x| X"[ATR +PA]x < 0}

If U; Zi = R", try to switch to satisfy multiple Lyapunov criterion to
guarantee asymptotic stability.

Find P, and P, such that they satisfy the coupled conditions:
X" (PLAL+AJP)x < Owhen X" (PL—P)x >0, x#0
and
X" (A2 +AJPo)x < Owhen X" (P, —P)x >0, x# 0

Then o(t) = arg max{Vi(x(t)) | i = 1,2} is stabilizing (Vg will be con-

tinuous) .
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Alternative switching rule for quadratic stabilization
¢ Modified switching rule (based on hysteresis switching logic):

: . 1
—stay in mode i as long as x" (AP + PA)x < —ﬁxTQx

—when bound reached, switch to a new mode | that satisfies
1
X" (AJP+ PAj)x < —NXTQX

e There is a lower bound on the duration in each mode!

e No conservatism for 2 modes (necessary & sufficient for this
case):

Theorem : If there exists a quadratically stabilizing state-dependent
switching law for the switched linear system with N = 2, then ma-
trices A; and A, have a stable convex combination
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2.3 S-procedure
S-procedure If there exist (31, 3> > 0 such that

—PA — AP +Bi(P.—P) >0
—PzAz—A;—Pz—l—Bz(Pl— Pz) >0
then o(t) = arg max{Vi(x(t)) |i=1,2}

— only finds switching sequence (discrete inputs)!
What if also continuous inputs are present?
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2.4 Stabilization of switched linear systems with continuous
inputs

Switched linear system with inputs:

X=AX+Bu,iel={1...,N}
Now both o : [0,0) — | and feedback controllers u = K;x are to de-
termined
Case 1: Determine K; such that closed loop is stable under arbitrary
switching (assuming we know mode)!
Case 2: Determine both o : [0,00) — | and K;

Case 3 (for PWL systems): Given ¢ as function of state, determine
Ki
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3. Time-controlled switching & pulse width modulation

If dynamical system switches between several subsystems
— stability properties of total system may be quite different
from those of subsystems

T=0,Xx=Xg
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Case 1: Stabilization of switched linear system under arbitra ry
switching

X=AXx+Bu,iecl={1,...,N}

Sufficient condition: find common quadratic Lyapunov function V (x) =
x"Px for some positive definite matrix P and Ky, ..., Ky

(A+BiK)"P+P(A +BK;) <0foralli=1,...,Nand P> 0

— LMIs (also for Cases 2 and 3)

— state-based switching in this section, ... next ...
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3.1 Time-controlled switching

o X(to+1€) = exp(ieAr)xo = Xo+ 5Ao+ SADX + - -
X(to+ €) = exp(3eA2) exp(3eA1)Xo
= (1 + 5P+ 5+ (I +EA+EA+ )X
— (1 + £[3A1+ JA0) + S A2+ A3+ 280A ] + - )Xo.
e Compare with
exple(SA1+2A0)] = | +e[2Ac + 1A + S (A2 + A3+ AP+ AoAg| + - -
— same for € = 0

e So for € — 0 solution of switched system tends to solution of
x = (AA+3A)x  (“averaged” system)

e Possible that A;, A; stable, whereas 3A; + 3A, unstable, or vice
versa hs_switched_ctrl.16



T=0, X=X
Example
e Consider
—-05 1
A = { 100 —1

}’ Ay — { -1 -100

e A;, A, unstable, but matrix %(A1+A2) is stable

— switched system should be stable if frequency of switching is

sufficiently high

e Minimal switching frequency found by computing eigenvalues of

the mapping exp(3eA2) exp(36A;) (Why?)

Example (continued)
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Example (continued)
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— maximal value of £: 0.04 (=50 Hz) hs_switched_ctrl.18

3.2 Pulse width modulation

e Assume mode 1 followed during he, and mode 2 during (1—h)e
— behavior of system is well approximated by system

X = (hA1+ (1— h)Az)X
e Parameter h might be considered as control input

e If h varies, should be on time scale that is much slower than the
time scale of switching

e If mode 1 is “power on” and mode 2 is “power off”, then his known
as duty ratio

e Power electronics: fast switching theoretically provides possibility

to regulate power without loss of energy
— used in power converters (e.g., Boost converter)
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3.2 Pulse width modulation (continued)
e System: x= f(x,u), ue{0,1}
e Duty cycle: A (fixed)
e U is switched exactly one time from 1 to O in each cycle
e Duty ration a: fraction of duty cycle for whichu=1

ur)=1 fort<t<t+al
ut)=0 fort+aA<T<t+A
t+4

f(x(1),0)dt

t+al
e Hence, x(t+A) = x(t) +/ f(x(1),1)dr+
t t+al

¢ Ideal averaged model (A — 0):

X(t) = mw — af(x(t),1) + (1— a)f(x(t),0)
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4. Sliding mode control (continued)

e Assume “desired behavior” whenever constraint s(x) =0 is
satisfied

e Set {x| s(x) = 0} is called sliding surface
e Find control law u such that
1d
e < —
ng\ als
where a >0

— squared “distance” to sliding surface decreases
along all system trajectories
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4. Sliding mode control
e Consider x(t) = f(x(t),u(t)) with u scalar

e Suppose switching feedback control scheme:

u(t) = @-(x(t)) ifh(x(t))>0
@_(x(t)) ifh(x(t)) <0

e Surface {x| h(x) = 0} is called switching surface

elet f (X)=f(x,@ (X)) and f_(x) = f(x,¢_(X)), then
1

2(1+v) f (X)+ %(l—v) f_(x), v=sgn(h(x))

X =
e Use solutions in Filippov’s sense if “chattering”
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Properties of sliding mode control

e Quick succession of switches may occur
— increased wear, high-frequency vibrations
= - embed sliding surface in thin boundary layer
- smoothen discontinuity by replacing sgn by steep
sigmoid function
- Note: modifications may deteriorate performance of
closed-loop system

e Main advantages of sliding mode control:

—conceptually simple
—robustness w.r.t. uncertainty in system data

¢ Possible disadvantage:
— excitation of unmodeled high-frequency modes
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5. Stabilization by switching control

e For multi-model linear systems
— use techniques for quadratic stabilization using single or
multiple Lyapunov function

e Stabilization of non-holonomic systems using hybrid feedback
control (e.g., non-holonomic integrator)
— rather ad hoc
not structured
complicated analysis and proofs
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Stabilization of non-holonomic integrator (continued)

e Since V(t) =V (0)e 2 = 1(x*(0) +y*(0))e 2
condition for system to be asymptotically stable is
}x2m+fm»>zo
— defines parabolic region & = {(x,y,2) | 0.5(x®+y?) < |7}
e If initial conditions do not belong to & then sliding mode control
asymptotically stabilizes system

o If initial state is inside &7:
—first use control law (e.g., nonzero constant control) to steer
system outside &
—then use sliding mode control

— hybrid control scheme < ewitched cirlo7
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Stabilization of non-holonomic integrator
e System: Xx=u, y=Vv, Z=Xv—yu
e Sliding mode control: u= —x+Yysgn(z)
V= —y—Xsgn(z)
e Switching surface: z=0
e Lyapunov function for (x, y) subspace: V(x y) = l(x2+y2)

— Y —xysgn(2) = — (¢ +y?) =

=V =—xX + Xysgn(z
= Xy—0

o z=xv—yu=—(x*4+Yy?)sgn(z) = —2V sgn(2)
So |z] will decrease and reach 0 provided that

2/ 7)dr > [2(0)|

— zwill reach 0 in finite time hs_switched ctrl.26



