Modeling & Control of Hybrid Systems
Chapter 5 - Switched Control

Overview

1. Introduction & motivation for hybrid control

2. Stabilization of switched linear systems

3. Time-controlled switching & pulse width modulation
4. Sliding mode control

5. Stabilization by switching control
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1. Introduction & motivation for hybrid control

Several “classical” control methods for continuous-time systems are
hybrid:

e variable structure control

e sliding mode control

e relay control

e gain scheduling

e bang-bang time-optimal control
e fuzzy control

— common characteristic: switching
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1.1 Motivation for switched controllers

Theorem (Brockett’'s necessary condition)

Consider system
x = f(x,u) with x e R", ue R™ f(0,0) =0

where f Is smooth function

If system is asymptotically stabilizable (around x = 0) using con-
tinuous feedback law u= a(x),

then image of every open neighborhood of (x,u) = (0,0) under f
contains open neighborhood of x=0
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1.1 Motivation for switched controllers (continued)

e For non-holonomic integrator: x=u
y=Vv
Z=XV—Yyu
e |s asymptotically stabilizable (see later)
e Satisfies Brockett's necessary condition?
—if f;=f,=0then f3=0
—hence, (0,0, &) cannot belong to image of f for any € #0
— image of open neighborhood of (x,y,z u,v) = (0,0,0; 0,0)
under f does not contain open neighborhood of
(%¥,2) = (0,0,0)
— S0 non-holonomic integrator cannot be stabilized by continu-
ous feedback

— hybrid control schemes necessary to stabilize it! hs_switched ctrl.4



1.2 Switching control/logic
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1.2 Switching control/logic (continued)
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— shared controller state variables
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1.2 Switching control/logic (continued)
Main problem: Chattering (i.e., very fast switching)

1. Hysteresis switching logic

-let h> 0, let ; be a performance criterion (to be minimized)

- If supervisor changes value of o to g, then o is held fixed at g
until i, +h < 1, for some p
— g IS set equal to p
= threshold parameter h > 0 prevents infinitely fast switching

- similar idea: boundary layer around switching surface in
sliding mode control

2. Dwell-time switching logic

once symbol o Is chosen by supervisor it remains constant for at

least T > 0 time units (1: “dwell time”)
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2. Stablilization of switched linear systems via suitable
switching (Problem C)

x=Ax, ie€l:={12,....N}

Find switching rule ¢ as function of time/state such that closed-loop
system is asymptotically stable

2.1 Quadratic stabilization via  single Lyapunov function

Select o(x) : R" — | :={1,2,...,N} such that closed-loop system
has single quadratic Lyapunov function x' Px

One solution: If some convex combination of A Is stable:

A = ZaiAi (ai >0, Sa;=1)is stable

Select Q > 0 and let P > 0 be solution of ATP+PA= —Q
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Quadratic stabilization (continued)

e From X" (ATP+ PA)x= —x"Qx < 0 it follows that

S ailx" (A'P+PA)X] < 0

e For each x there is at least one mode with x" (ATP + PA)x < 0 or
stronger

{x | x" (ATP+PA)X < _ix TQx} = R"

I

e Switching rule:
i(x) := arg minx' (A’ P+ PA)x
e Leads possibly to sliding modes. Alternative?
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Alternative switching rule for quadratic stabilization

e Modified switching rule (based on hysteresis switching logic):

. . 1
—stay in mode i as long as x" (A] P+ PA)x < —ﬂxTQx

—when bound reached, switch to a new mode | that satisfies
1
X" (A P+ PAj)x < —NXTQX

e There Is a lower bound on the duration in each mode!

e NO conservatism for 2 modes (necessary & sufficient for this
case):
Theorem : If there exists a quadratically stabilizing state-dependent

switching law for the switched linear system with N = 2, then ma-

trices A; and A, have a stable convex combination
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2.2 Stabilization via multiple Lyapunov functions (Problem C)

Main idea : Find function V,(x) = x" Px that decreases for x = Aix in
some region

Define 2; := {x | x"[ATP +PAx < 0}

If U; Zi = R", try to switch to satisfy multiple Lyapunov criterion to
guarantee asymptotic stability.

Find P, and P, such that they satisfy the coupled conditions:
X' (PLAL+A{P)Xx < 0when x' (PL.—P,)x>0, x#0
and
X' (PA>+AJP)x < Owhen x' (P, —P)x >0, x#£0

Then o(t) = arg max{Vi(x(t)) | i = 1,2} is stabilizing (Vs will be con-

tinuous) _
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2.3 S-procedure
S-procedure If there exist (31, B> > 0 such that

—PlAl_AIP1+B1(P2_ P]_) >0
—PA— AP+ Bo(PL—P2) > 0
then o(t) = arg max{Vi(x(t)) |i =1,2}

— only finds switching sequence (discrete inputs)!
What if also continuous inputs are present?
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2.4 Stabilization of switched linear systems with continuou S
INputs

Switched linear system with inputs:
X=AX+Bju,iel={1...,N}

Now both o : [0,0) — | and feedback controllers u = Kix are to de-
termined

Case 1: Determine K; such that closed loop is stable under arbitrary
switching (assuming we know mode)!

Case 2: Determine both ¢ : [0,0) — | and K;
Case 3 (for PWL systems): Given g as function of state, determine
K|

hs_switched _ctrl.13



Case 1: Stabilization of switched linear system under arbitr ary
switching

x=AX+Bu,iel={1... N}

Sufficient condition: find common quadratic Lyapunov function V (x) =
X" Px for some positive definite matrix P and Kj, ..., Ky

(A +BK)"P+P(A +BK) <0Oforalli=1,...,Nand P> 0

— LMIs (also for Cases 2 and 3)

— state-based switching in this section, ... next ...
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3. Time-controlled switching & pulse width modulation

If dynamical system switches between several subsystems
— stability properties of total system may be quite different
from those of subsystems

T =0,X=Xg
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T=0,Xx=Xp

3.1 Time-controlled switching

o X(to+3€) = exp(ieAr)Xo = Xo+ Ao+ SABG+ -
X(to+ &) = exp(3eAz) exp(3€A1)Xo
= (1 + 2R+ EA2+ .. 1+ EAL+EAZ 4 )Xo
= (I —|—8[%A1-|-%A2] + & [A1—|—A§—|—2A2A1] + -+ )Xo.
e Compare with
explE(BAL+3A2)] = | +E[BAL+ 3A0] + STAT+ AS+ ArAo+ AoAg] + - -
— same for e =~ 0

e So for € — 0 solution of switched system tends to solution of
X = (3A1+3A)x  (“averaged” system)

e Possible that A;, A; stable, whereas 3A; + 3A; unstable, or vice
versa hs_ SW|tched _ctrl.16



Example

e Consider

-05 1 —1 —100
A= [100 —1]’ fo = [—0.5 -1 ]

e A1, A; unstable, but matrix 3(A;+Ay) is stable
— switched system should be stable if frequency of switching is
sufficiently high

e Minimal switching frequency found by computing eigenvalues of
the mapping exp(3€Az) exp(3eA1) (Why?)
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Example (continued)
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Example (continued)
for € =0.02
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3.2 Pulse width modulation

e Assume mode 1 followed during he, and mode 2 during (1—h)e
— behavior of system is well approximated by system

X = (hAl—I— (1— h)Az)X
e Parameter h might be considered as control input

e If h varies, should be on time scale that Is much slower than the
time scale of switching

e If mode 1 is “power on” and mode 2 is “power off”, then his known
as duty ratio

e Power electronics: fast switching theoretically provides possibility
to regulate power without loss of energy
— used in power converters (e.g., Boost converter)
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3.2 Pulse width modulation (continued)
e System: x= f(x,u), ue{0,1}
e Duty cycle: A (fixed)
e U Is switched exactly one time from 1 to O in each cycle
e Duty ration a: fraction of duty cycle for whichu=1
urt)=1 fort<t<t+al

urt)=0 fort+aA<T<t+A
t+aA t+A

e Hence, x(t +/ 1)dt + f(x(1),0)dt
t4+al

¢ |deal averaged model (A — 0):
X(t+A4A) —

XU — af (). )+ (1 o) (x(1),0)
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4. Sliding mode control

e Consider x(t) = f(x(t),u(t)) with u scalar

e Suppose switching feedback control scheme:
(@ (x(t)) ifh(x(t)) >0
@_(x(t)) ifh(x(t)) <O
e Surface {x| h(x) = 0} is called switching surface

elet f (X)=f(X @ (x) and f_(x) = f(x,¢@_(X)), then

K= (V10 451V (0, v=sgn(h(x)

u(t) = <

\

e Use solutions In Filippov’s sense if “chattering”
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4. Sliding mode control (continued)

e Assume “desired behavior” whenever constraint s(x) =0 is
satisfied

e Set {x | s(x) =0} is called sliding surface

e Find control law u such that

Ld < —als
2dt™

where a >0
— squared “distance” to sliding surface decreases
along all system trajectories
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Properties of sliding mode control

e Quick succession of switches may occur
— Increased wear, high-frequency vibrations
= - embed sliding surface in thin boundary layer
- smoothen discontinuity by replacing sgn by steep
sigmoid function
- Note: modifications may deteriorate performance of
closed-loop system

e Main advantages of sliding mode control:

—conceptually simple
—robustness w.r.t. uncertainty in system data

e Possible disadvantage:
— excitation of unmodeled high-frequency modes
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5. Stabilization by switching control

e For multi-model linear systems
— use techniques for quadratic stabilization using single or
multiple Lyapunov function

e Stabilization of non-holonomic systems using hybrid feedback
control (e.g., non-holonomic integrator)
— rather ad hoc
not structured
complicated analysis and proofs
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Stabilization of non-holonomic integrator

e System: X=U, y=V, Z=XV—yU
e Sliding mode control: u= —x+Yysgn(2)
V= —Yy—Xsgn(2)
e Switching surface: z=0
(%*+y°)

= V = X+ xysgn(z) — Y2 — xysgn(2) = — (% +y?) = —2V
= X,y — 0

e Lyapunov function for (x, y) subspace: V(X,y) =

NI

o Z=XV—Yyu=—(X*+V¥°)sgn(z) = —2V sgn(2)
So |z| will decrease and reach 0 provided that

2/000V(T)dr > |2(0)

— z Wil reach O In finite time hs_switched_ctrl.26



Stabilization of non-holonomic integrator (continued)

e Since V(t) =V (0)e 2 = 3(x*(0) +y*(0))e
condition for system to be asymptotically stable is
*04(0) +(0)) > [2(0)
— defines parabolic region & = {(x,y,2) | 0.5(x* +y?) < |Z|}
e If initial conditions do not belong to &2 then sliding mode control
asymptotically stabilizes system

e If Initial state Is inside &7:
—first use control law (e.g., nonzero constant control) to steer
system outside &
—then use sliding mode control

— hybrid control scheme < switched cirl 27
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