Modeling & Control of Hybrid Systems Chapter 6 – Optimization-Based Control

Overview

- 1. Optimal control of hybrid systems
- 2. MPC for MLD and PWA systems
- 3. MPC for MMPS and continuous PWA systems
- 4. Game-theoretic approaches

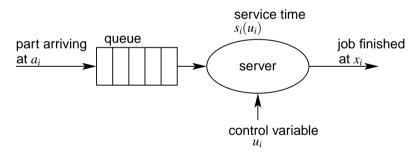
1. Optimal control of a class of hybrid systems

- 1. Optimal control for hybrid manufacturing systems
- 2. Example
- 3. Optimality conditions

hs_opt_ctrl.1

1.1 Optimal control for hybrid manufacturing systems

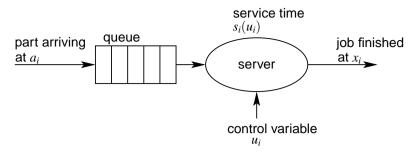
- Manufacturing system: jobs move through network of work centers
- Jobs have
 - temporal state (event-driven): waiting time, departure time, ...
 - *physical state* (time-driven): temperature, size, weight, chemical composition, ...
- Trade-off between
 - temporal requirements on job completion times
 - physical requirements on quality of completed jobs
- assume higher quality \rightarrow longer processing times



- Single-stage, single-server queueing system
- N jobs (each job corresponds to mode)
- Buffer with capacity > N
- As job *i* is processed, physical state z_i evolves according to

$$\dot{z}_i = g_i(z_i, u_i, t)$$
 with $z_i(\tau_i) = \zeta_i$

with τ_i time instant at which processing begins



• Control variable u_i is used to attain final desired physical state: If $s_i(u_i)$ is service time and $\Gamma_i(u_i)$ is target quality set, then

$$s_i(u_i) = \min\{t \ge 0 \mid z_i(\tau_i + t) \in \Gamma_i(u_i)\}$$

• *Temporal state x_i* represents time when job is completed: If a_i is arrival time of job *i*, then

 $x_i = \max(x_{i-1}, a_i) + s_i(u_i)$

(Lindley equation) hs_opt_ctrl.5

Optimal control for hybrid manufacturing systems (cont.)

Optimal control problem:

$$\min_{u_1,\ldots,u_N} J = \sum_{i=1}^N L_i(x_i,u_i)$$

subject to evolution equations for z_i and x_i

where $L(x_i, u_i)$ is cost function associated with job *i*

- \rightarrow classical discrete-time optimal control problems except for
 - *i* does not count time steps

 \rightarrow not really an issue

- max is non-differentiable for $a_i = x_{i-1}$
 - \rightarrow prevents use of standard gradient-based techniques
 - \rightarrow use non-differentiable calculus, generalized gradient

hs_opt_ctrl.6

1.2 Example

- Steel heating/annealing manufacturing processes
- Involves slowly heating and cooling strips to some desired temperatures
- Higher level controller determines furnace reference temperature + amount of time strip is held in furnace
- Physical state z_i represents temperature and depends on line speed u_i and furnace reference temperature F_i :

$$\dot{z}_{i}(t) = -\frac{F_{i} - z_{i}(t_{0})}{L}u_{i} + K_{s}(F_{i}^{4} - z_{i}^{4}(t)) \quad \text{for } t \ge t_{0}$$

• Constraint: $u_{\min} \leq u_i \leq u_{\max}$

1.2 Example (continued)

- Temporal state:
 - x_i : time when job starts processing at furnace
- y_i: time when job completes processing

 $x_i = \max(a_i, x_{i-1}) + s_1(u_i)$ and $y_i = x_i + s_2(u_i)$

with $s_1(u_i)$ elapsed time for whole body of strip to enter furnace (is dependent on length of strip),

and $s_2(u_i)$ processing time for each point of strip to run through furnace (is dependent on length of furnace)

- Two control objectives:
- 1. reduce temperature errors w.r.t. furnace reference temperature
- 2. reduce entire processing time

1.2 Example (continued)

• Thus, optimal control problem is

$$\min_{u_1,\ldots,u_N} J = \sum_{i=1}^N \left(\theta(u_i) + \phi(y_i) \right)$$

subject to physical and temporal evolution equations

with

- $-\phi(y_i)$ cost related to jobs departing at time y_i
 - e.g., $\phi(y_i) = (y_i d_i)^2$, with d_i due date
 - \rightarrow penalizes tardiness, and early completion (inventory cost)
- $-\theta(u_i)$ penalizes deviation from reference temperature F_i :

$$\theta(u_i) = |F_i - z_i(L/u_i)|^2 + \beta \int_0^{L/u_i} (F_i - z_i(t))^2 dt$$

where L/u_i is time each point of strip stays in furnace

hs_opt_ctrl.9

1.3 Optimality conditions

• Define augmented cost:

$$\bar{J}(x,\lambda,u) = \sum_{i=1}^{N} \left(L_i(x_i,u_i) + \lambda_i(\max(x_{i-1},a_i) + s_i(u_i) - x_i) \right)$$

where λ is co-state

- Assumption: costs L_i and s_i are continuously differentiable
- Ignoring non-differentiabilities associated with max, standard first-order necessary conditions for optimality require

$$\frac{\partial \bar{J}}{\partial u_i} = 0, \quad \frac{\partial \bar{J}}{\partial \lambda_i} = 0, \quad \frac{\partial \bar{J}}{\partial x_i} = 0 \quad \text{ for } i = 1, \dots, N.$$

hs_opt_ctrl.10

1.3 Optimality conditions (continued)

- Results in
 - Stationarity condition: $\frac{\partial L_i(x_i, u_i)}{\partial u_i} + \lambda_i \frac{ds_i(u_i)}{du_i} = 0$
 - Temporal state equation: $x_i = \max(x_{i-1}, a_i) + s_i(u)i)$ with $x_0 = -\infty$
 - Co-state equation: $\lambda_i = \frac{\partial L_i(x_i, u_i)}{\partial x_i} + \lambda_{i+1} \frac{d \max(x_i, a_{i+1})}{dx_i}$ with final boundary condition

$$\lambda_N = \frac{\partial L_N(x_N, u_N)}{\partial x_N}$$

• Defines two-point boundary-value problem (TPBVP)

How to deal with non-differentiability

• max is Lipschitz continuous + differentiable except for $x_i = a_{i+1}$:

$$\frac{d\max(x_i, a_{i+1})}{dx_i} = \begin{cases} 0 & \text{ if } x_i < a_{i+1} \\ 1 & \text{ if } x_i > a_{i+1} \end{cases}$$

• Use generalized gradient:

Let $f : \mathbb{R}^n \to \mathbb{R}$ be locally Lipschitz continuous, and let S(u) denote set of all sequences $\{u_m\}_{m=1}^{\infty}$ that satisfy

- $u_m \rightarrow u$ as $m \rightarrow \infty$
- gradient $\nabla f(u_m)$ exists for all m
- $\lim_{m\to\infty} \nabla f(u_m) = \phi$ exists

Then generalized gradient $\partial f(u)$ is defined as convex hull of all limits ϕ corresponding to some sequence $\{u_m\}_{m=1}^{\infty}$ in S(u)

How to deal with non-differentiability (continued)

- Properties of generalized gradient:
 - if *f* is continuously differentiable in some open set containing *u*, then $\partial f(u) = \{\nabla f(u)\}$
 - if *u* is local minimum, then $0 \in \partial f(u)$
 - \rightarrow this becomes first-order optimality condition in non-smooth optimization
- See lecture notes for computation of $\partial \bar{J}$
- Note: presence of idle period results in decoupling

2. MPC for MLD systems

- 1. Model predictive control (MPC)
- 2. MPC for MLD and PWA systems

hs_opt_ctrl.13

measurements

system

MPC controller

model

prediction

hs_opt_ctrl.14

measurements

2.1 Model predictive control (MPC)

- very popular in process industry
- model-based
- easy to tune
- multi-input multi-output (MIMO)
- allows constraints on inputs and outputs
- adaptive / receding horizon
- uses on-line optimization
- \rightarrow apply to MLD, PWA and MMPS systems while keeping advantages

control

inputs

control

actions

MPC (continued)

At sample step k:

- Use model to predict system output over prediction period [k,k+N_p] for given input sequence u(k),...,u(k+N_p-1)
 - $N_{\rm p}$: prediction horizon

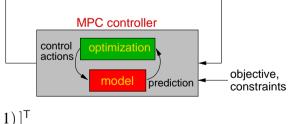
$$\tilde{u}(k) = [u^{\mathsf{T}}(k) \ldots u^{\mathsf{T}}(k+N_{\mathsf{p}}-1)]^{\mathsf{T}}$$

• Define performance criterion J(k) over $[k, k+N_p]$, e.g., $J(k) = \text{tracking error} + \lambda \text{input}$ effort/energy

control

inputs

• Constraints on *u*, *x*, *y*



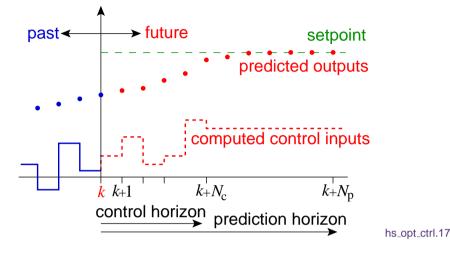
system

objective,

constraints

MPC problem

• Find at sample step k input sequence $\tilde{u}(k)$ that minimizes J(k) subject to system equations + constraints



MPC problem (continued)

Receding horizon principle:

- compute optimal input sequence $\tilde{u}(k)$
- implement only first sample *u*(*k*)
- update model & shift interval
- restart optimization

Extra condition to reduce computational complexity: control horizon $N_{\rm c}$

$$u(k+j) = u(k+N_{c}-1)$$
 for $j = N_{c}, \dots, N_{p}-1$

 \rightarrow smoother controller signal & stabilizing effect

hs_opt_ctrl.18

2.2 MPC for MLD systems

- Consider MLD system: $x(k+1) = Ax(k) + B_1u(k) + B_2\delta(k) + B_3z(k)$ $y(k) = Cx(k) + D_1u(k) + D_2\delta(k) + D_3z(k)$ $E_1x(k) + E_2u(k) + E_3\delta(k) + E_4z(k) \le g_5,$
- $x(k) = [x_r^T(k) x_b^T(k)]^T$ with $x_r(k)$ real-valued, $x_b(k)$ boolean z(k): real-valued auxiliary variables $\delta(k)$: boolean auxiliary variables
- Consider equilibrium state/input/output $(x_{eq}, u_{eq}, y_{eq}) \rightarrow (\delta_{eq}, z_{eq})$
- $\hat{x}(k+j|k)$: estimate of x at sample step k+j based on information available at sample step k

2.2 MPC for MLD systems (continued)

• Stabilize system to equilibrium state:

$$\begin{split} J(k) &= \sum_{j=1}^{N_{\rm p}} \| \hat{x}(k+j|k) - x_{\rm eq} \|_{Q_x}^2 + \| u(k+j-1) - u_{\rm eq} \|_{Q_u}^2 + \\ & \| \hat{y}(k+j|k) - y_{\rm eq} \|_{Q_y}^2 + \| \hat{\delta}(k+j-1|k) - \delta_{\rm eq} \|_{Q_{\delta}}^2 + \\ & \| \hat{z}(k+j-1|k) - z_{\rm eq} \|_{Q_z}^2 \end{split}$$

with $Q_{\underline{\cdot}} \ge 0$

- End-point condition: $\hat{x}(k + N_p|k) = x_{eq}$
- Control horizon constraint: $u(k+j) = u(k+N_c-1)$ for $j = N_c, \dots, N_p-1$

2.2 MPC for MLD systems (continued)

• Property:

If feasible solution exists for x(0), then MPC input stabilizes system, i.e.,

$$\begin{split} &\lim_{k \to \infty} x(k) = x_{\text{eq}} & \lim_{k \to \infty} \|y(k) - y_{\text{eq}}\|_{\mathcal{Q}_y} = 0 & \lim_{k \to \infty} \|z(k) - z_{\text{eq}}\|_{\mathcal{Q}_z} = 0 \\ &\lim_{k \to \infty} u(k) = u_{\text{eq}} & \lim_{k \to \infty} \|\delta(k) - \delta_{\text{eq}}\|_{\mathcal{Q}_\delta} = 0 \end{split}$$

Algorithms for MLD-MPC

 \rightarrow mixed-integer quadratic programming (MIQP)

- Successive substitution of system equations: $\rightarrow \hat{x}(k+j|k)$ is linear function of x(k), \tilde{u} , $\tilde{\delta}$ and \tilde{z} Also holds for $\hat{y}(k+j|k)$
- Define $\tilde{V}(k) = \begin{bmatrix} \tilde{u}^{\mathsf{T}}(k) & \tilde{\delta}^{\mathsf{T}}(k) & \tilde{z}^{\mathsf{T}}(k) \end{bmatrix}^{\mathsf{T}}$ \rightarrow contains both real-valued and integer-valued components
- Results in

$$\min_{\tilde{V}(k)} \tilde{V}^{\mathsf{T}}(k) S_1 \tilde{V}(k) + 2(S_2 + x^{\mathsf{T}}(k)S_3) \tilde{V}(k)$$
(1)

subject to
$$F_1 \tilde{V}(k) \leqslant F_2 + F_3 x(k)$$
, (2)

hs_opt_ctrl.21

hs_opt_ctrl.22

Algorithms for MLD-MPC (continued)

- MIQP = NP-hard
- For small-sized problems: cutting plane methods, decomposition methods, logic-based methods, *branch-and-bound* methods (tree search)
- Software:
 - Multi-Parametric Toolbox (MPT) : http://control.ee.ethz.ch/~mpt/
 - Hybrid toolbox : http://www.dii.unisi.it/hybrid/toolbox/
 - TOMLAB, CPLEX, Xpress
 - NAG, Matlab NAG Toolbox

3. MPC for continuous PWA systems

- 1. Equivalence of continuous PWA and MMPS systems
- 2. Canonical forms of MMPS functions
- 3. Model predictive control for MMPS systems
- 4. Algorithms for MMPS-MPC
- 5. Example

3.1 Equivalence of continuous PWA and MMPS systems PWA systems

- Continuous PWA function $f : \mathbb{R}^n \to \mathbb{R}$:
 - domain space divided into polyhedral regions $R_{(1)},\ldots,R_{(N)}$
 - in each region $R_{(i)} f$ can be expressed as

$$f(x) = \boldsymbol{\alpha}_{(i)}^T x + \boldsymbol{\beta}_{(i)}$$

- -f is continuous over border of any two regions
- Continuous PWA system:

$$\begin{aligned} x(k) &= \mathscr{P}_x(x(k-1), u(k)) \\ y(k) &= \mathscr{P}_y(x(k), u(k)) \end{aligned}$$

with \mathcal{P}_x , \mathcal{P}_y vector-valued continuous PWA functions

PWA systems (cont.)

• Note: continuous PWA model can be used as approximation of general nonlinear continuous state space model

$$\begin{aligned} x(k) &= \mathscr{N}_x(x(k-1), u(k)) \\ y(k) &= \mathscr{N}_y(x(k), u(k)) \end{aligned}$$

hs_opt_ctrl.25

hs_opt_ctrl.26

Max-min-plus-scaling (MMPS) systems

• MMPS function *f* is constructed recursively:

 $f := x_i | \boldsymbol{\alpha} | \max(f_k, f_l) | \min(f_k, f_l) | f_k + f_l | \boldsymbol{\beta} f_k$

- with f_k , f_l again MMPS functions
- Examples:
 - * $5x_1 \max(x_2 + x_3, 5x_1 2x_2)$
 - * max $(x_1, \min(x_2, x_3))$ + max $(x_2 8x_3 + \min(x_1, 5x_2), -7x_1)$
- Note: MMPS function is continuous
- MMPS system:

$$x(k) = \mathscr{M}_x(x(k-1), u(k))$$

$$y(k) = \mathscr{M}_y(x(k), u(k))$$

with \mathcal{M}_x , \mathcal{M}_y vector-valued MMPS functions

Equivalence of continuous PWA and MMPS systems

- Previous result: (General) PWA systems are equivalent to *constrained* MMPS systems
- Any MMPS function is also continuous PWA
- A continuous PWA function f can be rewritten as

$$f = \max_{i} \min_{i} \left(\alpha_{i}^{T} x + \beta_{i} \right)$$

- $\rightarrow f$ is also MMPS function
- So classes of continuous PWA functions and MMPS functions coincide

Equivalence of continuous PWA and MMPS systems (cont.)

- Continuous PWA systems and MMPS systems are equivalent:
- \rightarrow for given continuous PWA model there exists MMPS model (and vice versa) such that input-output behaviors coincide
- \Rightarrow use properties & techniques from PWA systems for MMPS systems and vice versa

3.2 Canonical forms of MMPS functions

• Any MMPS function $f : \mathbb{R}^n \to \mathbb{R}$ can be rewritten into min-max canonical form

$$f = \min_{i} \max_{i} \left(\alpha_{(i,j)}^{T} x + \beta_{(i,j)} \right)$$

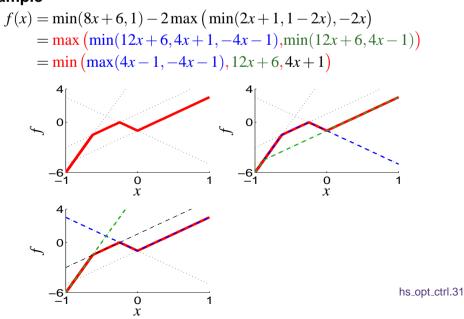
or into max-min canonical form

$$f = \max_{i} \min_{j} (\gamma_{(i,j)}^{T} x + \boldsymbol{\delta}_{(i,j)})$$

hs_opt_ctrl.29

hs_opt_ctrl.30

Example



3.3 MPC for MMPS systems

• Use MMPS model

$$x(k) = \mathcal{M}_x(x(k-1), u(k))$$

$$y(k) = \mathcal{M}_y(x(k), u(k))$$

as

- model of MMPS system
- equivalent model of continuous PWA system
- approximation of general smooth nonlinear system
- Prediction horizon: N_p
- Estimate $\hat{y}(k+j|k)$ of output at sample step k+j:

$$\hat{y}(k+j|k) = F_j(x(k-1), u(k), \dots, u(k+j))$$

 \rightarrow *F_j* is MMPS function!

hs_opt_ctrl.32

3.3 MPC for MMPS systems (continued)

- Reference signal: r
- Cost criterion J: reference tracking (J_{out}) vs control effort (J_{in}) :

$$J(k) = J_{\text{out}}(k) + \lambda J_{\text{in}}(k)$$
 with $\lambda > 0$

• Some possible cost functions:

$$\begin{aligned} J_{\text{out},1}(k) &= \|\tilde{y}(k) - \tilde{r}(k)\|_1 & J_{\text{out},\infty}(k) &= \|\tilde{y}(k) - \tilde{r}(k)\|_{\infty} \\ J_{\text{in},1}(k) &= \|\tilde{u}(k)\|_1 & J_{\text{in},\infty}(k) &= \|\tilde{u}(k)\|_{\infty} \end{aligned}$$

with

$$\tilde{u}(k) = \begin{bmatrix} u^{T}(k) & \dots & u^{T}(k+N_{p}-1) \end{bmatrix}^{T}$$
$$\tilde{y}(k) = \begin{bmatrix} \hat{y}^{T}(k|k) & \dots & \hat{y}^{T}(k+N_{p}-1|k) \end{bmatrix}^{T}$$
$$\tilde{r}(k) = \begin{bmatrix} r^{T}(k) & \dots & r^{T}(k+N_{p}-1) \end{bmatrix}^{T}$$

Note: $|x| = \max(x, -x) \rightarrow \text{cost functions are MMPS functions}_{hs_opt_ctrl.33}$

3.3 MPC for MMPS systems (continued)

• Constraints on input and output signals:

$$C_{\mathsf{c}}(k, x(k-1), \tilde{u}(k), \tilde{y}(k)) \ge 0$$

hs_opt_ctrl.34

3.4 Algorithms for MMPS-MPC

- Nonlinear optimization (SQP, ELCP):
- \rightarrow local minima, excessive computation time
- MPC for mixed logical-dynamical (MLD) systems [Bemporad, Morari]:
- \rightarrow mixed real-integer quadratic programming problems
- New approach based on canonical forms:
- \rightarrow set of linear programming problems

LP-based algorithm

Assume: linear (or convex) constraint in $\tilde{u}(k)$

 $P(k)\tilde{u}(k) + q(k) \ge 0$

Recall: J(k) is MMPS function $\Rightarrow J(k) = \max_{i} \left(\min_{j} (\gamma_{(i,j)}^{T} \tilde{u} + \delta_{(i,j)}) \right)$ $= \min_{i} \left(\max_{j} (\alpha_{(i,j)}^{T} \tilde{u} + \beta_{(i,j)}) \right)$ $\Rightarrow \min_{\tilde{u}} J(k) = \min_{\tilde{u}} \min_{i} \left(\max_{j} (\alpha_{(i,j)}^{T} \tilde{u} + \beta_{(i,j)}) \right)$ $= \min_{i} \underbrace{\min_{\tilde{u}} \left(\max_{j} (\alpha_{(i,j)}^{T} \tilde{u} + \beta_{(i,j)}) \right)}_{\rightarrow \mathsf{LP}!}$

LP-based algorithm (cont.)

LP *i*:

 \Rightarrow set of linear programming problems!

3.5 Example

PWA model:

$$y(k) = x(k) = \begin{cases} 0.5x(k-1) + 4u(k) - 1 & \text{if } 0.5x(k-1) + 3.8u(k) \leq 2\\ 0.2u(k) + 1 & \text{if } 0.5x(k-1) + 3.8u(k) > 2 \end{cases}$$

Equivalent MMPS model:

$$y(k) = x(k) = \min(0.5x(k-1) + 4u(k) - 1, 0.2u(k) + 1)$$

Constraints:

$$-0.2 \leq \Delta u(k) \leq 0.2$$
 and $u(k) \geq 0$ for all k

hs_opt_ctrl.37

Let
$$N_{c} = N_{p} = 2$$
 and $J(k) = J_{out,\infty}(k) + \lambda J_{in,1}(k)$
= $\|\tilde{y}(k) - \tilde{r}(k)\|_{\infty} + \lambda \|\tilde{u}(k)\|_{1}$ hs_opt_ctrl.38

3.5 Example (continued)

After substitution:

 $J(k) = \max\left(\min(t_1, t_2), s_1, s_2, \min(t_3, t_4, t_5), s_3, s_4, s_5\right)$

with t_i , s_i affine functions of $x_1(k-1)$, u(k), u(k+1), r(k)

Min-max canonical form:

$$J(k) = \min(\max(t_1, t_3, s_1, s_2, s_3, s_4, s_5), \max(t_1, t_4, s_1, s_2, s_3, s_4, s_5), \\ \max(t_1, t_5, s_1, s_2, s_3, s_4, s_5), \max(t_2, t_3, s_1, s_2, s_3, s_4, s_5), \\ \max(t_2, t_4, s_1, s_2, s_3, s_4, s_5), \max(t_2, t_5, s_1, s_2, s_3, s_4, s_5))$$

 \rightarrow solve 6 LPs

3.5 Example (continued)

CPU time for closed-loop MPC over period [1,15]:

Method	CPU time (s)
LP	0.55
SQP	4.90
MLD	2.74
ELCP	198.82

4. Game-theoretic approaches

• Safety-critical applications such as collision avoidance in free flight or automated highways

→ guarantee safety even in case intentions of other aircraft/vehicle are not known (non-cooperative game)

if (partial) communication possible \rightarrow cooperative game

Consider continuous-time system

$$\dot{x} = f(x, u, d)$$

with u control inputs (corresponding 1st player), and d disturbance inputs (corresponding to the 2nd player/adversary)

• Assume safety constraints can be represented by set

$$F = \{ x \in X \mid k(x) \ge 0 \}$$

hs_opt_ctrl.41

Game-theoretic approach

• Let $t \leq 0$ and consider cost function

 $J: X \times \mathscr{U} \times \mathscr{D} \times \mathbb{R}^- \to \mathbb{R}: (x, u(\cdot), d(\cdot), t) \mapsto k(x(0))$

where \mathscr{U} and \mathscr{D} denote admissible control and disturbance functions

- Cost is function of final state *x*(0) only!
- \rightarrow *J* is cost associated with trajectory starting at *x* at time *t* \leq 0 with inputs *u*(·) and *d*(·), and ending at time *t* = 0 at the final state *x*(0)
- Define value function

$$J^{\star}(x,t) = \max_{u \in \mathscr{U}} \min_{d \in \mathscr{D}} J(x,u,d,t)$$

hs_opt_ctrl.42

Game-theoretic approach (cont.)

• The set

$$\{x \in X \mid \min_{t' \in [t,0]} J^{\star}(x,t') \ge 0\}$$

contains all states for which system can be forced by control u to remain in safe set F for at least |t| time units, irrespective of disturbance function d

- Value function J^* can be computed using Hamilton-Jacobi equations
 - (numerical) solution of Hamilton-Jacobi equations is formidable task
 - + approach provides systematic way to check safety properties for continuous-time systems, and certain classes of hybrid systems