Modeling & Control of Hybrid Systems
Chapter 6 — Optimization-Based Control

Overview

1. Optimal control of hybrid systems

2. MPC for MLD and PWA systems

3. MPC for MMPS and continuous PWA systems
4. Game-theoretic approaches

hs_opt_ctrl.1

1.1 Optimal control for hybrid manufacturing systems

e Manufacturing system: jobs move through network of work cen-
ters

e Jobs have

—temporal state (event-driven): waiting time, departure time, ...

— physical state (time-driven): temperature, size, weight, chemi-
cal composition, ...

e Trade-off between

—temporal requirements on job completion times
—physical requirements on quality of completed jobs

assume higher quality — longer processing times
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1. Optimal control of a class of hybrid systems

1. Optimal control for hybrid manufacturing systems
2. Example
3. Optimality conditions
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¢ Single-stage, single-server queueing system

e N jobs (each job corresponds to mode)

e Buffer with capacity > N

e As job i is processed, physical state z evolves according to
z = Gi(z,u;,t) with z(7) = ¢

with 7; time instant at which processing begins
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e Control variable u; is used to attain final desired physical state:
If s(u) is service time and Ii(y;) is target quality set, then

S(u) =min{t > 0| z(ti+t) € Ti(u)}

e Temporal state x; represents time when job is completed:
If & is arrival time of job i, then

X = max(xi*bai) +S(ui) (Lindley equation) hs_opt_ctrl.5

1.2 Example

e Steel heating/annealing manufacturing processes

e Involves slowly heating and cooling strips to some desired tem-
peratures

¢ Higher level controller determines furnace reference temperature
+ amount of time strip is held in furnace

e Physical state z represents temperature and
depends on line speed u; and furnace reference temperature F:

Z(t) = —FI_TZi(tO)Ui +K (R -Z'(1))

e Constraint: Unin, < Ui < Upax

fort >t
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Optimal control for hybrid manufacturing systems (cont.)

Optimal control problem:

subject to evolution equations for z and x;

where L(x;, ;) is cost function associated with job i
— classical discrete-time optimal control problems except for

e i does not count time steps
— not really an issue

e max is non-differentiable for a; = x_;
— prevents use of standard gradient-based techniques
— use non-differentiable calculus, generalized gradient
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1.2 Example (continued)

e Temporal state:
X: time when job starts processing at furnace, i.e.
strip completely inside furnace
y;: time when job completes processing

X = max@,X-1) +si(Uu) and vy =x+S(u)

with s;(u;) elapsed time for whole body of strip to enter furnace
(is dependent on length of strip),

and s,(u;) processing time for each point of strip to run through
furnace (is dependent on length of furnace)

e Two control objectives:

1. reduce temperature errors w.r.t. furnace reference temperature

2. reduce entire processing time
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1.2 Example (continued)

e Thus, optimal control problem is
N

min J = _Zl(e(ui) + (%))

subject to physical and temporal evolution equations
with
—@(y;) cost related to jobs departing at time vy,
e.g., o(yi) = (yi — di)?, with d; due date
— penalizes tardiness, and early completion (inventory cost)
— 0(u;) penalizes deviation from reference temperature F:

L/y;
() = |F — z(L/w)[2+ B /0 (F — z(t))t

where L/u; is time each point of strip stays in furnace
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1.3 Optimality conditions (continued)
e Results in
— Stationarity condition: ILi(x, ) _Mids(u.) =0
0Ui dui
—Temporal state equation: x; = max(%_1,&) + s (u)i)
with Xg = —o
. Li (X, uj d i, a -
— Co-state equation: A = %);”U') )\Hl%_’a'ﬂ) with final
boundary condition
A — OLn (XN, Un)
N ——
dXN

e Defines two-point boundary-value problem (TPBVP)
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1.3 Optimality conditions

¢ Define augmented cost:

J(X,A,u) = i(l—i(xiyui) +Ai(max(Xi_1,&) +s(u) — X))

i=
where A is co-state
e Assumption: costs L; and s are continuously differentiable
¢ Ignoring non-differentiabilities associated with max,
standard first-order necessary conditions for optimality require
aJ J J
—=0, —=0, —=0 fori=1,...,N
dui ’ d)\i ’ 0Xi ’ ’
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How to deal with non-differentiability
e max is Lipschitz continuous + differentiable except for x; = g 1:

dmax(x,a1) JO ifx <&
dx; 1 ifx >a.1

e Use generalized gradient:

Let f : R" — R be locally Lipschitz continuous, and let S(u) de-

note set of all sequences {um}n_, that satisfy

eUy,—uasm-— o

e gradient Of (uy) exists for all m

o limy . Of(un) = @ exists

Then generalized gradient 0 f(u) is defined as convex hull of all

limits ¢ corresponding to some sequence {Um}m_; in S(u)
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How to deal with non-differentiability (continued)

¢ Properties of generalized gradient:

—if f is continuously differentiable in some open set containing
u, then af(u) ={0Of(u)}
—if uis local minimum, then 0 € 9 f (u)
— this becomes first-order optimality condition in
non-smooth optimization

e See lecture notes for computation of 3J

e Note: presence of idle period results in decoupling
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2.1 Model predictive control (MPC)

e Very popular in process industry

o Model-based control measurements
e Easy to tune inputs

e Multi-input multi-output
(MIMO)

MPC controller

control

i ] optimization
e Allows constraints on actions
[ _ objective,
inputs and outputs ediction objective,

¢ Adaptive / receding horizon
e Uses on-line optimization

— apply to MLD, PWA, and MMPS systems while keeping advan-
tages
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2. MPC for MLD systems

1. Model predictive control (MPC)
2. MPC for MLD and PWA systems
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MPC (continued)
At sample step k: control

mw%nts
e Use model to predict inputs
system output over
prediction period [k, K+ N,] MPC controller
for given input sequence Sl optimization
u(k),...,u(k+N,—1) actions .

) objective,
prediction = cojnstraints

N,: prediction horizon
(k) = [u"(k) ... u"(k+N,—1)]"

e Define performance criterion J(k) over [k, k+N,], e.g.,
J(k) = tracking error + A -input effort/energy

e Constraints on u, X, y
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MPC problem

e Find at sample step k input sequence ((k) that minimizes J(k)
subject to system equations + constraints

A

past<———— future setpoint

7777777777 - — 0 0 — 0o -0 —

predlcted outputs

- » computed control inputs

L

kkl kel kel
control horizon e giction horizon
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2.2 MPC for MLD systems
e Consider MLD system:
X(k+1) = Ax(k) + Bau(k) 4+ B20 (k) + Bsz(k)
y(k) = Cx(k) + D1u(k) + D20 (k) 4 D3z(k)
Eix(K) + Eou(k) 4+ E30(k) 4+ E4z(K) < s,
o x(K) = [%T(K) %" (K)]T with x,(k) real-valued, x,(k) boolean
z(k): real-valued auxiliary variables
0(k): boolean auxiliary variables

e Consider equilibrium state/input/output (Xeq, Ueq, Yeq) — (Oeqs Zeq)

o X(k+ j|k): estimate of x at sample step k—+ j based on information
available at sample step k
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MPC problem (continued)
Receding horizon principle
e Compute optimal input sequence G(k)
e Implement only first sample u(k)
e Update model & shift interval
e Restart optimization

Extra condition to reduce computational complexity:
control horizon N.

ukk+j)=uk+N.—1) forj=N,...,N,—1
— smoother controller signal & stabilizing effect
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2.2 MPC for MLD systems (continued)

¢ Stabilize system to equilibrium state:
NP
= lei(k+ 1K) = Xeq[G + [[u(K+- ] — 1) — Ueq I3, +
J:
19K+ §K) = Yeqllgy, + 10K+ j — 1K) — &uq[3,+
120k + | — 1]k) — ZqI3,
with Q,(E)O
e End-point condition: X(k+ Ny|K) = Xeq

e Control horizon constraint:
u(k+j) =u(k+N.—1) for j=N,...,N,—1
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2.2 MPC for MLD systems (continued)

e Property :
If feasible solution exists for x(0), then MPC input stabilizes sys-
tem, i.e.,

lim X(K) = Xeq

k—o0

lim u(k) = Ueq

K—sc0

fim Y(K) ~ yeglloy =0
lim [15(K) — 8, =0

lim [2(K) 2o, = O
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Algorithms for MLD-MPC (continued)
e MIQP = NP-hard

e For small-sized problems: cutting plane methods, decomposi-
tion methods, logic-based methods, branch-and-bound methods
(tree search)

e Software:

— Multi-Parametric Toolbox (MPT) : http://control.ee.ethz.ch/"mpt/
—Hybrid toolbox : http://www.dii.unisi.it/hybrid/toolbox/
—TOMLAB, CPLEX, Xpress

—NAG, Matlab NAG Toolbox
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Algorithms for MLD-MPC
— mixed-integer quadratic programming (MIQP)
e Successive substitution of system equations:
— X(k+ j|k) is linear function of x(k), G, d and Z
Also holds for y(k+ j|k)
« Define V (k) = [a"(k) &7(k) Z'(k)]"
— contains both real-valued and integer-valued components
e Results in

Vm(L? VT(K)SV (K) +2(S+ X" (K)Ss)V (K) (1)

subject to FyV (k) < Fo+ Fax(k) (2)
= MIQP problem
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. MPC for continuous PWA systems

. Equivalence of continuous PWA and MMPS systems
. Canonical forms of MMPS functions

. Model predictive control for MMPS systems

. Algorithms for MMPS-MPC

. Example

o A W N P W
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3.1 Equivalence of continuous PWA and MMPS systems
PWA systems
e Continuous PWA function f : R" — R:
—domain space divided into polyhedral regions Ry),...,Rn)
—in each region R;;, f can be expressed as
f(x) = ajx+ B
— f is continuous over border of any two regions
e Continuous PWA system:
X(k) = Zx(x(k—=1),u(k))
y(K) = Zy(x(k), u(k))
with &y, &, vector-valued continuous PWA functions
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Max-min-plus-scaling (MMPS) systems
¢ MMPS function f is constructed recursively:
f:=x|a| max(fy, fi)| min(fy, fi)| fc+ fi | B f«
with fy, f; again MMPS functions
e Examples:
% 5X3 — max(Xz + X3, 5X3 — 2X%7)
* max (X1, Min(Xz, X3) ) 4+ Max (X, — 8xz + min(xy, 5%2), — 7%
¢ Note: MMPS function is continuous

e MMPS system: X(K) = s (x(k— 1), u(k))

y(k) = .2,(x(K), u(k))

with .#,, ./, vector-valued MMPS functions
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PWA systems (cont.)

¢ Note: continuous PWA model can be used as approximation of
general nonlinear continuous state space model

X(k) = Ax(x(k—1), u(k))
y(k) = A (x(k),u(k))
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Equivalence of continuous PWA and MMPS systems

e Previous result: (General) PWA systems are equivalent to con-
strained MMPS systems

e Any MMPS function is also continuous PWA
e A continuous PWA function f can be rewritten as
f = maxmin (o;'x+ )
] |
— f is also MMPS function

e So classes of continuous PWA functions and MMPS functions
coincide
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Equivalence of continuous PWA and MMPS systems (cont.)

e Continuous PWA systems and MMPS systems are equivalent:

— for given continuous PWA model there exists MMPS model
(and vice versa) such that input-output behaviors coincide

=- use properties & techniques from continuous PWA sys-
tems for MMPS systems and vice versa
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Example
f(x) = min(8x+ 6, 1) — 2max( min(2x+ 1,1 — 2x), —2x)
= max(min(12x+ 6,4x+ 1, —4x— 1), min(12x+ 6,4x— 1))
= min (max(4x— 1, —4x—1),12x+ 6,4x+ 1)

Xo

-6 hs_opt_ctrl.31

Xo

3.2 Canonical forms of MMPS functions

e Any MMPS function f : R" — R can be rewritten into min-max
canonical form
f = rniinmja><(a(Ti7j)x+ Bi.j)
or into max-min canonical form
T

f= miaxmjin(y(i’j)XJr 5(”'))
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3.3 MPC for MMPS systems
e Use MMPS model

as

—model of MMPS system
—equivalent model of continuous PWA system
—approximation of general smooth nonlinear system

e Prediction horizon: N,
e Estimate y(k+ j|k) of output at sample step k+ j:
Y(k+ jlk) = Fj(x(k—1),u(k),...,u(k+j))

— Fj is MMPS function! hs_opt_ctrl.32



3.3 MPC for MMPS systems (continued)
e Reference signal: r
e Cost criterion J: reference tracking (Jo,:) VS control effort (J,,):
J(K) = Jout(K) +Adn(k)  withA >0
e Some possible cost functions:
Joutl( k) = [[§(k) =F(K)[1  Jouro(k) = HY(k) —F(K)]eo
a

Jin1(K) = [|G(K) |2 Jin.eo (K) = [|G(K) |
with
G(k) = [u"(k) ... u"(k+N,—1)]"
y = [97( k|k ‘T(k+N —1|k)]
F(k) = [r'(k) T(k+N,—1)]"
Note: |x| = max(x —X) — cost functions are MMPS functions
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3.4 Algorithms for MMPS-MPC
e Nonlinear optimization (SQP, ELCP):

— local minima, excessive computation time

e MPC for mixed logical-dynamical (MLD) systems
[Bemporad, Morari]:
— mixed real-integer quadratic programming
problems
e New approach based on canonical forms:
— set of linear programming problems
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3.3 MPC for MMPS systems (continued)

e Constraints on input and output signals:
Ce(k,x(k—1),t(k),¥(k)) >0

LP-based algorithm
Assume: linear (or convex) constraint in G(K)

P(k)a(k) +q(k) >0

Recall: J(k) is MMPS function
= J(k) = max(min(yT-- 0+ )
j
= mln(max(a J0+ Bij))

= min J(k) = mlnmln(max(a(T,J a+Bij))
T

— mlnmln(maX(G(.J 0+ Bii.j))

/

— LP!
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LP-based algorithm (cont.)
LPi:
mint
u
ot {t > af )0+ B forall j
Pi+qg=>0

= set of linear programming problems!
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3.5 Example (continued)
After substitution:

J(k) =max(min(ty,t2),s1, S, Min(ts, ta, ts), Ss, S4, 5)
with t;, s affine functions of x;(k—1),u(k),u(k+1),r(k)

Min-max canonical form:

J(k) = min(max(ty, ts, St, S, S, 4, S5), Max(ty, ta, S, 2, S3, 54, S5,
maX(t]_, t57 S[L, 827 837 S47 S\_)) 3 max(t27 t37 Sl7 SQ, 837 S47 35) 3
maxto, ts, S1, S, S, 4, S5), MaxX(tp, ts, St, S2, S5, 54, S5) )

— solve 6 LPs
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3.5 Example

PWA model:

J(K) = x(K) — {O.Sx(k— 1)+4u(k)—1 if 0.5x(k—1)+3.8u(k) < 2
0.2u(k) +1 if 0.5x(k—1)+3.8u(k) >2

Equivalent MMPS model:
y(K) = x(k) = min(0.5x(k — 1) + 4u(k) — 1, 0.2u(k) + 1)

Constraints:
—0.2<Au(k) <0.2 and u(k) >0 forallk

Let Ne = N, = 2 and J(K) = Joue.o(K) + A J 2 (K)

= [I¥(K) = F(k) [l + A [ G(K) ]2 e opteu3®
3.5 Example (continued)
CPU time for closed-loop MPC over period [1,15]:
Method | CPU time (s)
LP 0.55
SQP 4.90
MLD 2.74
ELCP 198.82
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4. Game-theoretic approaches

e Safety-critical applications such as collision avoidance in free
flight or automated highways

— guarantee safety even in case intentions of other aircraft/vehicle
are not known (non-cooperative game)
if (partial) communication possible — cooperative game

e Consider continuous-time system
x= f(x,u,d)

with u control inputs (corresponding to 1st player), and d distur-
bance inputs (corresponding to 2nd player/adversary)

e Assume safety constraints can be represented by set
F={xeX|k(x) >0}
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Game-theoretic approach (cont.)

e The set

X | min J*(x,t') >0
{xeX | min () > 0}

contains all states for which system can be forced by control u
to remain in safe set F for at least |t| time units, irrespective of
disturbance function d

¢ Value function J* can be computed using Hamilton-Jacobi equa-
tions
- (numerical) solution of Hamilton-Jacobi equations is tremen-
dous task

+ approach provides systematic way to check safety properties
for continuous-time systems and certain classes of hybrid sys-
tems
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Game-theoretic approach

e Lett < 0 and consider cost function
J:XXUxPZ xR —R:(xu(-),d(-),t) — k(x(0))

where % and 2 denote admissible control and disturbance func-
tions

e Cost is function of final state x(0) only!

— J is cost associated with trajectory starting at x at time t < 0 with
inputs u(-) and d(-), and ending at time t = 0 at the final state x(0)

e Define value function
J*(x,t) = maxmin J(x,u,d,t)
uUe?% deo
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