Modeling & Control of Hybrid Systems

Chapter 7 — Model Checking and Timed Automata

Overview

- 1. Introduction
- 2. Transition systems
- 3. Bisimulation

1. Introduction

- *Model checking* = process of automatically analyzing properties of systems by exploring their state space
- \bullet Finite state systems \rightarrow properties can be investigated by systematically exploring states

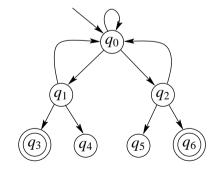
E.g., check whether particular set of states will be reached

- Not possible for hybrid systems since number of states is infinite
- However, for some hybrid systems one can find "equivalent" finite state system by partitioning state space into finite number of sets such that any two states in set exhibit similar behavior
 - \rightarrow analyze hybrid system by working with sets of partition
- Generation and analysis of finite partition can be carried out by computer

hs check.2

hs_check.1

2. Transition systems


Transition system $T = (S, \delta, S_0, S_F)$ consists of

- set of states *S* (finite or infinite)
- transition relation $\delta : S \rightarrow P(S)$
- set of initial states $S_0 \subseteq S$
- set of final states $S_F \subseteq S$

Trajectory of transition system is (in)finite sequence of states $\{s_i\}_{i=0}^N$ such that

- $s_0 \in S_0$
- $s_{i+1} \in \delta(s_i)$ for all i

Example of finite state transition system

- states: $S = \{q_0, ..., q_6\};$
- transition relation: $\delta(q_0) = \{q_0, q_1, q_2\}, \ \delta(q_1) = \{q_0, q_3, q_4\}, \ \delta(q_2) = \{q_0, q_5, q_6\}, \ \delta(q_3) = \delta(q_4) = \delta(q_5) = \delta(q_6) = \emptyset$
- initial states: $S_0 = \{q_0\}$
- final states: $S_F = \{q_3, q_6\}$ (indicated by double circles) hs_check.4

Transition system of hybrid automaton

• Hybrid automaton can be transformed into transition system by abstracting away time

we do not care how long it takes to get from s to s', we only care whether it is possible to get there eventually

 \rightarrow transition system captures sequence of events that hybrid system may experience, but *not* timing of these events

Reachability

• Transition system is *reachable* if there exists trajectory such that $s_i \in S_F$ for some *i*

hs_check.5

3. Bisimulation

- Turn *infinite* state system into *finite* state system by grouping together states that have "similar" behavior → partition
- Yields so-called quotient transition system finite number of states → can be analyzed more easily
- Problem: for most partitions properties of quotient transition system do not allow to draw any useful conclusions about properties of original system
- However, special type of partition for which quotient system \hat{T} is "equivalent" to original transition system T: *bisimulation*

Important property

If partition $\{S_i\}_{i \in I}$ is bisimulation of transition system T and \hat{T} is quotient transition system, then S_F is reachable by T if and only if corresponding final state \hat{S}_F in \hat{T} is reachable by \hat{T}

- For finite state systems → computational efficiency Study reachability in quotient system instead of original system (quotient system usually much smaller than original)
- For infinite state systems:

Even if original transition system has infinite number of states, sometimes bisimulation consisting of finite number of sets

 \rightarrow answer reachability questions for infinite state system by studying equivalent finite state system

Bisimulation algorithm

- For timed automata we can always find *finite* bisimulation
- Bisimulation algorithm (see lecture notes):
 - For finite state systems bisimulation algorithm will always terminate

Problem: it may be more work to find bisimulation than to investigate reachability of the original system

 For infinite state systems: sometimes, algorithm may never terminate (reason: not all infinite state transition systems have finite bisimulations)

Bisimulation algorithm (continued)

For *timed automata*: bisimulation algorithm terminates in finite number of steps

Disadvantage: total number of states in the quotient transition system grows very quickly (exponentially) as number of timers *n* increases

hs_check.9

hs_check.10