Modeling & Control of Hybrid Systems

Chapter 7 — Model Checking and Timed Automata

Overview

- 1. Introduction
- 2. Transition systems
- 3. Bisimulation
- 4. Timed automata

1. Introduction

- Model checking = process of automatically analyzing properties of systems by exploring their state space
- Finite state systems → properties can be investigated by systematically exploring states
 E.g., check whether particular set of states will be reached
- Not possible for hybrid systems since number of states is infinite
- However, for some hybrid systems one can find "equivalent" finite state system by partitioning state space into finite number of sets such that any two states in set exhibit similar behavior
 → analyze hybrid system by working with sets of partition
- Generation and analysis of finite partition can be carried out by computer

2. Transition systems

- Transition system $T = (S, \delta, S_0, S_F)$ consists of
 - set of states *S* (finite or infinite)
 - transition relation $\delta : S \rightarrow P(S)$
 - set of initial states $S_0 \subseteq S$
 - set of final states $S_F \subseteq S$
- Trajectory of transition system is (in)finite sequence of states $\{s_i\}_{i=0}^N$ such that
 - $-s_0 \in S_0$
 - $-s_{i+1} \in \delta(s_i)$ for all i

Example of finite state transition system

- States: $S = \{q_0, ..., q_6\};$
- Transition relation: $\delta(q_0) = \{q_0, q_1, q_2\}$, $\delta(q_1) = \{q_0, q_3, q_4\}$, $\delta(q_2) = \{q_0, q_5, q_6\}$, $\delta(q_3) = \delta(q_4) = \delta(q_5) = \delta(q_6) = \emptyset$
- Initial states: $S_0 = \{q_0\}$
- Final states: $S_F = \{q_3, q_6\}$ (indicated by double circles) hs_check.4

Transition system of hybrid automaton

- Hybrid automaton can be transformed into transition system by abstracting away time
- Consider hybrid automaton H = (Q, X, Init, f, Inv, E, G, R) and "final" set of states $F \subseteq Q \times X$
- Define

$$-S = Q \times X$$
, i.e., $s = (q, x)$

$$-S_0 =$$
Init

$$-S_F = F$$

– transition relation δ consists of two parts:

* discrete transition relation δ_e for each edge $e = (q, q') \in E$:

$$\delta_e(\hat{q}, \hat{x}) = \begin{cases} \{q'\} \times R(e, \hat{x}) & \text{if } \hat{q} = q \text{ and } \hat{x} \in G(e) \\ \varnothing & \text{if } \hat{q} \neq q \text{ or } \hat{x} \notin G(e) \end{cases}$$

Transition system of hybrid automaton (cont.)

* continuous transition relation δ_C :

$$\delta_C(\hat{q}, \hat{x}) = \{ (\hat{q}', \hat{x}') \mid \hat{q}' = \hat{q} \text{ and } \exists T \ge 0, \, x(T) = \hat{x}' \land \\ \forall t \in [0, T], x(t) \in \mathsf{Inv}(\hat{q}) \}$$

where $x(\cdot)$ is solution of

$$\dot{x} = f(\hat{q}, x)$$
 with $x(0) = \hat{x}$

* Overall transition relation is then

$$\delta(s) = \delta_C(s) \cup \bigcup_{e \in E} \delta_e(s)$$

 \rightarrow transition from *s* to *s'* is possible if either discrete transition $e \in E$ of hybrid system brings *s* to *s'*, or *s* can flow continuously to *s'* after some time

Transition system of hybrid automaton (cont.)

- Time has been abstracted away: we do not care how long it takes to get from s to s', we only care whether it is possible to get there eventually
- \rightarrow transition system captures sequence of events that hybrid system may experience, but *not* timing of these events

Reachability

• Transition system is *reachable* if there exists trajectory such that $s_i \in S_F$ for some *i*

3. Bisimulation

- Turn *infinite* state system into *finite* state system by grouping together states that have "similar" behavior \rightarrow partition
- Yields so-called quotient transition system finite number of states → can be analyzed more easily
- Problem: for most partitions properties of quotient transition system do not allow to draw any useful conclusions about properties of original system
- However, special type of partition for which quotient system \hat{T} is "equivalent" to original transition system T: *bisimulation*

Important property

If partition $\{S_i\}_{i \in I}$ is bisimulation of transition system T and \hat{T} is quotient transition system, then S_F is reachable by T if and only if corresponding final state \hat{S}_F in \hat{T} is reachable by \hat{T}

- For finite state systems → computational efficiency Study reachability in quotient system instead of original system (quotient system usually much smaller than original)
- For infinite state systems:
 - Even if original transition system has infinite number of states, sometimes bisimulation consisting of finite number of sets
 - \rightarrow answer reachability questions for infinite state system by studying equivalent finite state system

Bisimulation algorithm

- For timed automata we can always find *finite* bisimulation
- Bisimulation algorithm (see lecture notes):
 - For finite state systems bisimulation algorithm will always terminate
 - Problem: it may be more work to find bisimulation than to investigate reachability of the original system
 - For infinite state systems: sometimes, algorithm may never terminate (reason: not all infinite state transition systems have finite bisimulations)

Bisimulation algorithm (continued)

For *timed automata*: bisimulation algorithm terminates in finite number of steps

Disadvantage: total number of states in the quotient transition system grows very quickly (exponentially) as number of timers *n* increases

4. Timed automata

- Timed automata involve simple continuous dynamics:
 - all differential equations of form $\dot{x} = 1$,
 - all invariants, guards, etc. involve comparison of real-valued states with constants (e.g., x = 1, x < 2, $x \ge 0$, etc.)
- Timed automata are limited for modeling physical systems
- However, very well suited for encoding timing constraints such as "event A must take place at least 2 seconds after event B and not more than 5 seconds before event C"
- Applications: multimedia, Internet, audio protocol verification

4.1 Example of timed automaton

Timed automata (cont.)

- For timed automaton of example: all constants are non-negative integers
 - \rightarrow can be generalized
- Given any timed automaton whose definition involves rational and/or negative constants, we can define an equivalent timed automaton whose definition involves only non-negative integers Done by "scaling" and "shifting" (adding appropriate integer) some of states
- Transformation into transition systems
 - \rightarrow transition system corresponding to timed automaton always has finite bisimulation
- Standard bisimulation for timed automata is *region graph*

Construction of region graph

- Assume w.l.o.g. that all constants are non-negative integers
- Let C_i be largest constant with which x_i is compared in initial sets, guards, invariants and resets In example: $C_1 = 5$ and $C_2 = 3$
- If all we know about timed automaton is these bounds C_i, then x_i could be compared with any integer M ∈ {0,1...,C_i} in some guard, reset or initial condition set
- Hence, discrete transitions of timed automaton may be able to "distinguish" states with $x_i < M$ from states with $x_i = M$ and from states with $x_i > M$ (e.g., discrete transition may be possible from state with $x_i < M$ but not from state with $x_i > M$)

Construction of region graph (cont.)

• Add sets to candidate bisimulation:

for
$$x_1 : x_1 \in (0,1), x_1 \in (1,2), x_1 \in (2,3), x_1 \in (3,4), x_1 \in (4,5), x_1 \in (5,\infty)$$

 $x_1 = 0, x_1 = 1, x_1 = 2, x_1 = 3, x_1 = 4, x_1 = 5$
for $x_2 : x_2 \in (0,1), x_2 \in (1,2), x_2 \in (2,3), x_2 \in (3,\infty)$
 $x_2 = 0, x_2 = 1, x_2 = 2, x_2 = 3$

 $x_1 = x_2 = 0$

 $\dot{x}_1 = 1$

 $\dot{x}_{2} = 1$

 $x_2 \leqslant 3$

 $x_1 := 3 \land x_2 := 0$

 $x_1 > 4$

 $\dot{x}_{2} = 1$

 $x_1 \leqslant 5$

 $x_2 > 2$

Products of all sets:

$$\{ x \in \mathbb{R}^2 \mid x_1 \in (0,1) \land x_2 \in (0,1) \} \quad \{ x \in \mathbb{R}^2 \mid x_1 \in (0,1) \land x_2 = 1 \} \\ \{ x \in \mathbb{R}^2 \mid x_1 = 1 \land x_2 \in (0,1) \} \quad \{ x \in \mathbb{R}^2 \mid x_1 = 1 \land x_2 = 1 \} \\ \{ x \in \mathbb{R}^2 \mid x_1 \in (1,2) \land x_2 \in (3,\infty) \}, \quad \text{etc.}$$

define all sets in \mathbb{R}^2 that discrete dynamics can distinguish

→ open squares, open horizontal and vertical line segments, integer points, and open, unbounded rectangles
hs_check.18

Construction of region graph (cont.)

- Since $\dot{x}_1 = \dot{x}_2 = 1$, continuous states move diagonally up along 45° lines
- → by allowing time to flow timed automaton may distinguish points below diagonal of each square, points above diagonal, and points on the diagonal

$$\{x \in \mathbb{R}^2 \mid x_1 \in (0,1) \land x_2 \in (0,1)\}$$

will leave square through line $\{x \in \mathbb{R}^2 \mid x_1 \in (0,1) \land x_2 = 1\}$ Points below diagonal leave square through line

$$\{x \in \mathbb{R}^2 \mid x_1 = 1 \land x_2 \in (0,1)\}$$

Points on diagonal leave square through point (1,1)

Construction of region graph (cont.) x_2

- Split each open square in three: two open triangles and open diagonal line segment
- \rightarrow is enough to generate bisimulation:

Theorem:

The region graph is finite bisimulation of timed automaton

• Disadvantage: total number of regions in the region graph grows very quickly (exponentially) as *n* increases