Modeling & Control of Hybrid Systems

Chapter 7 — Model Checking and
Timed Automata

Overview

1. Introduction

2. Transition systems
3. Bisimulation

4. Timed automata
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1. Introduction

e Model checking = process of automatically analyzing properties
of systems by exploring their state space

¢ Finite state systems — properties can be investigated by system-
atically exploring states
E.g., check whether particular set of states will be reached

e Not possible for hybrid systems since number of states is infinite

e However, for some hybrid systems one can find “equivalent” finite
state system by partitioning state space into finite number of sets
such that any two states in set exhibit similar behavior
— analyze hybrid system by working with sets of partition

e Generation and analysis of finite partition can be carried out by
computer
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2. Transition systems

e Transition system T = (S 0,%,S) consists of

—set of states S (finite or infinite)
—transition relation 0 : S— P(S)
—set of initial states S C S

—set of final states & C S

e Trajectory of transition system is (in)finite sequence of states
{s}N, such that

-SHED
—S.1€0(s) for all i
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Example of finite state transition system

e States: S={qp,...,06};

e Transition relation: &(0o) = {o, 01,02}, 6(0h) = {0, 0z, Qa}, () =
{00, 05,06}, O(03) = 8(0ls) = 6(0s) = O(Q) = @

e Initial states: S = {qo}
e Final states: S = {gs,Js} (indicated by double circles) hs_check.4



Transition system of hybrid automaton

e Hybrid automaton can be transformed into transition system by
abstracting away time

e Consider hybrid automaton H = (Q, X, Init, f,Inv, E,G,R) and
“final” set of states F C Q x X

e Define
—-S=0QxX, i.e., s=(q,X)
— S =Init
~S=F
—transition relation o consists of two parts:
x discrete transition relation & for each edge e= (q,q) € E:
5(6,%) = { {d} xR(eX) if q = ancAl X e G(e)
’ %) if £ qorX¢ G(e
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Transition system of hybrid automaton (cont.)

* continuous transition relation oc:
&(4,%) ={(4,X) [ =q§and 3T >0, X(T) =XA
vt € [0, T],x(t) € Inv(§) }
where Xx(-) is solution of
X = f(qg,Xx) with x(0) = X
+x Overall transition relation is then
5(s) = &(s) U | J o(s)
eck

— transition from sto S is possible if either discrete transition ec E
of hybrid system brings sto s, or s can flow continuously to s
after some time
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Transition system of hybrid automaton (cont.)

e Time has been abstracted away:
we do not care how long it takes to get from sto s, we only care
whether it is possible to get there eventually

— transition system captures sequence of events that hybrid system
may experience, but not timing of these events
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Reachability

e Transition system is reachable if there exists trajectory such that
S € & for some |
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3. Bisimulation

e Turn infinite state system into finite state system by grouping to-
gether states that have “similar’ behavior — partition

e Yields so-called quotient transition system
finite number of states — can be analyzed more easily

e Problem: for most partitions properties of quotient transition sys-
tem do not allow to draw any useful conclusions about properties
of original system

e However, special type of partition for which quotient system T is
“‘equivalent” to original transition system T: bisimulation

hs _check.9



Important property

If partition {S}ic is bisimulation of transition system T and T is
quotient transition system, then & Is reachable by T if and only if
corresponding final state & in T is reachable by T

e For finite state systems — computational efficiency
Study reachabillity in quotient system instead of original system

(quotient system usually much smaller than original)

e For Infinite state systems:
Even if original transition system has infinite number of states,

sometimes bisimulation consisting of finite number of sets
— answer reachability questions for infinite state system by

studying equivalent finite state system

hs_check.10



Bisimulation algorithm

e For timed automata we can always find finite bisimulation
e Bisimulation algorithm (see lecture notes):

— For finite state systems bisimulation algorithm will always ter-
minate
Problem: it may be more work to find bisimulation than to in-
vestigate reachability of the original system

— For infinite state systems: sometimes, algorithm may never

terminate (reason: not all infinite state transition systems have
finite bisimulations)
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Bisimulation algorithm (continued)

— For timed automata: bisimulation algorithm terminates in finite
number of steps

Disadvantage: total number of states in the quotient transition
system grows very quickly (exponentially) as number of timers n
Increases
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4. Timed automata

e Timed automata involve simple continuous dynamics:

— all differential equations of form x =1,

—all invariants, guards, etc. involve comparison of real-valued
states with constants (e.g., x=1, x< 2, x> 0, etc.)

e Timed automata are limited for modeling physical systems

e However, very well suited for encoding timing constraints such as

“event A must take place at least 2 seconds after event B and not
more than 5 seconds before event C”

e Applications: multimedia, Internet, audio protocol verification

hs _check.13



4.1 Example of timed automaton

X=X =0

X1:=3AX%X =0
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Timed automata (cont.)

e For timed automaton of example: all constants are non-negative
Integers
— can be generalized

e Given any timed automaton whose definition involves rational
and/or negative constants, we can define an equivalent timed
automaton whose definition involves only non-negative integers
Done by “scaling” and “shifting” (adding appropriate integer) some
of states

e Transformation into transition systems
— transition system corresponding to timed automaton always

has finite bisimulation
e Standard bisimulation for timed automata is region graph
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Region graph
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Construction of region graph

e Assume w.l.0.g. that all constants are non-negative integers

e Let G be largest constant with which x; is compared in initial sets,
guards, invariants and resets
In example: C; =5and C, =3

e If all we know about timed automaton is these bounds G,
then x; could be compared with any integer M € {0,1...,G} in
some guard, reset or initial condition set

e Hence, discrete transitions of timed automaton may be able to
“distinguish” states with x; < M from states with x, = M and from
states with x; > M (e.g., discrete transition may be possible from

state with x; < M but not from state with x > M)
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Construction of region graph (cont.)

e Add sets to candidate bisimulation:
forxl:xle(071)7)(16(172)7)(16(273)7)(16( ) X]_G( ) X]_E(S,OO)
X1 = O,Xlz 1,X1= 2,X1= 3,X1=4,X1— 5
for xo: % € (0,1),% € (1,2),% € (2,3),X € (3,)
Xo = O,X2= 1,X2= 2,X2= 3

e Products of all sets:

(xeR?|x € (0,1) A% € (0,1)} {xeR?|x € (0,1)AxX =1}
(XeR?|x,=1A% € (0,1)} (XeR? | Xy =1A%X =1}
(XeR?|x1 € (1,2) AX € (3,00)}, etc.

define all sets in R? that discrete dynamics can distinguish

— open squares, open horizontal and vertical line segments,
Integer points, and open, unbounded rectangles hs check 18




Construction of region graph (cont.) 2 =" :l,r """ :l_
e Since X; = X = 1, continuous states
move diagonally up along 45° lines 1= .‘
— by allowing time to flow timed automaton
may distinguish points below diagonal Yo 1
of each square, points above diagonal, ET '1' '2' >xl

and points on the diagonal
e E.g., points above diagonal of square
(xeR?| %€ (0,1) A% € (0,1)}

will leave square through line {x € R?|x; € (0,1) Axp = 1}
Points below diagonal leave square through line

(XeR?|x =1AX € (0,1)}
Points on diagonal leave square through point (1,1) hs check 19



Construction of region graph (cont.) Xp,

- -

e Split each open sqguare in three:
two open triangles and
open diagonal line segment

— IS enough to generate bisimulation:
Theorem:

The region graph is finite bisimula-

tion of timed automaton

e Disadvantage: total number of regions in the region graph grows
very quickly (exponentially) as nincreases
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