
Modeling & Control of Hybrid Systems

Chapter 7 — Model Checking and
Timed Automata

Overview

1. Introduction

2. Transition systems

3. Bisimulation

4. Timed automata

hs check.1



1. Introduction

• Model checking = process of automatically analyzing properties
of systems by exploring their state space

• Finite state systems → properties can be investigated by system-
atically exploring states
E.g., check whether particular set of states will be reached

• Not possible for hybrid systems since number of states is infinite

• However, for some hybrid systems one can find “equivalent” finite
state system by partitioning state space into finite number of sets
such that any two states in set exhibit similar behavior
→ analyze hybrid system by working with sets of partition

• Generation and analysis of finite partition can be carried out by
computer

hs check.2



2. Transition systems

• Transition system T = (S,δ ,S0,SF) consists of

– set of states S (finite or infinite)
– transition relation δ : S → P(S)

– set of initial states S0 ⊆ S

– set of final states SF ⊆ S

• Trajectory of transition system is (in)finite sequence of states
{si}

N
i=0 such that

– s0 ∈ S0

– si+1 ∈ δ (si) for all i

hs check.3



Example of finite state transition system

q0

q1 q2

q3 q4 q5 q6

• States: S = {q0, . . . ,q6};

• Transition relation: δ (q0) = {q0,q1,q2}, δ (q1) = {q0,q3,q4}, δ (q2) =
{q0,q5,q6}, δ (q3) = δ (q4) = δ (q5) = δ (q6) = ∅

• Initial states: S0 = {q0}

• Final states: SF = {q3,q6} (indicated by double circles) hs check.4



Transition system of hybrid automaton

• Hybrid automaton can be transformed into transition system by
abstracting away time

• Consider hybrid automaton H = (Q,X , Init, f , Inv,E,G,R) and
“final” set of states F ⊆ Q×X

• Define

– S = Q×X , i.e., s = (q,x)

– S0 = Init

– SF = F

– transition relation δ consists of two parts:
∗ discrete transition relation δe for each edge e = (q,q′) ∈ E:

δe(q̂, x̂) =

{

{q′}×R(e, x̂) if q̂ = q and x̂ ∈ G(e)
∅ if q̂ 6= q or x̂ 6∈ G(e)

hs check.5



Transition system of hybrid automaton (cont.)

∗ continuous transition relation δC:

δC(q̂, x̂) = {(q̂′
, x̂′) | q̂′ = q̂ and ∃T > 0, x(T ) = x̂′∧

∀t ∈ [0,T ],x(t) ∈ Inv(q̂)}

where x(·) is solution of

ẋ = f (q̂,x) with x(0) = x̂

∗ Overall transition relation is then

δ (s) = δC(s)∪
⋃

e∈E

δe(s)

→ transition from s to s′ is possible if either discrete transition e ∈ E
of hybrid system brings s to s′, or s can flow continuously to s′

after some time

hs check.6



Transition system of hybrid automaton (cont.)

• Time has been abstracted away:
we do not care how long it takes to get from s to s′, we only care
whether it is possible to get there eventually

→ transition system captures sequence of events that hybrid system
may experience, but not timing of these events

hs check.7



Reachability

• Transition system is reachable if there exists trajectory such that
si ∈ SF for some i

hs check.8



3. Bisimulation

• Turn infinite state system into finite state system by grouping to-
gether states that have “similar” behavior → partition

• Yields so-called quotient transition system
finite number of states → can be analyzed more easily

• Problem: for most partitions properties of quotient transition sys-
tem do not allow to draw any useful conclusions about properties
of original system

• However, special type of partition for which quotient system T̂ is
“equivalent” to original transition system T : bisimulation

hs check.9



Important property

If partition {Si}i∈I is bisimulation of transition system T and T̂ is
quotient transition system, then SF is reachable by T if and only if
corresponding final state ŜF in T̂ is reachable by T̂

• For finite state systems → computational efficiency
Study reachability in quotient system instead of original system
(quotient system usually much smaller than original)

• For infinite state systems:
Even if original transition system has infinite number of states,
sometimes bisimulation consisting of finite number of sets
→ answer reachability questions for infinite state system by

studying equivalent finite state system

hs check.10



Bisimulation algorithm

• For timed automata we can always find finite bisimulation

• Bisimulation algorithm (see lecture notes):

– For finite state systems bisimulation algorithm will always ter-
minate
Problem: it may be more work to find bisimulation than to in-
vestigate reachability of the original system

– For infinite state systems: sometimes, algorithm may never
terminate (reason: not all infinite state transition systems have
finite bisimulations)

hs check.11



Bisimulation algorithm (continued)

− For timed automata: bisimulation algorithm terminates in finite
number of steps
Disadvantage: total number of states in the quotient transition
system grows very quickly (exponentially) as number of timers n
increases

hs check.12



4. Timed automata

• Timed automata involve simple continuous dynamics:

– all differential equations of form ẋ = 1,
– all invariants, guards, etc. involve comparison of real-valued

states with constants (e.g., x = 1, x < 2, x > 0, etc.)

• Timed automata are limited for modeling physical systems

• However, very well suited for encoding timing constraints such as
“event A must take place at least 2 seconds after event B and not
more than 5 seconds before event C”

• Applications: multimedia, Internet, audio protocol verification

hs check.13



4.1 Example of timed automaton

q1

ẋ1 = 1
ẋ2 = 1

x2 6 3

q2

ẋ1 = 1
ẋ2 = 1

x1 6 5

x2 > 2

x1 > 4

x1 := 3∧ x2 := 0

x1 := 0

x1 = x2 = 0

hs check.14



Timed automata (cont.)

• For timed automaton of example: all constants are non-negative
integers
→ can be generalized

• Given any timed automaton whose definition involves rational
and/or negative constants, we can define an equivalent timed
automaton whose definition involves only non-negative integers
Done by “scaling” and “shifting” (adding appropriate integer) some
of states

• Transformation into transition systems
→ transition system corresponding to timed automaton always

has finite bisimulation

• Standard bisimulation for timed automata is region graph

hs check.15



Region graph

q1

ẋ1 = 1
ẋ2 = 1

x2 6 3

q2

ẋ1 = 1
ẋ2 = 1

x1 6 5

x2 > 2

x1 > 4

x1 := 3∧ x2 := 0

x1 := 0

x1 = x2 = 0 x1

x2

0

1

1

2

2

3

3 4 5

hs check.16



Construction of region graph
ẋ1 = 1
ẋ2 = 1

x2 6 3

ẋ1 = 1
ẋ2 = 1

x1 6 5

x2 > 2

x1 > 4

x1 := 3∧ x2 := 0

x1 := 0

x1 = x2 = 0

• Assume w.l.o.g. that all constants are non-negative integers

• Let Ci be largest constant with which xi is compared in initial sets,
guards, invariants and resets
In example: C1 = 5 and C2 = 3

• If all we know about timed automaton is these bounds Ci,
then xi could be compared with any integer M ∈ {0,1 . . . ,Ci} in
some guard, reset or initial condition set

• Hence, discrete transitions of timed automaton may be able to
“distinguish” states with xi < M from states with xi = M and from
states with xi > M (e.g., discrete transition may be possible from
state with xi < M but not from state with xi > M)

hs check.17



Construction of region graph (cont.)
ẋ1 = 1
ẋ2 = 1

x2 6 3

ẋ1 = 1
ẋ2 = 1

x1 6 5

x2 > 2

x1 > 4

x1 := 3∧ x2 := 0

x1 := 0

x1 = x2 = 0

• Add sets to candidate bisimulation:

for x1 : x1 ∈ (0,1),x1 ∈ (1,2),x1 ∈ (2,3),x1 ∈ (3,4),x1 ∈ (4,5),x1 ∈ (5,∞)

x1 = 0,x1 = 1,x1 = 2,x1 = 3,x1 = 4,x1 = 5
for x2 : x2 ∈ (0,1),x2 ∈ (1,2),x2 ∈ (2,3),x2 ∈ (3,∞)

x2 = 0,x2 = 1,x2 = 2,x2 = 3

• Products of all sets:

{x ∈ R
2 | x1 ∈ (0,1)∧ x2 ∈ (0,1)} {x ∈ R

2 | x1 ∈ (0,1)∧ x2 = 1}

{x ∈ R
2 | x1 = 1∧ x2 ∈ (0,1)} {x ∈ R

2 | x1 = 1∧ x2 = 1}

{x ∈ R
2 | x1 ∈ (1,2)∧ x2 ∈ (3,∞)}, etc.

define all sets in R
2 that discrete dynamics can distinguish

→ open squares, open horizontal and vertical line segments,
integer points, and open, unbounded rectangles hs check.18



Construction of region graph (cont.)

x1

x2

0 1

1

2

2

• Since ẋ1 = ẋ2 = 1, continuous states
move diagonally up along 45◦ lines

→ by allowing time to flow timed automaton
may distinguish points below diagonal
of each square, points above diagonal,
and points on the diagonal

• E.g., points above diagonal of square

{x ∈ R
2 | x1 ∈ (0,1)∧ x2 ∈ (0,1)}

will leave square through line {x ∈ R
2 | x1 ∈ (0,1)∧ x2 = 1}

Points below diagonal leave square through line

{x ∈ R
2 | x1 = 1∧ x2 ∈ (0,1)}

Points on diagonal leave square through point (1,1) hs check.19



Construction of region graph (cont.)

x1

x2

0

1

1

2

2

3

3 4 5

• Split each open square in three:
two open triangles and
open diagonal line segment

→ is enough to generate bisimulation:
Theorem:
The region graph is finite bisimula-
tion of timed automaton

• Disadvantage: total number of regions in the region graph grows
very quickly (exponentially) as n increases

hs check.20


