
Exercises for the course

“Optimization in Systems and Control”

Remark:

• Changes made on September 20, 2020 are marked in blue.

1 Exercises for Chapter 1

Exercise 1.1. Let f be a convex function defined on a set I. If x1, x2, ..., xn ∈ I, and
λ1, λ2, ..., λn ∈ [0, 1] with

∑n

i=1 λi = 1, then prove that

f

(

n
∑

i=1

λixi

)

≤
n
∑

i=1

λif(xi) . (1.1)

Exercise 1.2. Use the definition of convex functions to show that the function f : R+ → R
+ :

x 7→ √
x is not convex.

Exercise 1.3. Determine for which values p > 0 the function f : R+
0 → R

+ defined by f(x) =
xp is a convex function, with R

+
0 = R

+ \ {0} = (0,+∞).
Hint: Use the fact that if the second derivative f ′′ of the function f with a scalar argument is
defined and nonnegative, then f is convex.

Exercise 1.4. Use previous result and the definition of convex functions to prove that the
function f defined by

f(x) =
n
∑

i=1

|xi|p, x ∈ R
n, p ≥ 1

is convex.

Exercise 1.5. Find the Taylor polynomial P2 of order 2 based at (0, 0) for the function f

defined by f(x, y) = 3xy + 2xy3. Note: This Taylor polynomial is defined by:

P2(x, y) = f(0, 0) + (∇f(0, 0))T
(

x

y

)

+
1

2
(x, y)Hf (0, 0)

(

x

y

)

.

What is an upper bound for ε > 0 so that the error of between P2(x, y) and f(x, y) is lower
than 10−6 if |x|, |y| ≤ ε? Note: The error is given by:

R2(x, y) =
1

3!

2
∑

i,j,k=1

∂3f(c1, c2)

∂xi∂xj∂xk

hihjhk

=
1

3!

(

∂3f(c1, c2)

∂x3
x3 + 3

∂3f(c1, c2)

∂x2y
x2y + 3

∂3f(c1, c2)

∂xy2
xy2 +

∂3f(c1, c2)

∂y3
y3
)

,

where (c1, c2) is any point in the line between (0, 0) and (x, y), and where hi, hj, and hk refer
to the xi, xj, and xk component of the vector (x, y).
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Exercise 1.6. Indicate whether or not the following functions g(x) are subgradients of the
corresponding functions f(x):

• f(x) = |x|, x ∈ R: g(x) =







−1 if x < 0
2 if x = 0
1 if x > 0

• f(x) = max{f1(x), f2(x)}, x ∈ R
n, f1(x) and f2(x) convex and continuously differen-

tiable: g(x) =

{

∇f1(x) if f1(x) > f2(x)
∇f2(x) if f1(x) ≤ f2(x)

Exercise 1.7. Let A ∈ R
m×n and x ∈ R

n. Show that ∇(Ax) = AT .

Exercise 1.8. Show that the following functions g(x) are subgradients of the corresponding
functions f(x):

• f(x) = α1f1(x) + α2f2(x), x ∈ R
n, f1(x) and f2(x) convex and differentiable: g(x) =

α1∇f1(x) + α2∇f2(x)

• f(x) = f1(Ax + b), x ∈ R
n, A ∈ R

m×n, b ∈ R
m, f1(x) convex and differentiable: g(x) =

AT∇f1(Ax+ b)

Exercise 1.9. Find the saddle points and local minima and maxima of the following functions:

• f1(x) = 9− 2x1 + 4x2 − x2
1 − 4x2

2

• f2(x) = 2x3
1 + x1x

2
2 + 5x2

1 + x2
2

Exercise 1.10. The optimization problem min f(x1, x2) = (x1 − 3)4 + (x1 − 3x2)
2 is solved

using the following (gradient-based) algorithm

xk+1 = xk − λk

∇f(xk)

‖∇f(xk)‖2
If the initial point is x0 = [0, 0]T and the step λk =(0.9)k+1, use Matlab to indicate which of the
following stopping criteria is fulfilled first:

• ‖∇f(xk)‖2 ≤ 3.5

• |f(xk)− f(xk−1)| ≤ 0.4

• Maximum number of iterations kmax = 10

Plot the various iteration points and their function values.

Exercise 1.11. Consider the problem of choosing (x, y) to maximize f(x, y) = 3x + y subject
to: (x+ 1)2 + (y + 1)2 ≤ 5 and x ≥ 0, y ≥ 0.

• Suppose that (x∗, y∗) solves this problem. Is there necessarily a value of µ such that (x∗, y∗)
satisfies the Kuhn-Tucker conditions?

• Now suppose that (x∗, y∗) satisfies the Kuhn-Tucker conditions. Does (x∗, y∗) necessarily
solve the problem?

• Given the information in your answers to (a) and (b), use the Kuhn-Tucker method to
solve the problem.
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2 Exercises for Chapter 2: Linear Programming

Exercise 2.1. Use the graphical method to solve the following problem:

min f(x) = x1 − 2x2

subject to the constraints: x1 + x2 ≥ 2, −x1 + x2 ≥ 1, x2 ≤ 3, x1, x2 ≥ 0.
Reformulate the same problem as a linear programming problem in standard form and solve it
using the simplex method.

Exercise 2.2. Two students A and B work at a shop for x and y hours per week, respectively.
According to the rules, A can work at most 8 hours more than B. But student B can work at
most 6 hours more than student A. Together they can work at most 40 hours per week. Find
their maximum combined income per week if student A and student B earn 15 and 17 euro per
hour, respectively.

3 Exercises for Chapter 3: Quadratic Programming

Exercise 3.1. Consider the process modeled by the following linear discrete-time system: y(n+
1) = ay(n)+ bu(n)+ 1

1−q−1 e(n), where y(n) is the output, u(n) the input, a and b are the model

parameters, e(n) is white noise of mean value 0 and standard deviation σ. At time step n the
output y(n) is measured, the output y(n − 1) and control action u(n − 1) is also known, and
we have to obtain a control action u(n). It is easy to show that we can define the 1-step ahead
prediction ŷ(n+ 1) = (1 + a)y(n)− ay(n− 1) + b∆u(n) with ∆ = 1− q−1 with ŷ(n) = y(n).

1. Obtain the control action ∆u(n) that minimizes J = (ŷ(n+ 1)− r)2 + λ (∆u(n))2, where
λ is a weighting factor and r the output reference.

2. Reformulate the following problem as a quadratic programming problem:
min Jn =

∑3
k=1(ŷ(n+ k)− r)2 + λ

∑3
k=1 (∆u(n+ k − 1))2,

s.t. ∆umin ≤ ∆u(n+ k − 1) ≤ ∆umax, k = 1, 2, 3.

3. Reformulate the problem as a quadratic programming problem of Type 1 with as few vari-
ables as possible. Assume ∆umin = 0.

Exercise 3.2. Solve the following QP problem of type 2: min 1
2
xTHx+cTx, s.t. Ax = b, x ≥ 0,

where

H =









1 −4 2 1
−4 16 −8 −4
2 −8 4 2
1 −4 2 1









, c =









−1
0
7
4









, A = [1, 1, 1, 1], b = 4,

Exercise 3.3. Prove that the gradient of cTx is c and the Jacobian of (Ax− b) = AT .

Exercise 3.4. Solve the following optimization problem:

min f(x) = −8x1 − 16x2 + x2
1 + 4x2

2

subject to: x1 + x2 ≤ 5, x1 ≤ 3, x1 ≥ 0, x2 ≥ 0
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4 Exercises for Chapter 4: Nonlinear optimization with-

out constraints

Exercise 4.1. Perform three iterations to find the minimum of f(x1, x2) = (x1−3)4+(x1−3x2)
2

using:

• Newton’s method (use x0 = [0, 0]T ).

• Levenberg-Marquardt’s method (use x0 = [0, 0]T , and λ=1.1).

• Broyden-Fletcher-Goldfarb-Shanno’s method (use x0 = [0, 0]T ).

• Davidon-Fletcher-Powell’s method (use x0 = [0, 0]T ).

Exercise 4.2. Use the golden section method to find the value of x that minimizes the function

f(x) = −min
{x

2
, 2− (x− 3)2, 2− x

2

}

.

Use the fact that the function is strictly unimodal on [0, 8]. Perform five iterations. Compare
the results with those obtained with the Fibonacci method and with a fixed-step method (take a
step length ∆s = 2).

Exercise 4.3. Answer the following questions:

• Why is Newton’s method for minimizing multivariate functions not a descent method and
how should it be modified to become a descent method?
Note: An optimization method is called a descent method if f(xk+1) ≤ f(xk) for all k,
where f is the objective function and xk is the kth iteration point.

• Is the steepest-descent algorithm is a descent method?

• Are the steps in the steepest-descent algorithm orthogonal?

Exercise 4.4. Using a steepest-descent method with update formula

xk+1 = xk −
∇f(xk)

‖∇f(xk)‖2
,

find the minimum of the quadratic function

f(x1, x2) = (x1 − 2)2 + 4(x2 − 3)2,

starting from x0 = [0, 0]T . Using Matlab, plot the algorithmic moves (xk as function of k) and
verify the zigzag property of the algorithm.

Exercise 4.5. Show that the choice of λ in the golden section method indeed results in reuse
of points from one iteration to the next.

Exercise 4.6. Show that the choice of λ in the Fibonacci method indeed results in reuse of
points from one iteration to the next.

Exercise 4.7. Prove the expressions on page 36 for gradient of f(x) and the Hessian (4.1)
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5 Exercises for Chapter 5: Constraints in nonlinear op-

timization

Exercise 5.1. Consider the constrained minimization problem:

min f(x1, x2, x3) = x2
1 + 8x2

2 + 3x1x3

subject to
x1 − x2 + x3 = 1
x1 + x2 = 2

Solve this problem using the method of elimination of constraints.

Exercise 5.2. Using Matlab, apply sequential quadratic programming to solve the problem:

min f(x1, x2) = (x1 − 9
4
)2 + (x2 − 2)2

subject to
x2
1 − x2 ≤ 0

x1 + x2 ≤ 6
x1, x2 ≥ 0

Starting with the point x0 = [0, 0]T , show the evolution of the search direction dk (Step 2 of the
algorithm as listed in the lecture notes), step length in the line optimization sk of (Step 3), and
the optimization variables (xk)1, (xk)2 as function of the iteration step k.

Exercise 5.3. Solve the problem:
max
x,y,z

(x+ y)

subject to x2 + 2y2 + z2 = 1 and x+ y + z = 1.

6 Exercises for Chapter 6: Convex optimization

Exercise 6.1. Perform two iterations of the ellipsoid algorithm to solve the program:

minf(x1, x2) = 4(x1 − 10)2 + (x2 − 4)2

subject to
x1 − x2 ≤ 10
x1 − x2 ≥ 3
x1 ≥ 0

Plot the feasible region and the algorithmic steps. Take [0, 0]T as starting point.

Exercise 6.2. Use the interior-point algorithm to solve the program:

minf(x1, x2) = −x1x2

subject to
1− x2

1 − x2
2 ≥ 0

Plot the feasible region and the algorithmic steps. Use first [0.1, 0.1]T and next [−0.1,−0.1]T as
starting points.
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Exercise 6.3. Are the following functions convex or not? Why?

1. f : R → R : x 7→ (x2 + 1)2

2. f : R → R : x 7→ (x2 − 3x)2

3. f : R → R : x 7→ 2x

4. f : R → R : x 7→
(

1

2

)x

5. f : R \ {0} → R : x 7→ 1

x

6. f : [1,+∞) → R : x 7→ 1

x

7. f : R2 → R : (x, y) 7→ cosh(x2 + y2)

Exercise 6.4. On page 60 it is stated that if P is symmetric then the conditions P > 0 and
ATP + PA < 0 can be recast as an LMI. Prove this statement.
Hint: Write P as a linear combination of symmetric basis matrices, each having only one
(diagonal) entry or two (off-diagonal) entries equal to 1, the other entries being equal to 0.

Exercise 6.5. If the function f is convex, is f 2 then always convex?
If the function f is convex and nonnegative, is f 2 then always convex?

Exercise 6.6. 1. Prove that the sum of a linear function and a convex function is convex.

2. Prove that the sum of a linear function and a nonconvex function is nonconvex.

3. Provide examples to show that the sum of a convex function and a nonconvex one, can be
either convex or nonconvex.

4. Provide examples to show that the sum of two nonconvex functions can be either convex
or nonconvex.

7 Exercises for Chapter 7: Global optimization

Exercise 7.1. Using the routine simulannealbnd of Matlab, minimize the following function,

f(x) = −e−2 ln(2)(x−0.008

0.854
) sin6(5π(x0.75 − 0.05)), x ∈ [0, 1].

Plot the current iteration point, the function value, and the temperature function.

Exercise 7.2. The Himmelblau function has four peaks in the points (3; 2), (−3.799;−3.283),
(−2.805; 3.131), and (3.584;−1.848), and it is defined by

f(x1, x2) =
2186− (x2

1 + x2 − 11)2 − (x1 + x2
2 − 7)2

2186
, x1, x2 ∈ [−6, 6].

Using the routine ga of Matlab, generate an optimizer capable to detect the four optimal solu-
tions.
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Exercise 7.3.

Discuss the main differences between multi-start local optimization methods, simulated anneal-
ing, and genetic algorithms.

8 Exercises for Chapter 11: Integer optimization

Exercise 8.1. Consider the process modeled by the following linear discrete-time system: y(n+
1) = ay(n) + bu(n) + e(n), where y(n) is the output, u(n) ∈ {0, 1} the input (binary input),
a = 0.9 and b = 0.1 are the model parameters, and e(n) is white noise of mean value 0 and
standard deviation σ. At instant time n the output y(n) = 0.5 is measured and we have to
obtain a control action u(n) ∈ {0, 1}. Let us define the prediction ŷ(n + 1) = ay(n) + bu(n),
and ŷ(n+ k) = aŷ(n+ k − 1) + bu(n+ k − 1) for k ∈ {2, 3, 4, 5}.

• Obtain the control action u(n) ∈ {0, 1} that minimizes J = (ŷ(n + 1) − r)2 + λu(n)2,
where λ = 0.01 is a weighting factor and r = 1 the output reference.

• Using branch-and-bound, obtain the control sequence U = [u(n), u(n + 1), u(n + 2)], that
minimize min Jn+2

n =
∑3

k=1(ŷ(n+ k)− r)2 + λ
∑3

k=1 u(n+ k − 1)2.
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