Solutions for the exercises
“Optimization in Systems and Control”

Remark:

e Changes made on September 20, 2020 are marked in blue.

e Changes made on October 13, 2020 are marked in green.

1 Exercises for Chapter 1

Exercise 1.1. Let f be a conver function defined on a set I. If xy,x9,...,x0, € I, and
A, Ay Ay €10, 1] with Y7, \; = 1, then prove that

f (Z )\ifﬂi) < Z)\zf(iﬁz) . (1.1)

Solution: As f is convex, we have f((1 =Xz + Ay) < (1 = X)f(z) + Af(y) for all z,y € [ and
for all A € [0,1].

For n = 1 we have A\; = 1 and then (1.1) reduces to the trivial statement f(z1) = f(z1),
which is true.
The case n = 2 corresponds to the definition of convexity.
We now proceed by induction, assuming the inequality (1.1) is true for some n and proving
prove it holds for n + 1. Since for A,;1 = 0 the inequality (1.1) reduces to the case n and is
thus true, we now assume that A\, ; > 0. We have Z"H A = 1 and

n+1
f (Z )\zx'L) = f <)\n+1xn+1 + (]- - n+1 1 Z i xz)
i=1 — At

Ai
= f <)\n+1xn+1 + (1 - >\n+1) Z 1_—)\4-11'1) . (12)

i=1

n+1

Then we have #; > 0 for ¢« = 1,...,n. Moreover, since Z)\i =1, we
i=1

Ai

Define ¢, = ———.
efine =y

have Y " A; =1 — A1, and thus

i=1

)\i 1 _1_)‘n+1_
Ze Z SO IR St

n+1

Since 0; > 0 for all 7, this also implies that §; < 1 for all i. So 6; € [0, 1] for all i. Now define

n

y—zl_ Zé’xz.

n+1
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Since [ is the domain of definition of the convex function f, it is a convex set, and since y is
a convex combination of zy,...,x, € I, we have y € I. Hence, we can apply the definition of
convex functions to (1.2), which yields

n+1
f (Z Aﬂi) = f(Mns1ngs + (1= Ans1)y)
i=1

< At f (@) + (1= Aagn) fy) - (1.3)

Since by induction (1.1) was assumed to hold for n and since the coefficients 6; satisfy the
conditions for the property, we have

fly)=1f (Z Qﬂi) < Zeif(%) :

If we combine this with (1.3), we find

i=1

n+1 n
f(X)ﬂJSJMJ@HQ+U—AMQzﬁJ@0
i=1

o)+ (1= de) o 15—

f(xs)

n+1

SZMWW

which proves the property.

Exercise 1.2. Use the definition of convex functions to show that the function f :RT — R :
T /T 1S not conver.

Solution: Recall that the definition of convex functions states that f is convex if its domain
dom( f) is convex and if we have f((1 — Nz + Ay) < (1 —\)f(z) + Af(y) for all z,y € dom(f)
and for all A € [0, 1].

In our case dom(f) = R™, which is a convex set.

1
Now consider =0, y = 1, and A\ = T We have f(0) =0, f(y) =1, f((1 = Nz + \y) =

1 1
f (Z) =3 However,

1 1
0+ 1=- .
3 1

oo

(1 =AM f(2) +Afy) =

So f((1 —=XNx+ \y) = % yd i = (1 = N f(z) + Af(y) for the given z, y, and A. Hence,

f:RT — R : 2+ /2 is not convex.

Exercise 1.3. Determine for which values p > 0 the function f : RS — Rt defined by f(z) =
2P is a convex function, with Rj = R\ {0} = (0, +00).

Hint: Use the fact that if the second derivative f” of the function f with a scalar argument is
defined and nonnegative, then f is convex.



Solution: We consider the cases p = 0 and p = 1 separately. Clearly, for p = 0 we have
f(x) = 2% =1, and so for p = 0 the function is convex. For p = 1 we have f(z) =z, and so for
p = 1 the function is convex. For p # 0 and p # 1 we have f”(z) = p(p — 1)a?~2. Since z > 0
we have that f” is nonnegative only for p > 1. Moreover, for 0 < p < 1 the derivative f” is
negative, which means that the function is then concave.

Hence, we conclude that f is convex for p = 0 or for p > 1.

Exercise 1.4. Use previous result and the definition of convex functions to prove that the

function f defined by

fl@) =) |z, zeRp>1
=1

1S CONVET.

Solution: First we show that the function f : v+ |v|P is a convex function on R if p > 1. The
case p = 1 is treated first. For p =1 we get |v|, which is a convex function on R as it is a norm
function. For p > 1 the function |v[? can be differentiated twice everywhere and we have

aJof? poP~1 if v>0
P —p(—v)P7t ifv <0
itv=20
and thus
&2 |op p(p — 1)vP~2 ) ?f v>0
e plp—1)(—v)P2 ifv<0
0 ifv=20

Since p > 1, the derivative is always nonnegative if v # 0, and since the function is continuous
in v =0, |v|P is a convex function on R if p > 1.
Now let z,y € R™ and A € [0, 1]. We have

FOr+ (1= Z|m NyilP
Since |v[? is a convex function, it follows that |Az; + (1 — Ay [P < Mzy|P + (1 — A)|y;|P. Hence,
fz+ (1= A)y) < ZAW = Mlyil?
<AZW Zw

Skf( ) (1=XNf(y) -

So f is convex.

Exercise 1.5. Find the Taylor polynomial Py of order 2 based at (0,0) for the function f
defined by f(z,y) = 3zy + 2xy>. Note: This Taylor polynomial is defined by:

Piey) = 10,0+ (7007 () + ants0.0 (1)
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What is an upper bound for e > 0 so that the error of between Py(x,y) and f(x,y) is lower
than 107° if |z|, |y| < e? Note: The error is given by:

2

x Z o° f 01702
Y) 3' 83328%8%

0 f(Ch 02) a3f(01, 02) 83f(01, 02) aSf(Cl, 02)
=3 (—0933 3 + 3—8:v2y 22y + 3—0xy2 ry? + —8y3 v,

Z LU 2 iy,

where (c1, ¢a) is any point in the line between (0,0) and (x,y), and where h;, h;, and hy, refer
to the x;, x;, and xy, component of the vector (z,y).

Solution: We have

£(0,0) =0
of(z,y) ,
Vi(r,y) = af?f, y) | = ( 3?;yj62fy2 ) = V[f(0,0) = ( 8 >
dy
Pflry) Pflz,y) )
e = | gy 520 |- (30 P )= moo- (5 5)
0yox 0y?

Then, Py(z,y) = 3zy.
To evaluate the error, we need the following derivatives:

Pfy) _, Play _  Pfay) _ 12 *f(z,y)

= = —_— =12
Ox3 T 0220y "7 Ox0y? T Oy ‘

If |z| <e, |y| < e, then we have |¢;| < e and |cy| < . Hence,

| Ra(, )]

IN

2
1 83f(01,62) 8 f 01702
S A G AT
3!1,;1’6%8%8 Il gl < 55 Z ‘8:@8%8%
3

< %(3|1201| +]1261]) < 8e

Then, the error of using P(z,y) will be clearly lower than 107 if 8¢* < 107¢ or ¢ < 0.0188.

Exercise 1.6. Indicate whether or not the following functions g(x) are subgradients of the
corresponding functions f(x):

-1 of x<0
o f(z)=lz|, z € R: g(x) = 2 if =0
1 if >0

o f(z) = max{fi(x), fo(x)}, x € R", fi(x) and fo(x) convexr and continuously differen-
tiable: g(z) = Vix) if fi(z)> fa(z)
PTG i fi@) < flo)



Solution: It is easy to verify that both functions f defined above are convex.
Let f be a convex function. The function g is called a subgradient of f if f(z) > f(y) +
9(y)" (x —y), Yo,y € dom(f).
Consider the first function. The points = 1 and y = 0 both belong to dom(f). However,
FW)+g9(y)"(z—y)=0+2(1—-0)=2> f(z) =1, and thus g(z) is not a subgradient of f(z).
Now consider the second function f. Recall that for convex functions that are continuously
differentiable the subgradient is equal to the gradient. So we have fi(z) > fi(y) +V fi(y)* (z —
y), Yo,y € dom(f) and fo(z) > foly) + Via(y)! (x — y), Vz,y € dom(f).
Now we first assume fi(y) > f2(y). Then we have f(y) = fi(y) and g(y) = Vfi(y) and then
for any € dom(f) we have f(z) > fi(z) > fi(y) + VAi(y)"(x —y) = f(y) + 9" (¥)(z —y), Le,
the subgradient inequality holds in this case.
The case fi(y) < fa(y) can be dealt with in a similar way.
So g is indeed a subgradient of f.

Exercise 1.7. Let A € R™" and x € R". Show that V(Az) = AT.

Solution: Let f(x) = Az, ie., fj =>,", ajz;. Then 8f; = aj;. Hence, Vf = AT,

oz
Exercise 1.8. Show that the following functions g(x) are subgradients of the corresponding
functions f(x):

o f(z) = anfi(x) + anfo(x), x € R™, fi(x) and fo(x) convex and differentiable: g(x) =
041Vf1 (l’) + Oészg(l’)

o f(z)= fi(Ax 4+ 1), z € R", A€ R™" beR™, fi(x) conver and differentiable: g(x) =
ATV f1(Ax +b)

Solution: For convex and continuously differentiable functions, the subgradient is equal to the
gradient.
For the first function, using the sum rule of the derivative:

V() = Viafi(z) + aa fa()) = en V(@) + 0oV fo(@) = g().

For the second function, using the chain rule, we can show (in a similar way as the preceding
exercise) that V fi1(Az + b) = ATV fi(Az + b). Indeed, define f(z) = fi(v) with v = Az +b.

Then we have of 9,0 of
— Z 9/19Y _ YJ1
J

8567; B

81)]' a&:z 7 (%j i -
Hence, V f(z) = ATV f1(Ax + D).
Exercise 1.9. Find the saddle points and local minima and maxima of the following functions:

o fi(x)=9—2x + 4y — 2} — 423

o fo(x) =2z} + 223 + Saf + 3



Solution:

(9f1 (I’)
. or . -2 — 233'1
Vfi(r) = 8f1(1:zc) = ( 4 — 8z, )
8[E2
Then Vfi(z) =0if 27 = —1 and x5 = % Then we evaluate the Hessian:
Pf(x) f(x)
o 8.1’2 8m10x2 o -2 0
i =| it S |=(7 55)
02901, 3

As Hy,(—1,3) is negative definite, the point (-1, 3) is a local maximum.
The same procedure is performed for the second function:

df2(x) .
- Oy _( 6z + x5+ 102y
V fao(z) = ofa(z) | = ( 22129 + 209
8;1:2

Then V fo(z) = 0if: 2 =(0,0), 2 = (—2,0), z = (=1,2), or z = (=1, -2). Indeed, we have
20129 + 2209 =0if 29 =0 or 21 = —1.
For x5 = 0, setting 6%’% + wg + 10z, = 0 yields 61’% + 10z =0,0or 1 =0 or 1 = —
For x; = —1, setting 62% + 23 + 10z, = 0 yields 23 = 4 or xy = +2.

Now we evaluate the Hessian:

82f2(:1:) 82f2(l')

0?2 011014 o 1220 +10 2z
2 fo(x) Pfox) | — < 29 2x1 + 2 >
Ox901, 03

wlot

Hfz(x) =

As H,(0,0) is positive definite, the point (0, 0) is a local minimal. As Hy,(—2,0) is negative
definite, the point (—2,0) is a local maximum. The Hessians Hy,(—1,2) and Hy,(—1,—2) are
both indefinite, and so the points (—1,2) and (—1,—2) are saddle points.

Figure 1 shows functions fi(x) and fy(x) and their contour plots. The positions of the
analyzed points are indicated by the + marks in the contour plots.

Exercise 1.10. The optimization problem min f(xq,25) = (z1 — 3)* + (z1 — 3x2)? is solved
using the following (gradient-based) algorithm

V[ ()
IV ()]l

If the initial point is xg = [0,0]T and the step A\, =(0.9)**', use Matlab to indicate which of the
following stopping criteria is fulfilled first:

Tk4+1 = T — A

o [[Vf(zp)llz < 3.5
o [f(zr) — flzr)] < 0.4

o Mazimum number of iterations k., = 10



Figure 1: (a) Function fi(x), (b) Contour plot of function f;(z), (¢) Function fy(x), (d) Contour
plot of function fo(z)

o

Table 1: Iterations

k Tj f(xr) V()" Ak

0 | (0.0000,0.0000) | 81.0000 | (-108.0000,0.0000) | 0.9000
1 | (0.9000,0.0000) | 20.2581 | (-35.2440,-5.4000) | 0.8100
2 | (1.7007,0.1227) | 4.6258 | (-6.1086,-7.9956) | 0.7290
3 | (2.1433,0.7020) | 0.5401 (-2.4404,-0.2238) | 0.6561
4 | (2.7966,0.7619) | 0.2627 | (0.9881-3.0654) | 0.5904
5 | (2.6154,1.3239) | 1.8614 (-2.9402,8.1378) | 0.5314
6 | (2.7960,0.8241) | 0.1065 (0.6134,-1.9422) | 0.4782
7 1(2.6520,1.2802) | 1.4274 (-2.5458,7.1316) | 0.4304
8 | (2.7967,0.8748) | 0.0314 (0.3110,-1.0338) | 0.3874
0 | (2.6851,1.2458) | 1.1172 | (-2.2295,6.3138) | 0.3486
10 | (2.8012,0.9170) | 0.0041 (0.0690,-0.3012) | 0.3138




Table 2: Stopping criteria

BNV r)lle | 1f(2r) = flee)]
0 | 108.0000 -

1| 35.6553 60.7419
2 | 10.0620 15.6323
3| 24507 4.0857
4 | 3.2207 0.2774
5| 86526 1.5987
6 | 2.0368 1.7549
7| 7.5724 1.3209
8 | 1.0796 1.3960
9 | 6.6959 1.0858
10| 0.3090 1.1131

Plot the various iteration points and their function values.

Solution: The results of the first 10 iterations are displayed in Table 1 (with 4 decimal digits).
The values for the stopping criteria are in Table 2.

From Tables 1 and 2, we can see that the stopping criterion ||V f(zx)|]2 < 3.5 is reached in
the iteration k = 3, and the stopping criterion |f(zg) — f(zx—1)| < 0.4 is reached in iteration
step k = 4.

In the Figure 2, the function f(x) and its contour plot is presented. The position of the
optimal point (3, 1) is indicated by the + mark in the contour plots, as well as the steps of the
iterative method. In the figure it can be seen also the values of x; and how close they get as
the number of iterations increase.

Exercise 1.11. Consider the problem of choosing (x,y) to mazimize f(z,y) = 3x +y subject
to: (x+1)*+ (y+1)*<5and x>0,y > 0.

e Suppose that (x*,y*) solves this problem. Is there necessarily a value of p such that (x*,y*)
satisfies the Kuhn-Tucker conditions?

e Now suppose that (x*,y*) satisfies the Kuhn-Tucker conditions. Does (x*,y*) necessarily
solve the problem?

e Given the information in your answers to (a) and (b), use the Kuhn-Tucker method to
solve the problem.

Solution: First we rewrite the problem in the standard form min(, ) f(z,y) s.t. g(z,y) < 0.
This yields:

min (—3z —y)
(z.y)

st (z+1)°+(y+1)°=5<0
-z <0
—y<0.
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Figure 2: (a) x; as function of the iteration steps, (b) xo as function of the iteration steps, (c)
Function f(x), (d) Contour plot of function f(z)

The Kuhn-Tucker conditions for this problem are given by

Vf(z,y)+ Vg(z,y)u=0
phglx,y) =0

>0

g(z,y) <0 .

e In general, the Kuhn-Tucker conditions provide necessary conditions for an optimum of
the given optimum. So if (z*,y*) solves the given optimization problem, there should
exist a u* such that (z*,y*, u*) satisfies the Kuhn-Tucker conditions.

e The objective function of the above minimization problem is convex and the constraints
are also convex. So we have a convex optimization problem. Hence, the Kuhn-Tucker
conditions are sufficient in this case.

e We have )
Vf(z,y) = (:i’) and  Vg(z,y) = (2



Hence, the Kuhn-Tucker conditions can be written as'

—3+2u(x+1)— g =0
—14+2m(y+1)—pus=0
ml(x+1)°+(y+1)° =5 =0
pa(—x) =0

ta(—y) =0
(z+1)*+(y+1)*=5<0
—x <0

~y <0

i, f2, pg > 0

From the 4th and the 5th equation it follows that 4 different combinations are possible:
()z=0andy=20; (2) po =0 (orz >0) and y =0; (3) z =0 and pu3 =0 (or y > 0);
and (4) g2 =0 (or x > 0) and pz =0 (or y > 0).

The only combination that leads to a feasible solution is combination (2), which results
in (z,y, p1, 12, p3) = (1,0,0.75,0,0.5). The solution of the optimization problem is thus

(z%,y7) = (1,0).

2 Exercises for Chapter 2: Linear Programming
Exercise 2.1. Use the graphical method to solve the following problem:
min f(x) = z1 — 225

subject to the constraints: x1 + x9 > 2, —x1 + 19 > 1, 19 < 3, 11,29 > 0.
Reformulate the same problem as a linear programming problem in standard form and solve it
using the simplex method.

Solution: Figure 3 shows the contour plot and the feasible region of the optimization problem.
The solution is in a vertex of the feasible set, which is obtained with the graphical method
(we shift one of the contour lines in a parallel way in the direction of the arrow, where a lower
minimum cost can be obtained, but such that there still is an intersection with the feasible set).

The optimal solution is given by the point (0, 3), corresponding to f(z*) =0—2-3 = —6.
Now, we reformulate the same problem as a linear programming problem in standard form.

First the objective function is the same as we are facing a minimization problem. The
constraints: x1 +x9 > 2, —x1 + 22 > 1, 19 < 3, 21,29 > 0, are equivalent to:

—I1—$2+l’3:—2
$1-[L‘2+l‘4:—1
$2—|-ZU5:3

T1,T2,T3,Ty4,Ts 2 0

Note that the slack variables 3, x4, x5 have been introduced to obtain equality constraints.
If we define:

!Note that the condition u”g(z,y) = 0 results in >, uigi(z,y) = 0 or equivalently >, 11;(—g:(z,y)). Since
—g(x,y) > 0 and p > 0, then is in its turn equivalent to p;g;(x,y) = 0 for all .

10
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we have formulated the problem as a linear programming problem in standard form. Now we
apply the simplex method. Suppose our first choice of B and N is:

1 -1 1 00
B=|1 -10]|, N=|10],
0 1 0 01

I 2 T 0
rp = T :Bilb: 3 ,iL’N:|: 4:|:[ CN—|i :|,
Ty 0
This corresponds to z1 = 2, 9 = 3, 3 = 3, 4 = 0 and x5 = 0 (feasible solution). The

corresponding values of zy and p are:

2=cpB b= —4,p" =ck —cEB'N =[-1 1]

Since p” % 0, the optimum is not found yet. Since —1 is the largest negative component of
p, we select the first column of N (i = 1). We have y = B~'N.; = [1 0 1]7. We have to choose
between the first and the third component:

Eeh _ o (@8 _ g
U1 Y3

11



So we select the first column of B (j = 1). Now we interchange the first column of N with the
first column of B, which leads to:

0 -1 1 -1 0
B=|1 -1 0 {, N = 1 01,
0O 1 0 0 1
Then we find zg, xy, cg and cy as:
Ty 2 0
rp = X2 :B_lb: 3 7xN:|:£1:|:|:8:|7 Cp = -2 7CN:[5]7
XT3 1 > 0

This corresponds to x1 =0, x93 = 3, x3 = 1, x4 = 2 and x5 = 0. The corresponding values
of zg and p are:

2=cpB'b=—6,p" =ch —cEB'N=1[1 2]
Since p” > 0, the optimum was found. The optimal solution of the original problem is (0, 3)
and the corresponding cost is —6.

Exercise 2.2. Two students A and B work at a shop for x and y hours per week, respectively.
According to the rules, A can work at most 8 hours more than B. But student B can work at
most 6 hours more than student A. Together they can work at most 40 hours per week. Find
their mazimum combined income per week if student A and student B earn 15 and 17 euro per
hour, respectively.

Solution: We formulate the problem as a linear programming problem. We have to maximize
152+ 17y, considering the constraints x < 8+vy, y < 6+x and z+y < 40. We will use Matlab to
obtain the result, but this problem can be solved graphically, or by using the simplex algorithm.

The program linprog (Optimization Toolbox of Matlab) solves linear programming prob-
lems specified by:

min 7z such that Az < b, Aeq® = beg, lp < @ < wy, where f, z, b, bey, I, and uy are vectors,
and A and A, are matrices. For our problem, we change the objective function to —15z — 17y
as the program will minimize instead of maximize. The linear programming routine is:

f = [-15; -17];
A= [1-1; -11; 1 1];
b = [8; 6; 40];

[x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],[1);

The result is:

17
xr = [ 93 ] ,  fval = —646.0000

So student A and student B should work 17 and 23 hours respectively, and their maximum
combined income per week is 646 euros. It is also interesting to check lambda:

0
lambda.ineglin = | 1 | ,lambda.lower = { 8 } , lambda.upper = [ 8 }
16

Nonzero elements of the vectors in the fields of lambda indicate active constraints at the
solution. In this case, the second and third inequality constraints (in lambda.ineqlin).

12



3 Exercises for Chapter 3: Quadratic Programming

Exercise 3.1. Consider the process modeled by the following linear discrete-time system: y(n+
1) = ay(n) +bu(n) + _16( ), where y(n) is the output, u(n) the input, a and b are the model
parameters, e(n) is whzte noise of mean value 0 and standard deviation o. At time step n the
output y(n) is measured, the output y(n — 1) and control action u(n — 1) is also known, and
we have to obtain a control action u(n). It is easy to show that we can define the 1-step ahead
prediction §(n +1) = (14 a)y(n) — ay(n — 1) + bAu(n) with A =1 — ¢~ with y(n) = y(n).

1. Obtain the control action Au(n) that minimizes J = (§j(n +1) — )% + X (Au(n))?, where
A is a weighting factor and r the output reference.

2. Reformulate the following problem as a quadratic programming problem:
minJ, = > ,_ (G(n+ k) — )2 + A3, (Au(n + &k — 1))%,
St Aty < Au(n+k —1) < Atupgs, k= 1,2,3.

3. Reformulate the problem as a quadratic programming problem of Type 1 with as few vari-
ables as possible. Assume Ay, = 0.

Solution:

a) By replacing g(n + 1) = (1 + a)y(n) — ay(n — 1) + bAu(n) in the objective function
J = (§(n+1) —7r)?>+ MAu(n)?, we obtain J as function of Au(n), so then we just use the first
order condition for the optimum:

oJ _ I((1+ a)y(n) —ay(n — 1) + bAu(n) — r)* + Au(n)?)
OAu(n) 0Au(n)

20(((1 + a)y(n) — ay(n — 1) + bAu(n) — r) + 2XAu(n) =0

—0(((A + a)y(n) —ay(n — 1) —r)
b2 4+ A
b) From the 1-step ahead prediction equation it follows that g(n +2) = (1 4+ a)y(n + 1) —
ay(n) +bAu(n+ 1) and y(n + 3) = (1 + a)y(n + 2) —ag(n + 1) + bAu(n + 2).
Let x = [g(n + 1) g(n + 2) g(n + 3) Au(n) Au(n + 1) Au(n + 2)]”. The objective function
is then:

= Au(n) =

3
ny (n+ k) —24(n + k)r +r?) —i—)\z Aun+k—1))

k=1

1 f2n 0y 2
—2$ {O 2)\[3}x+[—2r —2r —=2r 0 0 O}I+3T’
then,H_lO3 ?Mg} and ¢’ =[ —2r —2r —2r 0 0 0].

The equality constraints are: g(n + 1) = z1 = (1 + a)y(n) —ay(n — 1) + bxy, y(n + 2) =
= (14 a)xy —ay(n) + bxs and g(n + 3) = x5 = (1 + a)zy — axy + bxg, then if Aex = bey We
have:

1 0 0 -b 0 O (14 a)y(n) —ay(n —1)
A= | —(1+a) 1 0 0 —=b 0 |, ,bgq= —ay(n)
a —(I+a) 1 0 0 =b 0



For the inequality constraints: —Au(n + k — 1) < —Aupy, and Au(n + k — 1) < Aupax,
then if Az < b we have:

A = 03 [3 ;b - [ Aumax Aumax Aumax _Aumin _Aumin _Aumin } .
03 _13

¢) To reformulate the problem as a quadratic programming problem - Type 1, let choose
the optimization vector as x = [Au(n) Au(n + 1) Au(n + 2)]T. From the equality constraints:
gn+1)=(14+a)y(n) —ay(n — 1) + by,
G(n+2)=(14a)br; +brs+ (1 4+ a+a*)y(n) —a(l +a)y(n — 1) and
G(n+3) = ((1+a)*—a)br; + (1 +a)bxs + bxs + (1 + a)(1 + a*)y(n) —a((1+a)* — a)y(n —1).
Then if

Y= %EZE; Yin = [y(”_”},

(n+3)
we have: Y = Gz + FY,,; with

b 0 0 —a (1+a)
G = (1+a)b b 01,F= —a(l+a) 1+a+a®) |,
(1+a)*—a) (1+a)b b —a((1+a)*—a) (1+a)(l+a?

The objective function can be written as: J, = (Y — )" (Y —7) + Ao’z = (Gw + FYiy —
N (Gr 4 FYpi — 1) + Mo = 27 (GTG + M)z + 2(FYi — ) ' G + (FYii — 1) (F Y — 7).
Then, since a constant does not change the location of the optimum, the objective function is

defined as: .
J = §JZTH:L‘ +cfx, H=2G'G+ \s),c" =2(FYy — )G,

For the inequality constraints: Au(n + k — 1) > 0 and Au(n + k — 1) < Atpay, then if
Az < b we have:

1
A= [ _;3 :| ;b - [ Aumax Aumax Aurnax ] .

and the non-negativity constraint x > 0.

Exercise 3.2. Solve the following Q)P problem of type 2: min %:ETHx+ch, s.t. Ax =0, 2 >0,
where

1 -4 2 1 —1
—4 16 -8 —4 0

H=| ", o 4, o |re=] - | A=LLL1 b=4,
1 -4 2 1 4

Solution: Note that H is singular (the first row equals the last one, and the second is —2
times the third). Since ¢ £ 0, we have to apply Remark 3.4 of the lecture notes and consider

Hx+ A"\ — i+ Duy = —c¢

14



instead of equation (3.7) of the lecture notes, where D = D(—c¢) = diag(1,1,—1,—1) =
10 0 0

01 0 0
00 -1 0
00 0 -1

We construct the matrix Ag, the vectors by, cg and the vector xy according to equation
(3.10), while taking into account the modified version of equation (3.7):

1 1 1 1 0 0 0 0 0 100 0 O
1 -4 2 1 1 -1 0 O O O1O0 O O
Aozf[jT_O[ég:—ﬁl 665 -8 41 0 -1 0 0 O0O0O1 0 O
2 -8 4 2 1 0 0O -1 0 000 -1 0
1 4 2 1 1.0 0 0 -1000 0 -1
4
1
bO - 0 700 - [07 07 07 O’ 07 07 07 07 O’ ]'7 17 17 17 1]T7
-7
—4
Selecting
0 0 1
ol o o o
r=1, A=0,pu= 0 Jup=b=4,uy =D " (—c) = —Dc = .
0 0 4

yields a feasible initial solution. However, the optimum is not found yet. The optimal solution
is found selecting the columns 1, 2, 5, 8, 9 of Ay:

3.2400 0 0
0.7600 0 0

T = 0 S A=0.8, 1= 3.1999 sup = 0,ug = 0
0 5.0000 0

This result can be confirmed using directly the function quadprog of Matlab:

x=quadprog(H,c, [],[],A,b,zeros(4,1));

Exercise 3.3. Prove that the gradient of cTx is ¢ and the Jacobian of (Azx — b) = AT,

Solution: The gradient of a function f is defined by:

Vi) = 0x, Oxo ox,,

T

The function ¢ z can be written as:

f(@) ="z =c1m + s + ...+ cozy

Thus 2L is ¢;. Consequently, the gradient of ¢z is:
ox; Y g

velr=lei ey ... el =c

15



The function Az — b with A(m x n) and b(m x 1) can be rewritten as:

(X A(Lj)z;) — by

7=1
Ax — b=
( ;A(m,j)xj) — b,
=

Referring to the definition of the Jacobian on page 8, the Jacobian of Az — b is obtained as
follows:

A(1L,1)  A(2,1) A(m, 1)
Sar—py = | P A(2E72> Am.2) |
A(l,n) A(2,n) A(m,n)

which is in fact A”.

Exercise 3.4. Solve the following optimization problem:
min f(z) = —8x; — 16xy + 2? + 422
subject to: x1 +1x9 <5, 11 <3, 11 >0, 29 >0
Solution: The quadratic problem’s variables and matrices are given below. As can be seen,

the H matrix is positive definite so the KKT conditions are necessary and sufficient for a global
optimum. Note that we have a standard QP problem of type 1 with

-8 2 0 11 5
St R R
To solve the KKT equations for this problem, we use the approach of Section 3.1 of the lecture
notes. First, we transform the problem into a type-2 problem, by introducing slack variables
y > 0 such that Az +y = 0.
The KKT equations are then as follows:
T+ 22 +y1 = 5
Tty =3
25(]1+/\1+/\2—,Uq =38
85[’2+)\1—/L2:16
T,y =0
v =0
To create the appropriate linear program, we add artificial variables to each constraint and

minimize their sum:
min w; + ug + uz + Uy

subject to x1 + o +y1 +up =5
T1+ Yo+ Uy =3
201 + A+ Ao — g +uz3 =8
8Ty + Ay — g +uy = 16
Y, oy u >0
=0

16



Applying the modified simplex technique to this example, yields the sequence of iterations
given in Table 3. The optimal solution to the original problem is (z7, z%) = (3,2).

Table 3: Simplex iterations for QP problem

Iteration | Basic variables | Solution | Objective value | Entering variable | Leaving variable
0 (Ul,UQ,Ug,U4) (5,378,16) 32 T2 Uy
1 (uy,us9, us, x2) | (3,3,8,2) 14 T Uy
2 (1, u2,uz,x2) | (3,0,2,2) 2 A Us
3 (1, A1, uz,22) | (3,0,2,2) 2 A2 U3
4 (ZEI,Al,)\Q,Ig) (3,0,2,2) O - -

4 Exercises for Chapter 4: Nonlinear optimization with-
out constraints

Exercise 4.1. Perform three iterations to find the minimum of f(z1, x2) = (v1—3)+ (21 —3x2)?
UuSINg:

e Newton’s method (use xo = [0,0]T).
o Levenberg-Marquardt’s method (use xo = [0,0]7, and \=1.1).
e Broyden-Fletcher-Goldfarb-Shanno’s method (use xo = [0,0]7).

e Davidon-Fletcher-Powell’s method (use xo = [0,0]T).

Solution: The gradient and the Hessian of f are given by

4(xy — 3)3 + 2(x1 — 3x9)
—6(371 — 333'2)

12(z; — 3)2+2 —6

V= 6 18

} and H = [
The results for the Newton method are in Table 4. The Newton method is as follows:

Tyr = x — H () V f ()

The results for the Levenberg-Marquardt method are in Table 5. The Levenberg-Marquardt’s
method is as follows:

Tyl = Tp — ([:[(xk))_1Vf(xk),

~

H(xy) = H(zg) + M

The results for the Broyden-Fletcher-Goldfarb-Shanno method are in Table 6, and the
method is:

17



Tl = Tf — (ﬁk)*AlVf(xk),

~

T T 7T
aqy  Hr—1sesp Hy_y

Hy,=H._1 + — L ,
‘ o QZ:SI{? S{Hk_lsk
Sk =Tk — Tp—1, e = V() = Vf(2p-1),
H() = H(IEQ)

The results for the Davidon-Fletcher-Powell method are in Table 7, and the method is:

Tpy1 = Th — Dk?f(%); A
spst Dy_iquqi Di_4

Ek = ﬁk—l + — = )
T Sk af Di—1q
Sk = Tk = Th—1, Gk = Vf(xk) - Vf(iUk—ﬁ,
D() = H(xo)il

Table 4: Results for the Newton method
k s f(zr) Vf ()" [H ()]~
0.0093 0.0031
0 | (0.0000,0.0000) | 81.0000 | (-108.0000,0.0000) 00031 0.0566
[ 0.0209 0.0070 ]|
| 0.0070 0.0579 |
0.04700 0.0157
0.0157 0.0608
[ 0.1058 0.0353 |
0.0353 0.0673

1| (1.0044,0.3348) | 15.8597 | (-31.7893,0.0186)
2 | (1.6688,0.5573) | 3.1403 | (-9.4422,0.0054)

3| (2.1123,0.7044) | 0.6210 (-2.7999,0.0024)

Table 5: Results for the Levenberg-Marquardt method
k i f(zr) Vf(ap)" [H ()]~
0.0092 0.0029
0 | (0.0000,0.0000) | 81.0000 | (-108.0000,0.0000) 0.0029 0.0533
[ 0.0202 0.0063 ]
| 0.0063 0.0543 |
| 0.0431 0.0135 |
0.0135 0.0566
[ 0.0869 0.0273 ]
0.0273 0.0609

1](0.9936,0.3132) | 16.2087 | (-32.2002,-0.3240)
2| (1.6461,0.5337) | 3.3621 | (-9.8370,-0.2700)

3| (2.0737,0.6818) | 0.7370 | (-3.1226,-0.1698)

Now, just to see the behavior of the algorithms, in the Figure 4 we can see the evolution of
the variables z1, x5 as function of the iterations.

Exercise 4.2. Use the golden section method to find the value of x that minimizes the function

f(z) :—min{§,2—(x—3)2,2—g}.

Use the fact that the function is strictly unimodal on [0,8]. Perform five iterations. Compare
the results with those obtained with the Fibonacci method and with a fixed-step method (take a
step length As = 2).

18



Table 6: Results for the Broyden-Fletcher-Goldfarb-Shanno approach
k T f(zk) V()" (Hy)~!
0.0093 0.0031
0 | (0.0000,0.0000) | 81.0000 | (-108.0000,0.0000) | 0.0031 0.0566 |
1 0.0132 0.0044 |
| 0.0044  0.0570 |
0.0259 0.0086
| 0.0086 0.0584 |
| 0.0438 0.0146 |
0.0146 0.0604

1 | (1.0000,0.3333) | 16.0000 (-32,0.0000)
2| (1.4224,0.4741) | 6.1942 | (-15.7053,-0.0006)

3| (1.8292,0.6092) | 1.8790 | (-6.4164,-0.0096)

Table 7: Results for the Davidon-Fletcher-Powell apRroach

k Tj f(zr) V()" (Hy)~"
0.0092 0.0031
0 | (0.0000,0.0000) | 81.0000 | (-108.0000,0.0000) 0.0031 0.0566
[ 0.0132 0.0044 |
| 0.0044 0.0570 |
| 0.0259 0.0086 |
| 0.0086 0.0584 |
| 0.0438 0.0146 |
0.0146 0.0604

1| (1.0044,0.3348) | 16.0000 | (-32.0000,0.0000)
2 | (1.6688,0.5573) | 6.1942 | (-9.4422,0.0054)

3| (2.1123,0.7044) | 1.8790 | (-2.7999,0.0024)

Solution: We first evaluate the fixed-step method, at the points t =0,z =2, x =4, . =6
and x = 8. The minimum value is in z = 2 as can be seen in the Figure 5.
Now we use the golden section method. This yields

l a b G di f(ar) f(b) fla) f(di)
0.0000 | 3.0557 | 4.9443 | 8.0000 | 7.0000 | -0.4721 | 1.7802 | 23.0000
0.0000 | 1.8885 | 3.0557 | 4.9443 | 7.0000 | -0.7647 | -0.4721 | 1.7802
0.0000 | 1.1672 | 1.8885 | 3.0557 | 7.0000 | 1.3592 | -0.7647 | -0.4721
1.1672 | 1.8885 | 2.3344 | 3.0557 | 1.3592 | -0.7647 | -0.8328 | -0.4721
1.8885 | 2.3344 | 2.6099 | 3.0557 | -0.7647 | -0.8328 | -0.6950 | -0.4721
5| 1.8885 | 2.1641 | 2.3344 | 2.6099 | -0.7647 | -0.9180 | -0.8328 | -0.6950

The best solution found with the golden section method in 5 iterations is x = 2.1641.

= w N = O

Now we apply the Fibonacci method. If we choose n = 7, this yields

L] w b a di fla) | f) | fla) | f(d)
0.0000 | 3.0476 | 4.9524 | 8.0000 | 7.0000 |-0.4762 | 1.8118 | 23.0000
0.0000 | 1.9048 | 3.0476 | 4.9524 | 7.0000 | -0.8005 | -0.4762 | 1.8118
0.0000 | 1.1429 | 1.9048 | 3.0476 | 7.0000 | 1.4490 | -0.8005 | -0.4762
1.1429 | 1.9048 | 2.2857 | 3.0476 | 1.4490 | -0.8005 | -0.8571 | -0.4762
1.9048 | 2.2857 | 2.6667 | 3.0476 | -0.8005 | -0.8571 | -0.6667 | -0.4762
51 1.9048 | 2.2857 | 2.2857 | 2.6667 | -0.8005 | -0.8571 | -0.8571 | -0.6667

The best solution found with the Fibonacci method in 5 iterations is z = 2.2857.

=W N = O

However in order to iterate more with the Fibonacci algorithm (to get the optimal solution),
we need to increase n. For this purpose we choose n = 18. The results for the first 5 iterations
are similar to ones achieved by the Golden section method.

19



0.95

0.85

Newton
L-M —=

Newton

= £ e

= —<— B-F-G-§ = 0.75¢ B-F-G-S|
—o— D-F-P o7l —o— D-F-P
2 -
0.65 1
0.6 1
0.55f 1
1.5 0.5
5 10 15 20 5 10 15 20

Iteration k Iteration k

Figure 4: (a) z; as function of the iteration steps, (b) xs as function of the iteration steps

25

_ —_ N
o o o

—min(0.5x,2—(x-3)?,2-0.5x)

(&)

f(x)

Minimum
X=2

_5 | | | | | | |

Figure 5: Function f(z). The circles indicate the data points evaluated with the fixed-step
method

20



8’\ ———a,golden section
‘\ - d| golden section
m - « -, Fibonacci method (for n=18)
' - @ - d, Fibonacci method (for n=18)
6 - 1
\
1
\
5§ n
\
\
AY
4t s i
\
\
\
3k o--o--a i
Te.
~e . _
(L _
i i i i i i i i i
0 2 4 6 8 10 12 14 16 18

iteration step |
Figure 6: a; and d; for the golden section method and the Fibonacci method

To compare the algorithms, Figure 6 shows the values of a; and d; as a function of the
iteration step [. As can be seen, both algorithms (golden section and Fibonacci) converge to
the optimal solution.

Exercise 4.3. Answer the following questions:

o Why is Newton’s method for minimizing multivariate functions not a descent method and
how should it be modified to become a descent method?
Note: An optimization method is called a descent method if f(xri1) < f(xx) for all k,
where f is the objective function and xy. is the kth iteration point.

o [s the steepest-descent algorithm is a descent method?

o Are the steps in the steepest-descent algorithm orthogonal?

Solution:

e Newton’s method is not necessarily a descent method since the Newton direction is not
necessarily a descent direction and since — even if it is — the step to be taken may be
to big.

To get a descent method we can apply the Levenberg-Marquardt method with A selected
such that the direction is a descent direction and the step size taken small enough (i.e.,
we then apply a line search method using the Levenberg-Marquardt direction).

e The direction taken in the steepest-descent algorithm, i.e., the negative gradient —V f is
a descent direction (see the lecture notes for the proof). If in the line search method we
then always select a step size that is small enough, we get a descent method.

e Consider the kth iteration step, where we determine the optimal step size s, in the
df(l’k + Skdk)

dSk

direction dy = —V f(x;). The optimal step size s; must verify =0, i.e., we
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Table 8: Iterations with the steepest-descent algorithm

k i (@) V()" IV f (@) ]l
0 | (0.0000,0.0000) | 40.0000 | (-4.0000,-24.0000) | 24.3311
1| (0.1644,0.9864) | 19.5878 | (-3.6712,-16.1088) |  16.5218
2 | (0.3866,1.9614) | 6.9178 | (-3.2268,-8.3088) | 8.9134
3 | (0.7486,2.8936) | 1.6113 | (-2.5028,-0.8512) 2.6436
4] (1.6953,3.2156) | 0.2788 | (-0.6094,1.7248) 1.8293
5| (2.0284,2.2727) | 2.1167 | (0.0568,-5.8184) 5.8187
6 | (2.0186,3.2726) | 0.2976 | (0.0372,2.1808) 2.1811
7| (2.0015,2.2727) | 2.1159 | (0.0030,-5.8184) 5.8184
8 | (2.0010,3.2727) | 0.2975 | (0.0020,2.1816) 2.1816
9 | (2.0001,2.2727) | 2.1159 | (0.0002,-5.8184) 5.8184

must find the point in which the line ) + sidj, is the tangent line to a contour line of f.
Since the gradient in a given point is always orthogonal to the contour line, we find that
dp+1 = =V f(x + s;dy) is orthogonal to dy.

Exercise 4.4. Using a steepest-descent method with update formula

- V[ ()
IV f(i)llz

Tr+1 = Tk

find the minimum of the quadratic function
f(z1,19) = (z1 — 2)? + 4(xy — 3)?%,

starting from xo = [0,0]%. Using Matlab, plot the algorithmic moves (x), as function of k) and
verify the zigzag property of the algorithm.

Solution: The optimization problem is solved using the following steepest-descent method

with
( 2(w)r —2) )
V() ( (26 ) B 8((zx)2 —3)
V@l \ @2 ) /@@ = 2))2 + (8((zh)2 — 3))°
The results of the first 10 iterations are listed in the Table 8.

In Figure 7, the function f(z), its contour plot as well as the steps of the iterative method
are presented. The position of the optimal point is in (2, 3).

L1 = Tk

Exercise 4.5. Show that the choice of X in the golden section method indeed results in reuse
of points from one iteration to the next.

Solution: In the Golden section method, we can construct three sub-intervals of [a;, b;] by
choosing:

bl = )\al + (1 - )\)dl
Cc, = (1 — )\)al + )\dl
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Figure 7: (a) x; as function of the iteration steps, (b) x5 as function of the iteration steps, (c)
Function f(x), (d) Contour plot of function f(x)

with A = 2(v/5 — 1). If fi(b) > fi(e)) we know that the minimum must be in the interval
[by,d;]. Thus we can define a;y1 = b, diy1 = d; and compute b1 = Aaj11 + (1 — N)djyq and
i1 = (1 = Nagy + Adjy 1. For b1 we can write:

bt = M A+ (1= N)d)) + (1 = N)dp = N+ (1 = N)d,

_d

We can prove in a similar way that ¢;11 = b when fi(b) < fu(c).

3 1
(6 - 2\/6)6” + (1 - 5 + Eﬁ)dl = (1 - )\)al —|—/\dl =

Exercise 4.6. Show that the choice of \ in the Fibonacci method indeed results in reuse of
points from one iteration to the next.

Solution: Suppose we have:
bl = )\lal -+ (1 — )\Z)dl

C, = (1 — )\l)al + )\ldl

with \; = H"i;l_l. If we substitute it in )\;, we obtain:

bl — :un—l a,l + (1 - :un—l )dl
Hnt1-1 Hn+1-1

Cl:(l— Hn—i )al+ Hn—i dl
Hn4-1-1 Hn4-1-1
Now for the (I + 1)th iteration, A4 = “Z*:l. If f.(b) > fr(c)) we know that the minimum
must be in the interval [b;, d;]. Thus we can define a;,1 = by, d;1 = d; and compute b1 =
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)\l+1al+1 —+ (1 — )‘l—‘rl)dl—i-l and Cl41 = (1 — /\l+1)al+1 + )‘l-‘rldl—i-l' If we substitute aj+1 with bl we
will get:

Hn—1-1 Hn—1 Hn—1 Hn—1—1
byt = Aiabi + (1 = A )d = - a + (1 - )dl + (1 - —l)dz
Hn—1 Hn+1—1 Hn1—1 Hn—1
:> bl+1 — /“Ln—l—l al + (1 _ Mn_l_l)dl
Hn+1-1 Hn+1-1
On the other hand, we have the Fibonacci recursion equation i, 11 = fin_; + ptn—1—_;. Hence,

if we substitute in the b, equation we get:

bl+1 _ Hn+1-1 — Hn—i a + Hn—1 dl _ (1 o Hn—1 )al + Hn—i dl — ¢
Hn41-1 Hn41-1 Hn41-1 Hn41—1

Similarly, for the case fi(b;) < fi(c), we choose a;11 = a;, diyy = ¢; and by working out the
equations we end up with ¢4 = 0;.

Exercise 4.7. Prove the expressions on page 36 for gradient of f(x) and the Hessian (4.1)
Solution: The function f(z) = e’ (x)e(x) is given by:
f(z) =el(2)e(x) = er(x)* + ea(x)? + ... + en(z)?
Hence the gradient is obtained as:
2%%e; + ...+ 25 ey
o) = 23—261 + ...+ 2‘?9671;’61\[
2%61 + + QgeTJZeN

It is can be easily observed that the above matrix is equal to the following multiplication:

Oex  Oey . Oen
oz oz Ox1
Oex  Odey . Oen
2. 8?32 8%2 83_”2 Je1 es - -eN]T
Oer  Oes | Oen
Thus the gradient of f is:
Vf(x)=2Ve(z)e(z)
The Hessian matrix can be determined as:
2 2
d2%ey Oer. d2en den L. d2%e;1 ey Oer d2en den Oden
2 ax% e + 2(8x1) -t Bw% en + 2 Ox1 28x18xn81 + 28:pn Ox1 """ + amlaxneN + 282n Ox1
2 2
8%eq Oe1 Oer d2%en deny Oen . .. 0%eq Oer d2%en den
28mn8x161+28x1 8xn"'+2amn8x1€N+2Bm1 Oxn 261% €1+2 Oxn .2 ox2 6N+2 Oxn

It is straightforward to see that the above matrix can be decomposed to the components:

H(x) = 2Ve(x)V¥e(r) + Z 2V%e;(x)e;(x)
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5 Exercises for Chapter 5: Constraints in nonlinear op-
timization
Exercise 5.1. Consider the constrained minimization problem:

min f(zy, T2, x3) = % + 823 + 31173
subject to

r|1 — Ty + T3 = 1

T+ a0 =2

Solve this problem using the method of elimination of constraints.

Solution: From the equality constraints we get: x1 = —x5 + 2 and z3 = 225 — 1. Replacing
this in the objective function yields:

flz1, 20, 23) = F(23) = (—x9 + 2)2 + 835% +3(—xg +2)(220 — 1) = 33:% + 11y — 2 .

Analytically we can obtain the local optimum as follows:

or 6xo +11 =0= 13 1 1.8333
— =6 = rh=—— =~ —1. :
81'2 2 2 6
With the second-order condition we can check that 5 = —% is a local minimum (since F”(z5) =

6> 0).

Then using this minimum we obtain the solution for the problem: x = (%3, —%, —%). This
result can be verified with the function fmincon of Matlab.
In an m-file called Chapter5_solutioncodes.m, we define the initial point x0, and the equality
constraints Aeq * x <= beq\. The resulting code is as follows:

x0=[0;0;0];

Aeg=[1,-1,1;1,1,0];

beq=[1;2];

option=optimoptions(’Algorithm’,’sqp’);

x=fmincon(@(x) ((x(1)) "2+8*(x(2)) "2+3*x (1) *(x(3))),x0, 1,1, ...
Aeq,beq, [1,[],[],0option)

The final result is the vector z = [3.8333 — 1.8333 ; —4.6667].

Exercise 5.2. Using Matlab, apply sequential quadratic programming to solve the problem:

min f (1, 29) = (21 — §)* + (22 — 2)?
subject to

x% — 29 <0

Ty + X9 S 6

T1,T9 > 0

Starting with the point xo = [0,0]7, show the evolution of the search direction dy (Step 2 of the
algorithm as listed in the lecture notes), step length in the line optimization sy of (Step 3), and
the optimization variables (xy)1, (xx)2 as function of the iteration step k.

Solution: We use the function fmincon of Matlab. In an m-file called fun5_sequentialprog.m
we write the function:
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Table 9: Iterations with the steepest-descent algorithm

Max Linesearch | Directional First — order
k | F'— count f(x) constraint | steplength | derivative | optimalityProcedure
0 3 9.0625 0
1 8 3.78906 | -0.02734 0.25 -6.02 5.63
2 12 1.07034 0.2576 0.5 -3.75 1.21
3 15 1.6113 0.03713 1 -1.38 0.147
4 18 0.609201 | 0.0006924 1 0.255 0.0272
5 21 0.625 | 6.563e-008 1 0.231 0.000696

function f = funb_sequentialprog(x)
f = (x(1)-9/4)"2 + (x(2)-2)"2;

Then, the non linear constraints are in a m-file called con5_sequentialprog.m:

function [c,ceq] = conb_sequentialprog(x)
c(1) = x(1)"2 - x(2);
c(2)= x(1)+x(2)-6;
ceq = [J;

Then, we define the initial point 20, the lower bounds LB, and the options to see the various
measures of progress while the algorithm executes:

x0=[0;0];

LB=[0;0];

options = optimoptions(’Algorithm’,’sqp’,...
’PlotFcns’,{@optimplotfunccount,@optimplotfval,...
Qoptimplotstepsize,@optimplotfirstorderoptl})

With @Qoptimplot funccount we can see the function count, Qoptimplot fval plots the func-
tion value, @Qoptimplotstepsize plots the step size, and Qoptimplot firstorderopt plots the
first-order optimality measure.

Finally, we use fmincon:

x = fmincon(@(x) funb5_sequentialprog(x),x0,([],[],[],[],LB,[],...
@(x) conb5_sequentialprog(x) ,options)

The final results is the vector x = [1.5000, 2.2501]7.

The results of the iterations are in the Table 9.

In the Figure 8, the variables z; and x5 as function of the iteration steps. In the Figure
9, the function evaluations, function values, step size, first-order optimality, as function of the
iterations.

Exercise 5.3. Solve the problem:
max(z + y)

w?yVZ

subject to 2> +2y* + 22 =1 andax +y+2=1.
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Solution: For an equality constrained optimization problem necessary conditions for a mini-
mum of the function f in (z,y, z), satisfying h(x,y, z) are given by the Kuhn-Tucker conditions:

Vf(x,y,2) + Vh(z,y,2)A =0
h(z,y,z) =0

In our case, after rewriting the maximization problem as a minimization problem with objective
function —z — v, the conditions are as follows:

-1+ 2)\1.1' + /\2 =0

2)\13 + )\2 =0
2?42 42 =1
r+y+z=1

To find the values of x, y, z, A\, Ay that solve these equations, we can first use the third
condition to eliminate As (s0 A\, = 2 — \;2), and then use the fifth condition to eliminate z (s0
2 =1 —u2—y). Then we obtain:

-1+ N4z +2y—2]=0
-1+ M[22+6y—2]=0
220% — 3> + 2y — 22y + 22 =0

The first two equations yield = = 2y, so that the third equation is 3y(5y —2) = 0, so that either
y = 0ory = 2/5. Thus there are two solutions of the first-order conditions and the constraints,
namely (0,0,1) with \; = —1/2 and Ay = 1, and (4/5,2/5,—1/5) with \; = 5/18 and Ay = 1/9.
Now if we plug the two solutions in the objective function, the value of the function is higher
at the second solution. Hence, the second solution is the solution of the problem.

6 Exercises for Chapter 6: Convex optimization
Exercise 6.1. Perform two iterations of the ellipsoid algorithm to solve the program:

minf(zy,ze) = 4(x; — 10)? + (29 — 4)?
subject to

T — 19 < 10

Ty — T3 >3

T Z 0

Plot the feasible region and the algorithmic steps. Take [0,0]7 as starting point.

Solution: In m-files called fun6_ellipsoid_f.m and fun6_ellipsoid_g.m we write the func-
tions:

function [f,ff]l=fun6_ellipsoid_f(x)

f=4%(x(1)-10) "2+ (x(2)-4) "2;
ff=[8x(x(1)-10),2%x(x(2)-4)];

28



function [g,ggl=fun6_ellipsoid_g(x)
g=[x(1)-x(2)-10;3-x(1)+x(2) ;-x(1)]1;
ge=[1 -1; -1 1; -1 0];

We will show the results using the ellipsoid algorithm. Define the initial condition z0, the
initial ellipsoid A0, and the parameter n:

x0=[0;0];
A0=[100 0; 0 100];
n=2;

Then we evaluate f(z0), V f(x0), g(x0), Vg(z0):

[f,ff]=fun6_ellipsoid_f (x0);
[g,ggl=fun6_ellipsoid_g(x0);

We check if g(z0) <= 0. If it is, then the next iteration is:

if (g<=0)
x1=x0-(1/(1+n) ) *A0*ff’/(sqrt (abs (ff*xA0*ff’)));
A1=(n"2/(n"2-1))*(A0-(2/(n+1) ) *AO*f £’ *ff*A0’ / (££*xA0*ff’)) ;

If the constraint g(x0) <= 0 is not satisfied, we select the vector of the subgradient Vg(z0)
related with the index of the bigger value of g(z0), and the iteration is:

else
[value,pos]=max(g) ;
x1=x0-(1/(1+n) ) *AO*gg(pos,:)’/. ..
(sqrt(abs(gg(pos, :)*A0*gg(pos,:)’)));
A1=(n"2/(n"2-1))*(A0-(2/(n+1) ) *AO*gg(pos, :) **. ..
gg(pos, :)*A0’ / (gg(pos, :)*A0*gg(pos,:)’));
end

In the Figure 10, the variables x; and x5 and the function evaluations are shown. In the
figure it is also shown the feasible region (within the lines). We can see how the algorithm
converges to the optimal solution [10, 4]7.

Exercise 6.2. Use the interior-point algorithm to solve the program:
mmf(l"hxz) = —IT122
subject to

1—22—23>0

Plot the feasible region and the algorithmic steps. Use first [0.1,0.1]7 and next [—-0.1, —0.1]" as
starting points.

Solution:

We use the function fminunc of Matlab. In an m-file called fun6_interior_barrier.m we
write the function:
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Figure 10: (a) z; as function of the iterations, (b) x5 as function of the iterations, (c) objective
function, (d) Feasible region

function f= fun6_interior_barrier(x)
if (x(1)"2+x(2)"2-1<0)
f=-log(-(x(1)"2+x(2)"2-1));

else

£=100000000000000000;

end

Finally, for a given ¢, and given initial condition x0, we use fminunc:
x=fminunc (0(x) t*(-x(1)*x(2))+fun6_interior_barrier(x),x0);

In the Figure 11, the variables x; and x5 and the function evaluations as function of the
parameter t are shown. The cases are IC' — 1 for the starting point [0.1,0.1], and IC — 2 for
the starting point [—0.1,—0.1]. In the figure it is also shown the feasible region (inside the
unit circle). With arrow, the directions of central paths z*(t). We can see how the algorithm
converges to the optimal solution as the parameter ¢ increases.

Exercise 6.3. Are the following functions convex or not? Why?
I frR=R:x— (22+1)>
2. f:R—>R:zw (22— 3x)?

3 fR=>R:zw—2"
1 xX
4. f:]R—)R:x»—><§>
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5. f:R\{O}—HR:xH%

1
6. f:]1,400) > R:z— —

T

7. f:R? 5> R: (z,y) — cosh(a? + y?)

Solution: The definition of convex functions states that f is convex if its domain dom(f) is

convex and if we have f((1— XNz + A\y) < (1 —X)f(z)+ Af(y) for all z,y € dom(f) and for all
A€ 0,1].

1.

dom(f) = R is a convex set. According to the Lecture Notes, az*® with a € R™ and
n € N is convex. Hence, the function f = (22 4+ 1) = 2* + 22% + 1 is also convex.

Following from the previous case, the function f = (2? — 3z)? = z* + 922 — 62° is not
convex (since the term —6z? is not convex).

The function can be rewritten as f = 27 = exp™®®) The function exp g(z) is convex if

g is convex. Hence, f = 2% is also convex since In(2).z is convex (in fact exp® is convex
for any a € R).

1 xr
The function can be rewritten as f = <§> = exp(~ (&)%) and it is convex since exp® is

convex.

f is not convex, since the set R\ {0} is not convex.

1
The domain is a convex set and the function f = — defined on this domain is convex.
x
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7. coshx is a convex function and non-decreasing. On the other hand, 22 + 3? is convex
in R?. According to the Lecture notes, f(z) = h(g(z)) is convex if g is convex and h is
convex and non-decreasing. Hence, cosh(z? + y?) is convex.

Exercise 6.4. On page 60 it is stated that if P is symmetric then the conditions P > 0 and
ATP + PA <0 can be recast as an LMI. Prove this statement.

Hint: Write P as a linear combination of symmetric basis matrices, each having only one
(diagonal) entry or two (off-diagonal) entries equal to 1, the other entries being equal to 0.

Solution: We aim at showing that ATP + PA < 0 is an LMI with p as the variable. To see
this, we select a basis for symmetric n X n matrices. For ¢ > j define E¥ as the matrix with
its (4,7) and (j,7) elements equal to one, and all of its other elements equal to zero. There

n(n+1)
2

are m = linearly independent matrices £ and any symmetric matrix P can be written

=1 i>j

uniquely as:

where P;; is the (4,7) element of P. Thus, the matrices E” form a basis for symmetric n x n
matrices. Substituting for P in terms of its basis matrices gives the alternative form for the
Lyapunov inequality:

ATP + PA = AT<ZZPZ-]-E”) + <ZZPME“>A => "> P(ATET + ETA) <0
j=1 i>j j=1 i>j j=112j
which is in the form of an LMI with Fy = 0 and F}, = —ATEY — EVA, for k = 1,...,m. The
elements of the vector = in the F(z) are the P;;, i > j, stacked up on top of each other.

Exercise 6.5. If the function f is convex, is f? then always convex?
If the function f is convex and nonnegative, is f* then always convex?

Solution:

e No; for instance |z| — 1 is convex, but (|z| — 1)? is not convex as f?(1) = f?(—1) = 0,

while f2(0) = 1.

e Yes; and it can be proved using the definition of convex functions. (Hint: since we have
assumed that f is nonnegative we can conclude that f%(z) < f2(y) if f(z) < f(y))

Exercise 6.6. 1. Prove that the sum of a linear function and a convex function is convex.
2. Prove that the sum of a linear function and a nonconvex function is nonconvex.

3. Provide examples to show that the sum of a convex function and a nonconvex one, can be
either convex or nonconver.

4. Provide examples to show that the sum of two nonconvex functions can be either convex
0T MONCONVeL.
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Solution:

1. we know from the properties of linear functions that f(ax) = af(x) and f(z +y) =
f(z)+ f(y). Hence, for the sum of a convex function f; and a linear function f;, we have;

[z + (1= Ny) + 2002 + (1= Ny) = fildz + (1 = N)y) + Afa(x) + ( ) f2(y)
< Ma(x) + (1= AN fily) + Afa(z) + ( ) f2(y)
A(fi(x) + fa(x)) + (1= N)(fi(y) + fo(v))

Thus the sum of the two functions is a convex function.

1—A
1—A

2. Similar to the approach in part (1), we can conclude that the sum of a nonconvex function
and a linear function is nonconvex.

3. The functions fi(z) = az® with a > 0 and fy(z) = bx? with b < 0 are convex and
nonconvex respectively. However, the sum f; + fs is a convex function in case a > |b| and
nonconvex in case a < |b|.

4. Consider the functions fi(x) = 2 and fy(z) = —2® with R as their domain. The sum
of the two functions is zero and convex, while the subtraction results in a nonconvex
functions.

7 Exercises for Chapter 7: Global optimization

Exercise 7.1. Using the routine simulannealbnd of Matlab, minimize the following function,

f(z) = —e 2 OCTE) sin® (57 (2% — 0.05)), =z € [0,1].
Plot the current iteration point, the function value, and the temperature function.
Solution: First, we write an m-file called fun7_simulanneal .m for this function

function f=fun7_simulanneal (x)
f=-exp(-2*log(2) .*(x-0.008)/0.854) .*x(sin(5*pi*(x.~(0.75) - 0.05)))."6;

Then, for example, we can ask in the options of simulannealbnd to display the objective
function evaluated (@Qsaplotf) and the value of the temperature Qsaplottemperature (see the
help of simulannealbnd for more options)

options = saoptimset(’PlotFcns’,{@saplottemperature,@saplotf});

and finally we include the low and upper boundaries [b, lu, together with an initial guess
x0,

1b=0;
lu=1;
x0=1;
x=simulannealbnd (@fun7_simulanneal,x0,lb,lu,options)

the solution z = 0.0791.
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Figure 12: Function f(x)
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Figure 16: The Himmelblau function

Exercise 7.2. The Himmelblau function has four peaks in the points (3;2), (—3.799; —3.283),
(—2.805;3.131), and (3.584; —1.848), and it is defined by

2186 — (22 + w9 — 11)% — (27 + 23 — 7)?
Janx2) = 2186 ’

Using the routine ga of Matlab, generate an optimizer capable to detect the four optimal solu-
tions.

xT1,To € [—6, 6]

Solution: In the Figure 16 we can see the function.
To use the routine ga, first, we write an m-file called fun7_Himmelblau.m for this function
(remember that ga will minimize).

function f=fun7_Himmelblau(x)
f=-(2186-(x(1) "2+x(2)-11) "2-(x(1)+x(2)"2-7)"2) /2186;

Then we run ga, including the number of optimization variables NV, the lower bound LB,
and the upper bound U B:

NV=2;
LB=[-6 -6];
UB=[6 6];

X = ga(@fun7_Himmelblau,NV,[],[],[],[],LB,UB,[])

If we run several times the algorithm (500 times), we will note that the solution (3.000, 2.000)
is the most typical (485/500 times).
In the tests, the solutions (—2.8051,3.1313) and (3.5844, —1.8480), appeared 10, and 5 times.
Then, it is necessary to introduce a modification, in order to find all the peaks. In the literature
”Nitching algorithms” are proposed, to keep the diversity in the solutions. We can also change
some parameters of the ga like the mutation or the crossover probabilities (to increase diversity).
Another option is to split the regions randomly, so the ga will find the peaks in different specific
regions. For example, the following code will find the four peaks (in the Figure 17 the results
are displayed):

[X,ef] = ga(@example72,2,[1,[1,[1,[1,[0 01,[6 6],[1);
[X,ef] = ga(@example72,2,[],[],[],[],[-6 -6]1,[0 01,[1);
[X,ef] = ga(@example72,2,[]1,01,0],0],[-6 0],[0 6],[1);
[X,ef] = ga(@example72,2,[1,[1,[1,[]1,[0 -61,[6 01,[1);
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Exercise 7.3.

Discuss the main differences between multi-start local optimization methods, simulated anneal-
g, and genetic algorithms.

Solution: In multi-start local optimization, we select several starting points in the feasible set
(using, e.g., a uniform distribution) and for each starting point we run a local minimization
method. From the set of returned solutions we afterwards select the one that yields the lowest
value for the objective function. It is not always very efficient in general. However, if we already
have a good idea of the region where the global optimum will be situated, we can select our
initial points in this region and then the process will be much more efficient.

In contrast to local optimization techniques, simulated annealing can escape from local min-
ima. It uses probabilistic transition rules. Only the function values of the objective function
are required; the gradient and the Hessian are not used. And one important feature of this
algorithm is that it can be used for problems with discrete parameters.

The genetic algorithms search from a population of points: instead of considering one point at
the time as is done in random search, multi-start local optimization or simulation annealing,
genetic algorithms consider sets of possible solutions in each iteration step. They can escape
from local minima since a whole population of possible solutions is considered. And they use
probabilistic transition rules.

8 Exercises for Chapter 11: Integer optimization

Exercise 8.1. Consider the process modeled by the following linear discrete-time system: y(n+
1) = ay(n) + bu(n) + e(n), where y(n) is the output, u(n) € {0,1} the input (binary input),
a = 0.9 and b = 0.1 are the model parameters, and e(n) is white noise of mean value 0 and
standard deviation o. At instant time n the output y(n) = 0.5 is measured and we have to
obtain a control action u(n) € {0,1}. Let us define the prediction y(n + 1) = ay(n) + bu(n),
and y(n + k) =ay(n+k—1)+bu(n+k—1) for k € {2,3,4,5}.

e Obtain the control action u(n) € {0,1} that minimizes J = (§(n + 1) — 1) + u(n)?,
where A = 0.01 is a weighting factor and r = 1 the output reference.
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e Using branch-and-bound, obtain the control sequence U = [u(n),u(n + 1),u(n + 2)], that
minimize min J2 =30 (g(n+ k) —r)2 + A3 u(n +k—1)2

Solution:

e We have 2 options:

— If u(n) = 0, then J = (ay(n) — r)>.
— If u(n) =1, then J = (ay(n) +b—1r)? + \.

Among those two options, we select the one that provides the minimum J. If a = 0.9,
b=0.1,r=1, A= 0.01, and y(n) = 0.5 then J = 0.3025 for u(n) = 0, and J = 0.2125

for u(n) = 1, so the optimum is u(n) = 1.

e We can eliminate the equality constraints and to minimize the objective function: J"+? =
(ay(n) + bu(n) —r)? + (a*y(n) + abu(n) + bu(n + 1) — r)*> +
(ay(n) + a*bu(n) + abu(n + 1) + bu(n + 2) — )% + Mu(n)? + u(n + 1)* + u(n + 2)?)
First choose U as real variable. This results in an unconstrained nonlinear optimization
problem that can be solved by the fminunc function in MATLAB and the obtained
optimum is therefore U* = [3.5568, 1.7930, 0.9301]7, with J = 0.2229. Now we split the
problem into two subproblems: In the first we introduce the constraint u(n) = 1, and in
the second u(n) = 0. In both problems, u(n 4+ 1) and u(n + 2) are still chosen as real
variables. This leads to two subproblems SP1 and SP2:

— SP1 u(n) =1, results in u(n + 1) = 3.1374, u(n + 2) = 1.3607, J = 0.3845.
— SP2 u(n) = 0, results in u(n + 1) = 3.6632, u(n + 2) = 1.5292, J = 0.5357.

In the same way we introduce the constraints for the second variable u(n + 1) = 1 and
u(n + 1) = 0 for both subproblems SP1 and SP2. This leads to:

— SP11 u(n) =1, u(n + 1) = 1, results in u(n + 2) = 2.3225, J = 0.4944.
— SP12 u(n) =1, u(n + 1) = 0, results in u(n + 2) = 2.7725, J = 0.6213.
— SP21 u(n) =0, u(n+ 1) = 1, results in u(n + 2) = 2.7275, J = 0.7063.
— SP22 u(n) =0, u(n+ 1) = 0, results in u(n + 2) = 3.1775, J = 0.8585.

Now we introduce the constraints for the third variable u(n +2) = 1 and u(n +2) = 0.
In the subproblem SP11:

— SP111 u(n)
— SP112 u(n)

=1L un+1)=1,un+2) =1, results in J = 0.5294.
=1L un+1)=1,un+2) =0, results in J = 0.6023.

In this point we can conclude that the optimal solution is given by u(n) = 1, u(n+1) = 1,
u(n+2) = 1, because the value of the objective function in SP111 is lower than the others
SP12, SP21, SP22 (when including the constraints in u(n +2), the objective function will
increase in those problems). Next the results just to verify:

— SP121 u(n) =1, u(n+1) =0, u(n+2) = 1, results in J = 0.6841.
— SP122 u(n) =1, u(n+1) =0, u(n +2) = 0, results in J = 0.7750.
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— SP211 u
— SP212 u
— SP221 u
— SP222 u

0, u(n+1) =1, u(n +2) = 1, results in J = 0.7660.
0, u(n+1) =1, u(n +2) = 0, results in J = 0.8551.
0, u(n+1) =0, u(n +2) = 1, results in J = 0.9533.
0, u(n+1) =0, u(n +2) = 0, results in J = 1.0604.
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