
Solutions for the exercises

“Optimization in Systems and Control”

Remark:

• Changes made on September 20, 2020 are marked in blue.

• Changes made on October 13, 2020 are marked in green.

1 Exercises for Chapter 1

Exercise 1.1. Let f be a convex function defined on a set I. If x1, x2, ..., xn ∈ I, and
λ1, λ2, ..., λn ∈ [0, 1] with

∑n

i=1 λi = 1, then prove that

f

(

n
∑

i=1

λixi

)

≤
n
∑

i=1

λif(xi) . (1.1)

Solution: As f is convex, we have f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y) for all x, y ∈ I and
for all λ ∈ [0, 1].

For n = 1 we have λ1 = 1 and then (1.1) reduces to the trivial statement f(x1) = f(x1),
which is true.
The case n = 2 corresponds to the definition of convexity.
We now proceed by induction, assuming the inequality (1.1) is true for some n and proving
prove it holds for n + 1. Since for λn+1 = 0 the inequality (1.1) reduces to the case n and is
thus true, we now assume that λn+1 > 0. We have

∑n+1
i=1 λi = 1 and

f

(

n+1
∑

i=1

λixi

)

= f

(

λn+1xn+1 + (1− λn+1)
1

1− λn+1

n
∑

i=1

λixi

)

= f

(

λn+1xn+1 + (1− λn+1)
n
∑

i=1

λi

1− λn+1

xi

)

. (1.2)

Define θi =
λi

1− λn+1

. Then we have θi ≥ 0 for i = 1, . . . , n. Moreover, since
n+1
∑

i=1

λi = 1, we

have
n
∑

i=1

λi = 1− λn+1, and thus

n
∑

i=1

θi =
n
∑

i=1

λi

1− λn+1

=
1

1− λn+1

n
∑

i=1

λi =
1− λn+1

1− λn+1

= 1.

Since θi ≥ 0 for all i, this also implies that θi ≤ 1 for all i. So θi ∈ [0, 1] for all i. Now define

y =
n
∑

i=1

λi

1− λn+1

xi =
n
∑

i=1

θixi .
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Since I is the domain of definition of the convex function f , it is a convex set, and since y is
a convex combination of x1, . . . , xn ∈ I, we have y ∈ I. Hence, we can apply the definition of
convex functions to (1.2), which yields

f

(

n+1
∑

i=1

λixi

)

= f
(

λn+1xn+1 + (1− λn+1)y
)

≤ λn+1f(xn+1) + (1− λn+1)f(y) . (1.3)

Since by induction (1.1) was assumed to hold for n and since the coefficients θi satisfy the
conditions for the property, we have

f(y) = f

(

n
∑

i=1

θixi

)

≤
n
∑

i=1

θif(xi) .

If we combine this with (1.3), we find

f

(

n+1
∑

i=1

λixi

)

≤ λn+1f(xn+1) + (1− λn+1)
n
∑

i=1

θif(xi)

≤ λn+1f(xn+1) + (1− λn+1)
n
∑

i=1

λi

1− λn+1

f(xi)

≤
n+1
∑

i=1

λif(xi) ,

which proves the property.

Exercise 1.2. Use the definition of convex functions to show that the function f : R+ → R+ :
x 7→ √

x is not convex.

Solution: Recall that the definition of convex functions states that f is convex if its domain
dom(f) is convex and if we have f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y) for all x, y ∈ dom(f)
and for all λ ∈ [0, 1].

In our case dom(f) = R+, which is a convex set.

Now consider x = 0, y = 1, and λ =
1

4
. We have f(0) = 0, f(y) = 1, f((1 − λ)x + λy) =

f

(

1

4

)

=
1

2
. However,

(1− λ)f(x) + λf(y) =
3

4
· 0 + 1

4
· 1 =

1

4
.

So f((1 − λ)x + λy) =
1

2
6≤ 1

4
= (1 − λ)f(x) + λf(y) for the given x, y, and λ. Hence,

f : R+ → R+ : x 7→ √
x is not convex.

Exercise 1.3. Determine for which values p > 0 the function f : R+
0 → R+ defined by f(x) =

xp is a convex function, with R+
0 = R+ \ {0} = (0,+∞).

Hint: Use the fact that if the second derivative f ′′ of the function f with a scalar argument is
defined and nonnegative, then f is convex.
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Solution: We consider the cases p = 0 and p = 1 separately. Clearly, for p = 0 we have
f(x) = x0 = 1, and so for p = 0 the function is convex. For p = 1 we have f(x) = x, and so for
p = 1 the function is convex. For p 6= 0 and p 6= 1 we have f ′′(x) = p(p− 1)xp−2. Since x > 0
we have that f ′′ is nonnegative only for p > 1. Moreover, for 0 < p < 1 the derivative f ′′ is
negative, which means that the function is then concave.
Hence, we conclude that f is convex for p = 0 or for p > 1.

Exercise 1.4. Use previous result and the definition of convex functions to prove that the
function f defined by

f(x) =
n
∑

i=1

|xi|p, x ∈ Rn, p ≥ 1

is convex.

Solution: First we show that the function f : v 7→ |v|p is a convex function on R if p ≥ 1. The
case p = 1 is treated first. For p = 1 we get |v|, which is a convex function on R as it is a norm
function. For p > 1 the function |v|p can be differentiated twice everywhere and we have

d |v|p
dv

=











pvp−1 if v > 0

−p(−v)p−1 if v < 0

0 if v = 0

and thus

d2 |v|p
dv2

=











p(p− 1)vp−2 if v > 0

p(p− 1)(−v)p−2 if v < 0

0 if v = 0

Since p > 1, the derivative is always nonnegative if v 6= 0, and since the function is continuous
in v = 0, |v|p is a convex function on R if p ≥ 1.

Now let x, y ∈ Rn and λ ∈ [0, 1]. We have

f(λx+ (1− λ)y) =
n
∑

i=1

|λxi + (1− λ)yi|p .

Since |v|p is a convex function, it follows that |λxi + (1− λ)yi|p ≤ λ|xi|p + (1− λ)|yi|p. Hence,

f(λx+ (1− λ)y) ≤
n
∑

i=1

λ|xi|p + (1− λ)|yi|p

≤ λ

n
∑

i=1

|xi|p + (1− λ)
n
∑

i=1

|yi|p

≤ λf(x) + (1− λ)f(y) .

So f is convex.

Exercise 1.5. Find the Taylor polynomial P2 of order 2 based at (0, 0) for the function f
defined by f(x, y) = 3xy + 2xy3. Note: This Taylor polynomial is defined by:

P2(x, y) = f(0, 0) + (∇f(0, 0))T
(

x
y

)

+
1

2
(x, y)Hf (0, 0)

(

x
y

)

.
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What is an upper bound for ε > 0 so that the error of between P2(x, y) and f(x, y) is lower
than 10−6 if |x|, |y| ≤ ε? Note: The error is given by:

R2(x, y) =
1

3!

2
∑

i,j,k=1

∂3f(c1, c2)

∂xi∂xj∂xk

hihjhk

=
1

3!

(

∂3f(c1, c2)

∂x3
x3 + 3

∂3f(c1, c2)

∂x2y
x2y + 3

∂3f(c1, c2)

∂xy2
xy2 +

∂3f(c1, c2)

∂y3
y3
)

,

where (c1, c2) is any point in the line between (0, 0) and (x, y), and where hi, hj, and hk refer
to the xi, xj, and xk component of the vector (x, y).

Solution: We have

f(0, 0) = 0

∇f(x, y) =







∂f(x, y)

∂x
∂f(x, y)

∂y






=

(

3y + 2y3

3x+ 6xy2

)

⇒ ∇f(0, 0) =

(

0
0

)

Hf (x, y) =









∂2f(x, y)

∂x2

∂2f(x, y)

∂x∂y
∂2f(x, y)

∂y∂x

∂2f(x, y)

∂y2









=

(

0 3 + 6y2

3 + 6y2 12xy

)

⇒ Hf (0, 0) =

(

0 3
3 0

)

.

Then, P2(x, y) = 3xy.
To evaluate the error, we need the following derivatives:

∂3f(x, y)

∂x3
= 0,

∂3f(x, y)

∂x2∂y
= 0, ,

∂3f(x, y)

∂x∂y2
= 12y, ,

∂3f(x, y)

∂y3
= 12x .

If |x| ≤ ε, |y| ≤ ε, then we have |c1| ≤ ε and |c2| ≤ ε. Hence,

|R2(x, y)| ≤
1

3!

2
∑

i,j,k=1

|∂
3f(c1, c2)

∂xi∂xj∂xk

||hi||hj||hk| <
ε3

3!

2
∑

i,j,k=1

|∂
3f(c1, c2)

∂xi∂xj∂xk

|

≤ ε3

3!
(3|12c1|+ |12c2|) < 8ε4 .

Then, the error of using P2(x, y) will be clearly lower than 10−6 if 8ε4 ≤ 10−6 or ε ≤ 0.0188.

Exercise 1.6. Indicate whether or not the following functions g(x) are subgradients of the
corresponding functions f(x):

• f(x) = |x|, x ∈ R: g(x) =







−1 if x < 0
2 if x = 0
1 if x > 0

• f(x) = max{f1(x), f2(x)}, x ∈ Rn, f1(x) and f2(x) convex and continuously differen-

tiable: g(x) =

{

∇f1(x) if f1(x) > f2(x)
∇f2(x) if f1(x) ≤ f2(x)

4



Solution: It is easy to verify that both functions f defined above are convex.
Let f be a convex function. The function g is called a subgradient of f if f(x) ≥ f(y) +

g(y)T (x− y), ∀x, y ∈ dom(f).
Consider the first function. The points x = 1 and y = 0 both belong to dom(f). However,

f(y) + g(y)T (x− y) = 0+ 2(1− 0) = 2 > f(x) = 1, and thus g(x) is not a subgradient of f(x).
Now consider the second function f . Recall that for convex functions that are continuously

differentiable the subgradient is equal to the gradient. So we have f1(x) ≥ f1(y)+∇f1(y)
T (x−

y), ∀x, y ∈ dom(f) and f2(x) ≥ f2(y) +∇f2(y)
T (x− y), ∀x, y ∈ dom(f).

Now we first assume f1(y) ≥ f2(y). Then we have f(y) = f1(y) and g(y) = ∇f1(y) and then
for any x ∈ dom(f) we have f(x) ≥ f1(x) ≥ f1(y)+∇f1(y)

T (x− y) ≥ f(y)+ gT (y)(x− y), i.e.,
the subgradient inequality holds in this case.
The case f1(y) < f2(y) can be dealt with in a similar way.
So g is indeed a subgradient of f .

Exercise 1.7. Let A ∈ Rm×n and x ∈ Rn. Show that ∇(Ax) = AT .

Solution: Let f(x) = Ax, i.e., fj =
∑n

l=1 ajlxl. Then
∂fj
∂xi

= aji. Hence, ∇f = AT .

Exercise 1.8. Show that the following functions g(x) are subgradients of the corresponding
functions f(x):

• f(x) = α1f1(x) + α2f2(x), x ∈ Rn, f1(x) and f2(x) convex and differentiable: g(x) =
α1∇f1(x) + α2∇f2(x)

• f(x) = f1(Ax + b), x ∈ Rn, A ∈ Rm×n, b ∈ Rm, f1(x) convex and differentiable: g(x) =
AT∇f1(Ax+ b)

Solution: For convex and continuously differentiable functions, the subgradient is equal to the
gradient.

For the first function, using the sum rule of the derivative:

∇f(x) = ∇(α1f1(x) + α2f2(x)) = α1∇f1(x) + α2∇f2(x) = g(x).

For the second function, using the chain rule, we can show (in a similar way as the preceding
exercise) that ∇f1(Ax + b) = AT∇f1(Ax + b). Indeed, define f(x) = f1(v) with v = Ax + b.
Then we have

∂f

∂xi

=
∑

j

∂f1
∂vj

∂vj
∂xi

=
∑

j

∂f1
∂vj

aji .

Hence, ∇f(x) = AT∇f1(Ax+ b).

Exercise 1.9. Find the saddle points and local minima and maxima of the following functions:

• f1(x) = 9− 2x1 + 4x2 − x2
1 − 4x2

2

• f2(x) = 2x3
1 + x1x

2
2 + 5x2

1 + x2
2
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Solution:

∇f1(x) =







∂f1(x)

∂x1
∂f1(x)

∂x2






=

(

−2− 2x1

4− 8x2

)

Then ∇f1(x) = 0 if x1 = −1 and x2 =
1
2
. Then we evaluate the Hessian:

Hf1(x) =









∂2f(x)

∂x2
1

∂2f(x)

∂x1∂x2

∂2f(x)

∂x2∂x1

∂2f(x)

∂x2
2









=

(

−2 0
0 −8

)

As Hf1(−1, 1
2
) is negative definite, the point (−1, 1

2
) is a local maximum.

The same procedure is performed for the second function:

∇f2(x) =







∂f2(x)

∂x1
∂f2(x)

∂x2






=

(

6x2
1 + x2

2 + 10x1

2x1x2 + 2x2

)

Then ∇f2(x) = 0 if: x = (0, 0), x = (−5
3
, 0), x = (−1, 2), or x = (−1,−2). Indeed, we have

2x1x2 + 2x2 = 0 if x2 = 0 or x1 = −1.
For x2 = 0, setting 6x2

1 + x2
2 + 10x1 = 0 yields 6x2

1 + 10x1 = 0, or x1 = 0 or x1 = −5
3
.

For x1 = −1, setting 6x2
1 + x2

2 + 10x1 = 0 yields x2
2 = 4 or x2 = ±2.

Now we evaluate the Hessian:

Hf2(x) =









∂2f2(x)

∂x2
1

∂2f2(x)

∂x1∂x2

∂2f2(x)

∂x2∂x1

∂2f2(x)

∂x2
2









=

(

12x1 + 10 2x2

2x2 2x1 + 2

)

As Hf2(0, 0) is positive definite, the point (0, 0) is a local minimal. As Hf2(−5
3
, 0) is negative

definite, the point (−5
3
, 0) is a local maximum. The Hessians Hf2(−1, 2) and Hf2(−1,−2) are

both indefinite, and so the points (−1, 2) and (−1,−2) are saddle points.
Figure 1 shows functions f1(x) and f2(x) and their contour plots. The positions of the

analyzed points are indicated by the + marks in the contour plots.

Exercise 1.10. The optimization problem min f(x1, x2) = (x1 − 3)4 + (x1 − 3x2)
2 is solved

using the following (gradient-based) algorithm

xk+1 = xk − λk

∇f(xk)

‖∇f(xk)‖2

If the initial point is x0 = [0, 0]T and the step λk =(0.9)k+1, use Matlab to indicate which of the
following stopping criteria is fulfilled first:

• ‖∇f(xk)‖2 ≤ 3.5

• |f(xk)− f(xk−1)| ≤ 0.4

• Maximum number of iterations kmax = 10
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Figure 1: (a) Function f1(x), (b) Contour plot of function f1(x), (c) Function f2(x), (d) Contour
plot of function f2(x)

Table 1: Iterations
k xT

k f(xk) ∇f(xk)
T λk

0 (0.0000,0.0000) 81.0000 (-108.0000,0.0000) 0.9000
1 (0.9000,0.0000) 20.2581 (-35.2440,-5.4000) 0.8100
2 (1.7007,0.1227) 4.6258 (-6.1086,-7.9956) 0.7290
3 (2.1433,0.7020) 0.5401 (-2.4404,-0.2238) 0.6561
4 (2.7966,0.7619) 0.2627 (0.9881,-3.0654) 0.5904
5 (2.6154,1.3239) 1.8614 (-2.9402,8.1378) 0.5314
6 (2.7960,0.8241) 0.1065 (0.6134,-1.9422) 0.4782
7 (2.6520,1.2802) 1.4274 (-2.5458,7.1316) 0.4304
8 (2.7967,0.8748) 0.0314 (0.3110,-1.0338) 0.3874
9 (2.6851,1.2458) 1.1172 (-2.2295,6.3138) 0.3486
10 (2.8012,0.9170) 0.0041 (0.0690,-0.3012) 0.3138
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Table 2: Stopping criteria
k ‖∇f(xk)‖2 |f(xk)− f(xk−1)|
0 108.0000 –
1 35.6553 60.7419
2 10.0620 15.6323
3 2.4507 4.0857
4 3.2207 0.2774
5 8.6526 1.5987
6 2.0368 1.7549
7 7.5724 1.3209
8 1.0796 1.3960
9 6.6959 1.0858
10 0.3090 1.1131

Plot the various iteration points and their function values.

Solution: The results of the first 10 iterations are displayed in Table 1 (with 4 decimal digits).
The values for the stopping criteria are in Table 2.

From Tables 1 and 2, we can see that the stopping criterion ‖∇f(xk)‖2 ≤ 3.5 is reached in
the iteration k = 3, and the stopping criterion |f(xk) − f(xk−1)| ≤ 0.4 is reached in iteration
step k = 4.

In the Figure 2, the function f(x) and its contour plot is presented. The position of the
optimal point (3, 1) is indicated by the + mark in the contour plots, as well as the steps of the
iterative method. In the figure it can be seen also the values of xk and how close they get as
the number of iterations increase.

Exercise 1.11. Consider the problem of choosing (x, y) to maximize f(x, y) = 3x + y subject
to: (x+ 1)2 + (y + 1)2 ≤ 5 and x ≥ 0, y ≥ 0.

• Suppose that (x∗, y∗) solves this problem. Is there necessarily a value of µ such that (x∗, y∗)
satisfies the Kuhn-Tucker conditions?

• Now suppose that (x∗, y∗) satisfies the Kuhn-Tucker conditions. Does (x∗, y∗) necessarily
solve the problem?

• Given the information in your answers to (a) and (b), use the Kuhn-Tucker method to
solve the problem.

Solution: First we rewrite the problem in the standard form min(x,y) f(x, y) s.t. g(x, y) ≤ 0.
This yields:

min
(x,y)

(−3x− y)

s.t. (x+ 1)2 + (y + 1)2 − 5 ≤ 0

− x ≤ 0

− y ≤ 0 .
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Figure 2: (a) x1 as function of the iteration steps, (b) x2 as function of the iteration steps, (c)
Function f(x), (d) Contour plot of function f(x)

The Kuhn-Tucker conditions for this problem are given by

∇f(x, y) +∇g(x, y)µ = 0

µTg(x, y) = 0

µ ≥ 0

g(x, y) ≤ 0 .

• In general, the Kuhn-Tucker conditions provide necessary conditions for an optimum of
the given optimum. So if (x∗, y∗) solves the given optimization problem, there should
exist a µ∗ such that (x∗, y∗, µ∗) satisfies the Kuhn-Tucker conditions.

• The objective function of the above minimization problem is convex and the constraints
are also convex. So we have a convex optimization problem. Hence, the Kuhn-Tucker
conditions are sufficient in this case.

• We have

∇f(x, y) =

(

−3
−1

)

and ∇g(x, y) =

(

2(x+ 1) −1 0
2(y + 1) 0 −1

)

.
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Hence, the Kuhn-Tucker conditions can be written as1

−3 + 2µ1(x+ 1)− µ2 = 0

−1 + 2µ1(y + 1)− µ3 = 0

µ1[(x+ 1)2 + (y + 1)2 − 5] = 0

µ2(−x) = 0

µ3(−y) = 0

(x+ 1)2 + (y + 1)2 − 5 ≤ 0

−x ≤ 0

−y ≤ 0

µ1, µ2, µ3 ≥ 0

From the 4th and the 5th equation it follows that 4 different combinations are possible:
(1) x = 0 and y = 0; (2) µ2 = 0 (or x > 0) and y = 0; (3) x = 0 and µ3 = 0 (or y > 0);
and (4) µ2 = 0 (or x > 0) and µ3 = 0 (or y > 0).
The only combination that leads to a feasible solution is combination (2), which results
in (x, y, µ1, µ2, µ3) = (1, 0, 0.75, 0, 0.5). The solution of the optimization problem is thus
(x∗, y∗) = (1, 0).

2 Exercises for Chapter 2: Linear Programming

Exercise 2.1. Use the graphical method to solve the following problem:

min f(x) = x1 − 2x2

subject to the constraints: x1 + x2 ≥ 2, −x1 + x2 ≥ 1, x2 ≤ 3, x1, x2 ≥ 0.
Reformulate the same problem as a linear programming problem in standard form and solve it
using the simplex method.

Solution: Figure 3 shows the contour plot and the feasible region of the optimization problem.
The solution is in a vertex of the feasible set, which is obtained with the graphical method
(we shift one of the contour lines in a parallel way in the direction of the arrow, where a lower
minimum cost can be obtained, but such that there still is an intersection with the feasible set).

The optimal solution is given by the point (0, 3), corresponding to f(x∗) = 0− 2 · 3 = −6.
Now, we reformulate the same problem as a linear programming problem in standard form.

First the objective function is the same as we are facing a minimization problem. The
constraints: x1 + x2 ≥ 2, −x1 + x2 ≥ 1, x2 ≤ 3, x1, x2 ≥ 0, are equivalent to:

−x1 − x2 + x3 = −2
x1 − x2 + x4 = −1

x2 + x5 = 3
x1, x2, x3, x4, x5 ≥ 0

Note that the slack variables x3, x4, x5 have been introduced to obtain equality constraints.
If we define:

1Note that the condition µT g(x, y) = 0 results in
∑

i
µigi(x, y) = 0 or equivalently

∑

i
µi(−gi(x, y)). Since

−g(x, y) ≥ 0 and µ ≥ 0, then is in its turn equivalent to µigi(x, y) = 0 for all i.

10
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Figure 3: Feasible set and contour plot for Exercise 2.1

x =













x1

x2

x3

x4

x5













, c =













1
−2
0
0
0













, b =





−2
−1
3



 , A =





−1 −1 1 0 0
1 −1 0 1 0
0 1 0 0 1



 ,

we have formulated the problem as a linear programming problem in standard form. Now we
apply the simplex method. Suppose our first choice of B and N is:

B =





−1 −1 1
1 −1 0
0 1 0



 , N =





0 0
1 0
0 1



 ,

Then we find xB, xN , cB and cN as:

xB =





x1

x2

x3



 = B−1b =





2
3
3



 , xN =

[

x4

x5

]

=

[

0
0

]

, cB =





1
−2
0



 , cN =

[

0
0

]

,

This corresponds to x1 = 2, x2 = 3, x3 = 3, x4 = 0 and x5 = 0 (feasible solution). The
corresponding values of z0 and p are:

z0 = cTBB
−1b = −4, pT = cTN − cTBB

−1N = [−1 1]

Since pT � 0, the optimum is not found yet. Since −1 is the largest negative component of
p, we select the first column of N (i = 1). We have y = B−1N·,1 = [1 0 1]T . We have to choose
between the first and the third component:

(xB)1
y1

= 2,
(xB)3
y3

= 3,

11



So we select the first column of B (j = 1). Now we interchange the first column of N with the
first column of B, which leads to:

B =





0 −1 1
1 −1 0
0 1 0



 , N =





−1 0
1 0
0 1



 ,

Then we find xB, xN , cB and cN as:

xB =





x4

x2

x3



 = B−1b =





2
3
1



 , xN =

[

x1

x5

]

=

[

0
0

]

, cB =





0
−2
0



 , cN =

[

1
0

]

,

This corresponds to x1 = 0, x2 = 3, x3 = 1, x4 = 2 and x5 = 0. The corresponding values
of z0 and p are:

z0 = cTBB
−1b = −6, pT = cTN − cTBB

−1N = [1 2]

Since pT ≥ 0, the optimum was found. The optimal solution of the original problem is (0, 3)
and the corresponding cost is −6.

Exercise 2.2. Two students A and B work at a shop for x and y hours per week, respectively.
According to the rules, A can work at most 8 hours more than B. But student B can work at
most 6 hours more than student A. Together they can work at most 40 hours per week. Find
their maximum combined income per week if student A and student B earn 15 and 17 euro per
hour, respectively.

Solution: We formulate the problem as a linear programming problem. We have to maximize
15x+17y, considering the constraints x ≤ 8+y, y ≤ 6+x and x+y ≤ 40. We will use Matlab to
obtain the result, but this problem can be solved graphically, or by using the simplex algorithm.

The program linprog (Optimization Toolbox of Matlab) solves linear programming prob-
lems specified by:

min fTx such that Ax ≤ b, Aeqx = beq, lb ≤ x ≤ ub, where f , x, b, beq, lb and ub are vectors,
and A and Aeq are matrices. For our problem, we change the objective function to −15x− 17y
as the program will minimize instead of maximize. The linear programming routine is:

f = [-15; -17];

A = [1 -1; -1 1; 1 1];

b = [8; 6; 40];

[x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],[]);

The result is:

x =

[

17
23

]

, fval = −646.0000

So student A and student B should work 17 and 23 hours respectively, and their maximum
combined income per week is 646 euros. It is also interesting to check lambda:

lambda.ineqlin =





0
1
16



 , lambda.lower =

[

0
0

]

, lambda.upper =

[

0
0

]

Nonzero elements of the vectors in the fields of lambda indicate active constraints at the
solution. In this case, the second and third inequality constraints (in lambda.ineqlin).
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3 Exercises for Chapter 3: Quadratic Programming

Exercise 3.1. Consider the process modeled by the following linear discrete-time system: y(n+
1) = ay(n)+ bu(n)+ 1

1−q−1 e(n), where y(n) is the output, u(n) the input, a and b are the model

parameters, e(n) is white noise of mean value 0 and standard deviation σ. At time step n the
output y(n) is measured, the output y(n − 1) and control action u(n − 1) is also known, and
we have to obtain a control action u(n). It is easy to show that we can define the 1-step ahead
prediction ŷ(n+ 1) = (1 + a)y(n)− ay(n− 1) + b∆u(n) with ∆ = 1− q−1 with ŷ(n) = y(n).

1. Obtain the control action ∆u(n) that minimizes J = (ŷ(n+ 1)− r)2 + λ (∆u(n))2, where
λ is a weighting factor and r the output reference.

2. Reformulate the following problem as a quadratic programming problem:
min Jn =

∑3
k=1(ŷ(n+ k)− r)2 + λ

∑3
k=1 (∆u(n+ k − 1))2,

s.t. ∆umin ≤ ∆u(n+ k − 1) ≤ ∆umax, k = 1, 2, 3.

3. Reformulate the problem as a quadratic programming problem of Type 1 with as few vari-
ables as possible. Assume ∆umin = 0.

Solution:

a) By replacing ŷ(n + 1) = (1 + a)y(n) − ay(n − 1) + b∆u(n) in the objective function
J = (ŷ(n+ 1)− r)2 + λ∆u(n)2, we obtain J as function of ∆u(n), so then we just use the first
order condition for the optimum:

∂J

∂∆u(n)
=

∂(((1 + a)y(n)− ay(n− 1) + b∆u(n)− r)2 + λ∆u(n)2)

∂∆u(n)
=

2b(((1 + a)y(n)− ay(n− 1) + b∆u(n)− r) + 2λ∆u(n) = 0

⇒ ∆u(n) =
−b(((1 + a)y(n)− ay(n− 1)− r)

b2 + λ

b) From the 1-step ahead prediction equation it follows that ŷ(n + 2) = (1 + a)ŷ(n + 1) −
ay(n) + b∆u(n+ 1) and ŷ(n+ 3) = (1 + a)ŷ(n+ 2)− aŷ(n+ 1) + b∆u(n+ 2).

Let x = [ŷ(n+ 1) ŷ(n+ 2) ŷ(n+ 3) ∆u(n) ∆u(n+ 1) ∆u(n+ 2)]T . The objective function
is then:

Jn =
3
∑

k=1

ŷ2(n+ k)− 2ŷ(n+ k)r + r2) + λ

3
∑

k=1

(

∆u(n+ k − 1)
)2

=
1

2
xT

[

2I3 03
03 2λI3

]

x+
[

−2r −2r −2r 0 0 0
]

x+ 3r2

then, H =

[

2I3 03
03 2λI3

]

and cT =
[

−2r −2r −2r 0 0 0
]

.

The equality constraints are: ŷ(n + 1) = x1 = (1 + a)y(n) − ay(n − 1) + bx4, ŷ(n + 2) =
x2 = (1 + a)x1 − ay(n) + bx5 and ŷ(n+ 3) = x3 = (1 + a)x2 − ax1 + bx6, then if Aeqx = beq we
have:

Aeq =





1 0 0 −b 0 0
−(1 + a) 1 0 0 −b 0

a −(1 + a) 1 0 0 −b



 , beq =





(1 + a)y(n)− ay(n− 1)
−ay(n)

0



 .

13



For the inequality constraints: −∆u(n + k − 1) ≤ −∆umin and ∆u(n + k − 1) ≤ ∆umax,
then if Ax ≤ b we have:

A =

[

03 I3
03 −I3

]

, b =
[

∆umax ∆umax ∆umax −∆umin −∆umin −∆umin

]

.

c) To reformulate the problem as a quadratic programming problem - Type 1, let choose
the optimization vector as x = [∆u(n) ∆u(n+ 1) ∆u(n+ 2)]T . From the equality constraints:
ŷ(n+ 1) = (1 + a)y(n)− ay(n− 1) + bx1,
ŷ(n+ 2) = (1 + a)bx1 + bx2 + (1 + a+ a2)y(n)− a(1 + a)y(n− 1) and
ŷ(n+ 3) = ((1 + a)2 − a)bx1 + (1+ a)bx2 + bx3 + (1+ a)(1 + a2)y(n)− a((1 + a)2 − a)y(n− 1).
Then if

Y =





ŷ(n+ 1)
ŷ(n+ 2)
ŷ(n+ 3)



 , Yini =

[

y(n− 1)
y(n)

]

,

we have: Y = Gx+ FYini with

G =





b 0 0
(1 + a)b b 0

((1 + a)2 − a)b (1 + a)b b



 , F =





−a (1 + a)
−a(1 + a) (1 + a+ a2)

−a((1 + a)2 − a) (1 + a)(1 + a2)



 ,

The objective function can be written as: Jn = (Y − r)T (Y − r) + λx′x = (Gx + FYini −
r)T (Gx + FYini − r) + λxTx = xT (GTG + λI3)x + 2(FYini − r)TGx + (FYini − r)T (FYini − r).
Then, since a constant does not change the location of the optimum, the objective function is
defined as:

J ′
n =

1

2
xTHx+ cTx, H = 2(GTG+ λI3), c

T = 2(FYini − r)TG,

For the inequality constraints: ∆u(n + k − 1) ≥ 0 and ∆u(n + k − 1) ≤ ∆umax, then if
Ax ≤ b we have:

A =

[

I3
−I3

]

, b =
[

∆umax ∆umax ∆umax

]

.

and the non-negativity constraint x ≥ 0.

Exercise 3.2. Solve the following QP problem of type 2: min 1
2
xTHx+cTx, s.t. Ax = b, x ≥ 0,

where

H =









1 −4 2 1
−4 16 −8 −4
2 −8 4 2
1 −4 2 1









, c =









−1
0
7
4









, A = [1, 1, 1, 1], b = 4,

Solution: Note that H is singular (the first row equals the last one, and the second is −2
times the third). Since c 6≤ 0, we have to apply Remark 3.4 of the lecture notes and consider

Hx+ ATλ− µ+Du2 = −c

14



instead of equation (3.7) of the lecture notes, where D = D(−c) = diag(1, 1,−1,−1) =








1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1









.

We construct the matrix A0, the vectors b0, c0 and the vector x0 according to equation
(3.10), while taking into account the modified version of equation (3.7):

A0 =

[

A 0 0 I 0
H AT −I 0 D

]

=













1 1 1 1 0 0 0 0 0 1 0 0 0 0
1 −4 2 1 1 −1 0 0 0 0 1 0 0 0
−4 16 −8 −4 1 0 −1 0 0 0 0 1 0 0
2 −8 4 2 1 0 0 −1 0 0 0 0 −1 0
1 −4 2 1 1 0 0 0 −1 0 0 0 0 −1













,

b0 =













4
1
0
−7
−4













, c0 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1]T ,

Selecting

x =









0
0
0
0









, λ = 0, µ =









0
0
0
0









, u1 = b = 4, u2 = D−1(−c) = −Dc =









1
0
7
4









yields a feasible initial solution. However, the optimum is not found yet. The optimal solution
is found selecting the columns 1, 2, 5, 8, 9 of A0:

x =









3.2400
0.7600

0
0









, λ = 0.8, µ =









0
0

8.1999
5.0000









, u1 = 0, u2 =









0
0
0
0









This result can be confirmed using directly the function quadprog of Matlab:

x=quadprog(H,c,[],[],A,b,zeros(4,1));

Exercise 3.3. Prove that the gradient of cTx is c and the Jacobian of (Ax− b) = AT .

Solution: The gradient of a function f is defined by:

▽f(x) = [
∂f

∂x1

∂f

∂x2

· · · ∂f

∂xn

]T

The function cTx can be written as:

f(x) = cTx = c1x1 + c2x2 + ...+ cnxn

Thus ∂f

∂xi
is ci. Consequently, the gradient of cTx is:

▽cTx = [c1 c2 ... cn]
T = c

15



The function Ax− b with A(m× n) and b(m× 1) can be rewritten as:

Ax− b =















(

n
∑

j=1

A(1, j)xj

)

− b1

...
(

n
∑

j=1

A(m, j)xj

)

− bm















Referring to the definition of the Jacobian on page 8, the Jacobian of Ax − b is obtained as
follows:

▽(Ax− b) =











A(1, 1) A(2, 1) · · · A(m, 1)
A(1, 2) A(2, 2) · · · A(m, 2)

...
...

. . .
...

A(1, n) A(2, n) · · · A(m,n)











,

which is in fact AT .

Exercise 3.4. Solve the following optimization problem:

min f(x) = −8x1 − 16x2 + x2
1 + 4x2

2

subject to: x1 + x2 ≤ 5, x1 ≤ 3, x1 ≥ 0, x2 ≥ 0

Solution: The quadratic problem’s variables and matrices are given below. As can be seen,
the H matrix is positive definite so the KKT conditions are necessary and sufficient for a global
optimum. Note that we have a standard QP problem of type 1 with

c =

[

−8
−16

]

H =

[

2 0
0 8

]

A =

[

1 1
1 0

]

b =

[

5
3

]

To solve the KKT equations for this problem, we use the approach of Section 3.1 of the lecture
notes. First, we transform the problem into a type-2 problem, by introducing slack variables
y ≥ 0 such that Ax+ y = b.

The KKT equations are then as follows:

x1 + x2 + y1 = 5

x1 + y2 = 3

2x1 + λ1 + λ2 − µ1 = 8

8x2 + λ1 − µ2 = 16

x, y, µ ≥ 0

xTµ = 0

To create the appropriate linear program, we add artificial variables to each constraint and
minimize their sum:

min u1 + u2 + u3 + u4

subject to x1 + x2 + y1 + u1 = 5

x1 + y2 + u2 = 3

2x1 + λ1 + λ2 − µ1 + u3 = 8

8x2 + λ1 − µ2 + u4 = 16

x, y, µ, u ≥ 0

xTµ = 0

16



Applying the modified simplex technique to this example, yields the sequence of iterations
given in Table 3. The optimal solution to the original problem is (x∗

1, x
∗
2) = (3, 2).

Table 3: Simplex iterations for QP problem

Iteration Basic variables Solution Objective value Entering variable Leaving variable
0 (u1, u2, u3, u4) (5,3,8,16) 32 x2 u4

1 (u1, u2, u3, x2) (3,3,8,2) 14 x1 u1

2 (x1, u2, u3, x2) (3,0,2,2) 2 λ1 u2

3 (x1, λ1, u3, x2) (3,0,2,2) 2 λ2 u3

4 (x1, λ1, λ2, x2) (3,0,2,2) 0 - -

4 Exercises for Chapter 4: Nonlinear optimization with-

out constraints

Exercise 4.1. Perform three iterations to find the minimum of f(x1, x2) = (x1−3)4+(x1−3x2)
2

using:

• Newton’s method (use x0 = [0, 0]T ).

• Levenberg-Marquardt’s method (use x0 = [0, 0]T , and λ=1.1).

• Broyden-Fletcher-Goldfarb-Shanno’s method (use x0 = [0, 0]T ).

• Davidon-Fletcher-Powell’s method (use x0 = [0, 0]T ).

Solution: The gradient and the Hessian of f are given by

∇f =

[

4(x1 − 3)3 + 2(x1 − 3x2)
−6(x1 − 3x2)

]

and H =

[

12(x1 − 3)2 + 2 −6
−6 18

]

The results for the Newton method are in Table 4. The Newton method is as follows:

xk+1 = xk −H−1(xk)∇f(xk)

The results for the Levenberg-Marquardt method are in Table 5. The Levenberg-Marquardt’s
method is as follows:

xk+1 = xk − (Ĥ(xk))
−1∇f(xk),

Ĥ(xk) = H(xk) + λI

The results for the Broyden-Fletcher-Goldfarb-Shanno method are in Table 6, and the
method is:

17



xk+1 = xk − (Ĥk)
−1∇f(xk),

Ĥk = Ĥk−1 +
qkq

T
k

qTk sk
− Ĥk−1sks

T
k Ĥ

T
k−1

sTk Ĥk−1sk
,

sk = xk − xk−1, qk = ∇f(xk)−∇f(xk−1),

Ĥ0 = H(x0)

The results for the Davidon-Fletcher-Powell method are in Table 7, and the method is:

xk+1 = xk − D̂k∇f(xk),

D̂k = D̂k−1 +
sks

T
k

qTk sk
− D̂k−1qkq

T
k D̂

T
k−1

qTk D̂k−1qk
,

sk = xk − xk−1, qk = ∇f(xk)−∇f(xk−1),

D̂0 = H(x0)
−1

Table 4: Results for the Newton method
k xT

k f(xk) ∇f(xk)
T [H(xk)]

−1

0 (0.0000,0.0000) 81.0000 (-108.0000,0.0000)

[

0.0093 0.0031
0.0031 0.0566

]

1 (1.0044,0.3348) 15.8597 (-31.7893,0.0186)

[

0.0209 0.0070
0.0070 0.0579

]

2 (1.6688,0.5573) 3.1403 (-9.4422,0.0054)

[

0.04700 0.0157
0.0157 0.0608

]

3 (2.1123,0.7044) 0.6210 (-2.7999,0.0024)

[

0.1058 0.0353
0.0353 0.0673

]

Table 5: Results for the Levenberg-Marquardt method

k xT
k f(xk) ∇f(xk)

T [Ĥ(xk)]
−1

0 (0.0000,0.0000) 81.0000 (-108.0000,0.0000)

[

0.0092 0.0029
0.0029 0.0533

]

1 (0.9936,0.3132) 16.2087 (-32.2002,-0.3240)

[

0.0202 0.0063
0.0063 0.0543

]

2 (1.6461,0.5337) 3.3621 (-9.8370,-0.2700)

[

0.0431 0.0135
0.0135 0.0566

]

3 (2.0737,0.6818) 0.7370 (-3.1226,-0.1698)

[

0.0869 0.0273
0.0273 0.0609

]

Now, just to see the behavior of the algorithms, in the Figure 4 we can see the evolution of
the variables x1, x2 as function of the iterations.

Exercise 4.2. Use the golden section method to find the value of x that minimizes the function

f(x) = −min
{x

2
, 2− (x− 3)2, 2− x

2

}

.

Use the fact that the function is strictly unimodal on [0, 8]. Perform five iterations. Compare
the results with those obtained with the Fibonacci method and with a fixed-step method (take a
step length ∆s = 2).
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Table 6: Results for the Broyden-Fletcher-Goldfarb-Shanno approach

k xT
k f(xk) ∇f(xk)

T (Ĥk)
−1

0 (0.0000,0.0000) 81.0000 (-108.0000,0.0000)

[

0.0093 0.0031
0.0031 0.0566

]

1 (1.0000,0.3333) 16.0000 (-32,0.0000)

[

0.0132 0.0044
0.0044 0.0570

]

2 (1.4224,0.4741) 6.1942 (-15.7053,-0.0006)

[

0.0259 0.0086
0.0086 0.0584

]

3 (1.8292,0.6092) 1.8790 (-6.4164,-0.0096)

[

0.0438 0.0146
0.0146 0.0604

]

Table 7: Results for the Davidon-Fletcher-Powell approach

k xT
k f(xk) ∇f(xk)

T (Ĥk)
−1

0 (0.0000,0.0000) 81.0000 (-108.0000,0.0000)

[

0.0092 0.0031
0.0031 0.0566

]

1 (1.0044,0.3348) 16.0000 (-32.0000,0.0000)

[

0.0132 0.0044
0.0044 0.0570

]

2 (1.6688,0.5573) 6.1942 (-9.4422,0.0054)

[

0.0259 0.0086
0.0086 0.0584

]

3 (2.1123,0.7044) 1.8790 (-2.7999,0.0024)

[

0.0438 0.0146
0.0146 0.0604

]

Solution: We first evaluate the fixed-step method, at the points x = 0, x = 2, x = 4, x = 6
and x = 8. The minimum value is in x = 2 as can be seen in the Figure 5.

Now we use the golden section method. This yields

l al bl cl dl f(al) f(bl) f(cl) f(dl)
0 0.0000 3.0557 4.9443 8.0000 7.0000 -0.4721 1.7802 23.0000
1 0.0000 1.8885 3.0557 4.9443 7.0000 -0.7647 -0.4721 1.7802
2 0.0000 1.1672 1.8885 3.0557 7.0000 1.3592 -0.7647 -0.4721
3 1.1672 1.8885 2.3344 3.0557 1.3592 -0.7647 -0.8328 -0.4721
4 1.8885 2.3344 2.6099 3.0557 -0.7647 -0.8328 -0.6950 -0.4721
5 1.8885 2.1641 2.3344 2.6099 -0.7647 -0.9180 -0.8328 -0.6950

The best solution found with the golden section method in 5 iterations is x = 2.1641.

Now we apply the Fibonacci method. If we choose n = 7, this yields

l al bl cl dl f(al) f(bl) f(cl) f(dl)
0 0.0000 3.0476 4.9524 8.0000 7.0000 -0.4762 1.8118 23.0000
1 0.0000 1.9048 3.0476 4.9524 7.0000 -0.8005 -0.4762 1.8118
2 0.0000 1.1429 1.9048 3.0476 7.0000 1.4490 -0.8005 -0.4762
3 1.1429 1.9048 2.2857 3.0476 1.4490 -0.8005 -0.8571 -0.4762
4 1.9048 2.2857 2.6667 3.0476 -0.8005 -0.8571 -0.6667 -0.4762
5 1.9048 2.2857 2.2857 2.6667 -0.8005 -0.8571 -0.8571 -0.6667

The best solution found with the Fibonacci method in 5 iterations is x = 2.2857.

However in order to iterate more with the Fibonacci algorithm (to get the optimal solution),
we need to increase n. For this purpose we choose n = 18. The results for the first 5 iterations
are similar to ones achieved by the Golden section method.
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To compare the algorithms, Figure 6 shows the values of al and dl as a function of the
iteration step l. As can be seen, both algorithms (golden section and Fibonacci) converge to
the optimal solution.

Exercise 4.3. Answer the following questions:

• Why is Newton’s method for minimizing multivariate functions not a descent method and
how should it be modified to become a descent method?
Note: An optimization method is called a descent method if f(xk+1) ≤ f(xk) for all k,
where f is the objective function and xk is the kth iteration point.

• Is the steepest-descent algorithm is a descent method?

• Are the steps in the steepest-descent algorithm orthogonal?

Solution:

• Newton’s method is not necessarily a descent method since the Newton direction is not
necessarily a descent direction and since — even if it is — the step to be taken may be
to big.
To get a descent method we can apply the Levenberg-Marquardt method with λ selected
such that the direction is a descent direction and the step size taken small enough (i.e.,
we then apply a line search method using the Levenberg-Marquardt direction).

• The direction taken in the steepest-descent algorithm, i.e., the negative gradient −∇f is
a descent direction (see the lecture notes for the proof). If in the line search method we
then always select a step size that is small enough, we get a descent method.

• Consider the kth iteration step, where we determine the optimal step size sk in the

direction dk = −∇f(xk). The optimal step size s∗k must verify
df(xk + skdk)

dsk
= 0, i.e., we
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Table 8: Iterations with the steepest-descent algorithm
k xT

k f(xk) ∇f(xk)
T ‖∇f(xk)

T‖2
0 (0.0000,0.0000) 40.0000 (-4.0000,-24.0000) 24.3311
1 (0.1644,0.9864) 19.5878 (-3.6712,-16.1088) 16.5218
2 (0.3866,1.9614) 6.9178 (-3.2268,-8.3088) 8.9134
3 (0.7486,2.8936) 1.6113 (-2.5028,-0.8512) 2.6436
4 (1.6953,3.2156) 0.2788 (-0.6094,1.7248) 1.8293
5 (2.0284,2.2727) 2.1167 (0.0568,-5.8184) 5.8187
6 (2.0186,3.2726) 0.2976 (0.0372,2.1808) 2.1811
7 (2.0015,2.2727) 2.1159 (0.0030,-5.8184) 5.8184
8 (2.0010,3.2727) 0.2975 (0.0020,2.1816) 2.1816
9 (2.0001,2.2727) 2.1159 (0.0002,-5.8184) 5.8184

must find the point in which the line xk + skdk is the tangent line to a contour line of f .
Since the gradient in a given point is always orthogonal to the contour line, we find that
dk+1 = −∇f(xk + s∗kdk) is orthogonal to dk.

Exercise 4.4. Using a steepest-descent method with update formula

xk+1 = xk −
∇f(xk)

‖∇f(xk)‖2
,

find the minimum of the quadratic function

f(x1, x2) = (x1 − 2)2 + 4(x2 − 3)2,

starting from x0 = [0, 0]T . Using Matlab, plot the algorithmic moves (xk as function of k) and
verify the zigzag property of the algorithm.

Solution: The optimization problem is solved using the following steepest-descent method
with

xk+1 = xk −
∇f(xk)

‖∇f(xk)‖2
=

(

(xk)1
(xk)2

)

−

(

2((xk)1 − 2)
8((xk)2 − 3)

)

√

(2((xk)1 − 2))2 + (8((xk)2 − 3))2

The results of the first 10 iterations are listed in the Table 8.
In Figure 7, the function f(x), its contour plot as well as the steps of the iterative method

are presented. The position of the optimal point is in (2, 3).

Exercise 4.5. Show that the choice of λ in the golden section method indeed results in reuse
of points from one iteration to the next.

Solution: In the Golden section method, we can construct three sub-intervals of [al, bl] by
choosing:

bl = λal + (1− λ)dl

cl = (1− λ)al + λdl
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with λ = 1
2
(
√
5 − 1). If f̄k(bl) > f̄k(cl) we know that the minimum must be in the interval

[bl, dl]. Thus we can define al+1 = bl, dl+1 = dl and compute bl+1 = λal+1 + (1 − λ)dl+1 and
cl+1 = (1− λ)al+1 + λdl+1. For bl+1 we can write:

bl+1 = λ
(

λal + (1− λ)dl
)

+ (1− λ)dl = λ2al + (1− λ2)dl

= (
1

4
(6− 2

√
5)al + (1− 3

2
+

1

2

√
5)dl = (1− λ)al + λdl = cl

We can prove in a similar way that cl+1 = bl when f̄k(bl) < f̄k(cl).

Exercise 4.6. Show that the choice of λ in the Fibonacci method indeed results in reuse of
points from one iteration to the next.

Solution: Suppose we have:
bl = λlal + (1− λl)dl

cl = (1− λl)al + λldl

with λl =
µn−l

µn+1−l
. If we substitute it in λl, we obtain:

bl =
µn−l

µn+1−l

al + (1− µn−l

µn+1−l

)dl

cl = (1− µn−l

µn+1−l

)al +
µn−l

µn+1−l

dl

Now for the (l + 1)th iteration, λl+1 = µn−1−l

µn−l
. If f̄k(bl) > f̄k(cl) we know that the minimum

must be in the interval [bl, dl]. Thus we can define al+1 = bl, dl+1 = dl and compute bl+1 =
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λl+1al+1 + (1− λl+1)dl+1 and cl+1 = (1− λl+1)al+1 + λl+1dl+1. If we substitute al+1 with bl we
will get:

bl+1 = λl+1bl + (1− λl+1)dl =
µn−1−l

µn−l

[

µn−l

µn+1−l

al +
(

1− µn−l

µn+1−l

)

dl

]

+ (1− µn−1−l

µn−l

)dl

⇒ bl+1 =
µn−1−l

µn+1−l

al + (1− µn−1−l

µn+1−l

)dl

On the other hand, we have the Fibonacci recursion equation µn+1−l = µn−l + µn−1−l. Hence,
if we substitute in the bl+1 equation we get:

bl+1 =
µn+1−l − µn−l

µn+1−l

al +
µn−l

µn+1−l

dl = (1− µn−l

µn+1−l

)al +
µn−l

µn+1−l

dl = cl

Similarly, for the case f̄k(bl) < f̄k(cl), we choose al+1 = al, dl+1 = cl and by working out the
equations we end up with cl+1 = bl.

Exercise 4.7. Prove the expressions on page 36 for gradient of f(x) and the Hessian (4.1)

Solution: The function f(x) = eT (x)e(x) is given by:

f(x) = eT (x)e(x) = e1(x)
2 + e2(x)

2 + ...+ eN(x)
2

Hence the gradient is obtained as:

▽f(x) =











2 ∂e1
∂x1

e1 + ...+ 2∂eN
∂x1

eN
2 ∂e1
∂x2

e1 + ...+ 2∂eN
∂x2

eN
...

2 ∂e1
∂xn

e1 + ...+ 2∂eN
∂xn

eN











It is can be easily observed that the above matrix is equal to the following multiplication:

2.











∂e1
∂x1

∂e2
∂x1

· · · ∂eN
∂x1

∂e1
∂x2

∂e2
∂x2

· · · ∂eN
∂x2

...
...

. . .
...

∂e1
∂xn

∂e2
∂xn

· · · ∂eN
∂xn











.[e1 e2 · · · eN ]T

Thus the gradient of f is:
∇f(x) = 2∇e(x)e(x)

The Hessian matrix can be determined as:














2∂2e1
∂x2

1

e1 + 2

(

∂e1
∂x1

)2

...+ 2∂2eN
∂x2

1

eN + 2

(

∂eN
∂x1

)2

· · · 2 ∂2e1
∂x1∂xn

e1 + 2 ∂e1
∂xn

∂e1
∂x1

...+ 2 ∂2eN
∂x1∂xn

eN + 2∂eN
∂xn

∂eN
∂x1

...
. . .

...

2 ∂2e1
∂xn∂x1

e1 + 2 ∂e1
∂x1

∂e1
∂xn

...+ 2 ∂2eN
∂xn∂x1

eN + 2∂eN
∂x1

∂eN
∂xn

· · · 2∂2e1
∂x2

n
e1 + 2

(

∂e1
∂xn

)2

...+ 2∂2eN
∂x2

n
eN + 2

(

∂eN
∂xn

)2















It is straightforward to see that the above matrix can be decomposed to the components:

H(x) = 2∇e(x)∇T e(x) +
N
∑

i=1

2∇2ei(x)ei(x)
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5 Exercises for Chapter 5: Constraints in nonlinear op-

timization

Exercise 5.1. Consider the constrained minimization problem:

min f(x1, x2, x3) = x2
1 + 8x2

2 + 3x1x3

subject to
x1 − x2 + x3 = 1
x1 + x2 = 2

Solve this problem using the method of elimination of constraints.

Solution: From the equality constraints we get: x1 = −x2 + 2 and x3 = 2x2 − 1. Replacing
this in the objective function yields:

f(x1, x2, x3) = F (x2) = (−x2 + 2)2 + 8x2
2 + 3(−x2 + 2)(2x2 − 1) = 3x2

2 + 11x2 − 2 .

Analytically we can obtain the local optimum as follows:

∂F

∂x2

= 6x2 + 11 = 0 ⇒ x∗
2 = −11

6
≈ −1.8333 .

With the second-order condition we can check that x2 = −11
6
is a local minimum (since F ′′(x2) =

6 > 0).
Then using this minimum we obtain the solution for the problem: x = (23

6
,−11

6
,−14

3
). This

result can be verified with the function fmincon of Matlab.
In an m-file called Chapter5_solutioncodes.m, we define the initial point x0, and the equality
constraints Aeq * x <= beq\. The resulting code is as follows:

x0=[0;0;0];

Aeq=[1,-1,1;1,1,0];

beq=[1;2];

option=optimoptions(’Algorithm’,’sqp’);

x=fmincon(@(x)((x(1))^2+8*(x(2))^2+3*x(1)*(x(3))),x0,[],[],...

Aeq,beq,[],[],[],option)

The final result is the vector x = [3.8333 − 1.8333 ;−4.6667]T .

Exercise 5.2. Using Matlab, apply sequential quadratic programming to solve the problem:

min f(x1, x2) = (x1 − 9
4
)2 + (x2 − 2)2

subject to
x2
1 − x2 ≤ 0

x1 + x2 ≤ 6
x1, x2 ≥ 0

Starting with the point x0 = [0, 0]T , show the evolution of the search direction dk (Step 2 of the
algorithm as listed in the lecture notes), step length in the line optimization sk of (Step 3), and
the optimization variables (xk)1, (xk)2 as function of the iteration step k.

Solution: We use the function fmincon of Matlab. In an m-file called fun5_sequentialprog.m

we write the function:
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Table 9: Iterations with the steepest-descent algorithm
Max Linesearch Directional First− order

k F − count f(x) constraint steplength derivative optimalityProcedure
0 3 9.0625 0
1 8 3.78906 -0.02734 0.25 -6.02 5.63
2 12 1.07034 0.2576 0.5 -3.75 1.21
3 15 1.6113 0.03713 1 -1.38 0.147
4 18 0.609201 0.0006924 1 0.255 0.0272
5 21 0.625 6.563e-008 1 0.231 0.000696

function f = fun5_sequentialprog(x)

f = (x(1)-9/4)^2 + (x(2)-2)^2;

Then, the non linear constraints are in a m-file called con5_sequentialprog.m:

function [c,ceq] = con5_sequentialprog(x)

c(1) = x(1)^2 - x(2);

c(2)= x(1)+x(2)-6;

ceq = [];

Then, we define the initial point x0, the lower bounds LB, and the options to see the various
measures of progress while the algorithm executes:

x0=[0;0];

LB=[0;0];

options = optimoptions(’Algorithm’,’sqp’,...

’PlotFcns’,{@optimplotfunccount,@optimplotfval,...

@optimplotstepsize,@optimplotfirstorderopt})

With @optimplotfunccount we can see the function count, @optimplotfval plots the func-
tion value, @optimplotstepsize plots the step size, and @optimplotfirstorderopt plots the
first-order optimality measure.

Finally, we use fmincon:

x = fmincon(@(x) fun5_sequentialprog(x),x0,[],[],[],[],LB,[],...

@(x)con5_sequentialprog(x),options)

The final results is the vector x = [1.5000, 2.2501]T .
The results of the iterations are in the Table 9.
In the Figure 8, the variables x1 and x2 as function of the iteration steps. In the Figure

9, the function evaluations, function values, step size, first-order optimality, as function of the
iterations.

Exercise 5.3. Solve the problem:
max
x,y,z

(x+ y)

subject to x2 + 2y2 + z2 = 1 and x+ y + z = 1.
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Solution: For an equality constrained optimization problem necessary conditions for a mini-
mum of the function f in (x, y, z), satisfying h(x, y, z) are given by the Kuhn-Tucker conditions:

∇f(x, y, z) +∇h(x, y, z)λ = 0

h(x, y, z) = 0

In our case, after rewriting the maximization problem as a minimization problem with objective
function −x− y, the conditions are as follows:

−1 + 2λ1x+ λ2 = 0

−1 + 4λ1y + λ2 = 0

2λ1z + λ2 = 0

x2 + 2y2 + z2 = 1

x+ y + z = 1

To find the values of x, y, z, λ1, λ2 that solve these equations, we can first use the third
condition to eliminate λ2 (so λ2 = 2− λ1z), and then use the fifth condition to eliminate z (so
z = 1− x− y). Then we obtain:

−1 + λ1[4x+ 2y − 2] = 0

−1 + λ1[2x+ 6y − 2] = 0

2x2 − 3y2 + 2y − 2xy + 2x = 0

The first two equations yield x = 2y, so that the third equation is 3y(5y−2) = 0, so that either
y = 0 or y = 2/5. Thus there are two solutions of the first-order conditions and the constraints,
namely (0, 0, 1) with λ1 = −1/2 and λ2 = 1, and (4/5, 2/5,−1/5) with λ1 = 5/18 and λ2 = 1/9.
Now if we plug the two solutions in the objective function, the value of the function is higher
at the second solution. Hence, the second solution is the solution of the problem.

6 Exercises for Chapter 6: Convex optimization

Exercise 6.1. Perform two iterations of the ellipsoid algorithm to solve the program:

minf(x1, x2) = 4(x1 − 10)2 + (x2 − 4)2

subject to
x1 − x2 ≤ 10
x1 − x2 ≥ 3
x1 ≥ 0

Plot the feasible region and the algorithmic steps. Take [0, 0]T as starting point.

Solution: In m-files called fun6_ellipsoid_f.m and fun6_ellipsoid_g.m we write the func-
tions:

function [f,ff]=fun6_ellipsoid_f(x)

f=4*(x(1)-10)^2+(x(2)-4)^2;

ff=[8*(x(1)-10),2*(x(2)-4)];
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function [g,gg]=fun6_ellipsoid_g(x)

g=[x(1)-x(2)-10;3-x(1)+x(2);-x(1)];

gg=[1 -1; -1 1; -1 0];

We will show the results using the ellipsoid algorithm. Define the initial condition x0, the
initial ellipsoid A0, and the parameter n:

x0=[0;0];

A0=[100 0; 0 100];

n=2;

Then we evaluate f(x0), ∇f(x0), g(x0), ∇g(x0):

[f,ff]=fun6_ellipsoid_f(x0);

[g,gg]=fun6_ellipsoid_g(x0);

We check if g(x0) <= 0. If it is, then the next iteration is:

if(g<=0)

x1=x0-(1/(1+n))*A0*ff’/(sqrt(abs(ff*A0*ff’)));

A1=(n^2/(n^2-1))*(A0-(2/(n+1))*A0*ff’*ff*A0’/(ff*A0*ff’));

If the constraint g(x0) <= 0 is not satisfied, we select the vector of the subgradient ∇g(x0)
related with the index of the bigger value of g(x0), and the iteration is:

else

[value,pos]=max(g);

x1=x0-(1/(1+n))*A0*gg(pos,:)’/...

(sqrt(abs(gg(pos,:)*A0*gg(pos,:)’)));

A1=(n^2/(n^2-1))*(A0-(2/(n+1))*A0*gg(pos,:)’*...

gg(pos,:)*A0’/(gg(pos,:)*A0*gg(pos,:)’));

end

In the Figure 10, the variables x1 and x2 and the function evaluations are shown. In the
figure it is also shown the feasible region (within the lines). We can see how the algorithm
converges to the optimal solution [10, 4]T .

Exercise 6.2. Use the interior-point algorithm to solve the program:

minf(x1, x2) = −x1x2

subject to
1− x2

1 − x2
2 ≥ 0

Plot the feasible region and the algorithmic steps. Use first [0.1, 0.1]T and next [−0.1,−0.1]T as
starting points.

Solution:

We use the function fminunc of Matlab. In an m-file called fun6_interior_barrier.m we
write the function:
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Figure 10: (a) x1 as function of the iterations, (b) x2 as function of the iterations, (c) objective
function, (d) Feasible region

function f= fun6_interior_barrier(x)

if(x(1)^2+x(2)^2-1<0)

f=-log(-(x(1)^2+x(2)^2-1));

else

f=100000000000000000;

end

Finally, for a given t, and given initial condition x0, we use fminunc:

x=fminunc(@(x) t*(-x(1)*x(2))+fun6_interior_barrier(x),x0);

In the Figure 11, the variables x1 and x2 and the function evaluations as function of the
parameter t are shown. The cases are IC − 1 for the starting point [0.1, 0.1], and IC − 2 for
the starting point [−0.1,−0.1]. In the figure it is also shown the feasible region (inside the
unit circle). With arrow, the directions of central paths x∗(t). We can see how the algorithm
converges to the optimal solution as the parameter t increases.

Exercise 6.3. Are the following functions convex or not? Why?

1. f : R → R : x 7→ (x2 + 1)2

2. f : R → R : x 7→ (x2 − 3x)2

3. f : R → R : x 7→ 2x

4. f : R → R : x 7→
(

1

2

)x
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Figure 11: (a) x1 as function of the parameter t, (b) x2 as function of the parameter t, (c)
objective function, (d) Feasible region and algorithmic steps

5. f : R \ {0} → R : x 7→ 1

x

6. f : [1,+∞) → R : x 7→ 1

x

7. f : R2 → R : (x, y) 7→ cosh(x2 + y2)

Solution: The definition of convex functions states that f is convex if its domain dom(f) is
convex and if we have f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y) for all x, y ∈ dom(f) and for all
λ ∈ [0, 1].

1. dom(f) = R is a convex set. According to the Lecture Notes, αx2n with α ∈ R+ and
n ∈ N is convex. Hence, the function f = (x2 + 1)2 = x4 + 2x2 + 1 is also convex.

2. Following from the previous case, the function f = (x2 − 3x)2 = x4 + 9x2 − 6x3 is not
convex (since the term −6x3 is not convex).

3. The function can be rewritten as f = 2x = exp(ln(2).x). The function exp g(x) is convex if
g is convex. Hence, f = 2x is also convex since ln(2).x is convex (in fact expax is convex
for any a ∈ R).

4. The function can be rewritten as f =

(

1

2

)x

= exp(− ln(2).x) and it is convex since expax is

convex.

5. f is not convex, since the set R \ {0} is not convex.

6. The domain is a convex set and the function f =
1

x
defined on this domain is convex.
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7. cosh x is a convex function and non-decreasing. On the other hand, x2 + y2 is convex
in R2. According to the Lecture notes, f(x) = h(g(x)) is convex if g is convex and h is
convex and non-decreasing. Hence, cosh(x2 + y2) is convex.

Exercise 6.4. On page 60 it is stated that if P is symmetric then the conditions P > 0 and
ATP + PA < 0 can be recast as an LMI. Prove this statement.
Hint: Write P as a linear combination of symmetric basis matrices, each having only one
(diagonal) entry or two (off-diagonal) entries equal to 1, the other entries being equal to 0.

Solution: We aim at showing that ATP + PA < 0 is an LMI with p as the variable. To see
this, we select a basis for symmetric n × n matrices. For i ≥ j define Eij as the matrix with
its (i, j) and (j, i) elements equal to one, and all of its other elements equal to zero. There

are m = n(n+1)
2

linearly independent matrices Eij and any symmetric matrix P can be written
uniquely as:

P =
n
∑

j=1

n
∑

i≥j

PijE
ij,

where Pij is the (i, j) element of P . Thus, the matrices Eij form a basis for symmetric n × n
matrices. Substituting for P in terms of its basis matrices gives the alternative form for the
Lyapunov inequality:

ATP + PA = AT

( n
∑

j=1

n
∑

i≥j

PijE
ij

)

+

( n
∑

j=1

n
∑

i≥j

PijE
ij

)

A =
n
∑

j=1

n
∑

i≥j

Pij(A
TEij + EijA) < 0

which is in the form of an LMI with F0 = 0 and Fk = −ATEij − EijA, for k = 1, ...,m. The
elements of the vector x in the F (x) are the Pij, i ≥ j, stacked up on top of each other.

Exercise 6.5. If the function f is convex, is f 2 then always convex?
If the function f is convex and nonnegative, is f 2 then always convex?

Solution:

• No; for instance |x| − 1 is convex, but (|x| − 1)2 is not convex as f 2(1) = f 2(−1) = 0,
while f 2(0) = 1.

• Yes; and it can be proved using the definition of convex functions. (Hint: since we have
assumed that f is nonnegative we can conclude that f 2(x) ≤ f 2(y) if f(x) ≤ f(y))

Exercise 6.6. 1. Prove that the sum of a linear function and a convex function is convex.

2. Prove that the sum of a linear function and a nonconvex function is nonconvex.

3. Provide examples to show that the sum of a convex function and a nonconvex one, can be
either convex or nonconvex.

4. Provide examples to show that the sum of two nonconvex functions can be either convex
or nonconvex.
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Solution:

1. we know from the properties of linear functions that f(ax) = af(x) and f(x + y) =
f(x)+ f(y). Hence, for the sum of a convex function f1 and a linear function f2 we have;

f1(λx+ (1− λ)y) + f2(λx+ (1− λ)y) = f1(λx+ (1− λ)y) + λf2(x) + (1− λ)f2(y)

≤ λf1(x) + (1− λ)f1(y) + λf2(x) + (1− λ)f2(y)

= λ(f1(x) + f2(x)) + (1− λ)(f1(y) + f2(y))

Thus the sum of the two functions is a convex function.

2. Similar to the approach in part (1), we can conclude that the sum of a nonconvex function
and a linear function is nonconvex.

3. The functions f1(x) = ax2 with a ≥ 0 and f2(x) = bx2 with b < 0 are convex and
nonconvex respectively. However, the sum f1+ f2 is a convex function in case a ≥ |b| and
nonconvex in case a < |b|.

4. Consider the functions f1(x) = x3 and f2(x) = −x3 with R as their domain. The sum
of the two functions is zero and convex, while the subtraction results in a nonconvex
functions.

7 Exercises for Chapter 7: Global optimization

Exercise 7.1. Using the routine simulannealbnd of Matlab, minimize the following function,

f(x) = −e−2 ln(2)(x−0.008
0.854

) sin6(5π(x0.75 − 0.05)), x ∈ [0, 1].

Plot the current iteration point, the function value, and the temperature function.

Solution: First, we write an m-file called fun7_simulanneal.m for this function

function f=fun7_simulanneal(x)

f=-exp(-2*log(2).*(x-0.008)/0.854).*(sin(5*pi*(x.^(0.75) - 0.05))).^6;

Then, for example, we can ask in the options of simulannealbnd to display the objective
function evaluated (@saplotf) and the value of the temperature @saplottemperature (see the
help of simulannealbnd for more options)

options = saoptimset(’PlotFcns’,{@saplottemperature,@saplotf});

and finally we include the low and upper boundaries lb, lu, together with an initial guess
x0,

lb=0;

lu=1;

x0=1;

x=simulannealbnd(@fun7_simulanneal,x0,lb,lu,options)

the solution x = 0.0791.
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Exercise 7.2. The Himmelblau function has four peaks in the points (3; 2), (−3.799;−3.283),
(−2.805; 3.131), and (3.584;−1.848), and it is defined by

f(x1, x2) =
2186− (x2

1 + x2 − 11)2 − (x1 + x2
2 − 7)2

2186
, x1, x2 ∈ [−6, 6].

Using the routine ga of Matlab, generate an optimizer capable to detect the four optimal solu-
tions.

Solution: In the Figure 16 we can see the function.
To use the routine ga, first, we write an m-file called fun7_Himmelblau.m for this function

(remember that ga will minimize).

function f=fun7_Himmelblau(x)

f=-(2186-(x(1)^2+x(2)-11)^2-(x(1)+x(2)^2-7)^2)/2186;

Then we run ga, including the number of optimization variables NV , the lower bound LB,
and the upper bound UB:

NV=2;

LB=[-6 -6];

UB=[6 6];

X = ga(@fun7_Himmelblau,NV,[],[],[],[],LB,UB,[])

If we run several times the algorithm (500 times), we will note that the solution (3.000, 2.000)
is the most typical (485/500 times).
In the tests, the solutions (−2.8051, 3.1313) and (3.5844,−1.8480), appeared 10, and 5 times.
Then, it is necessary to introduce a modification, in order to find all the peaks. In the literature
”Nitching algorithms” are proposed, to keep the diversity in the solutions. We can also change
some parameters of the ga like the mutation or the crossover probabilities (to increase diversity).
Another option is to split the regions randomly, so the ga will find the peaks in different specific
regions. For example, the following code will find the four peaks (in the Figure 17 the results
are displayed):

[X,ef] = ga(@example72,2,[],[],[],[],[0 0],[6 6],[]);

[X,ef] = ga(@example72,2,[],[],[],[],[-6 -6],[0 0],[]);

[X,ef] = ga(@example72,2,[],[],[],[],[-6 0],[0 6],[]);

[X,ef] = ga(@example72,2,[],[],[],[],[0 -6],[6 0],[]);
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Exercise 7.3.

Discuss the main differences between multi-start local optimization methods, simulated anneal-
ing, and genetic algorithms.

Solution: In multi-start local optimization, we select several starting points in the feasible set
(using, e.g., a uniform distribution) and for each starting point we run a local minimization
method. From the set of returned solutions we afterwards select the one that yields the lowest
value for the objective function. It is not always very efficient in general. However, if we already
have a good idea of the region where the global optimum will be situated, we can select our
initial points in this region and then the process will be much more efficient.

In contrast to local optimization techniques, simulated annealing can escape from local min-
ima. It uses probabilistic transition rules. Only the function values of the objective function
are required; the gradient and the Hessian are not used. And one important feature of this
algorithm is that it can be used for problems with discrete parameters.

The genetic algorithms search from a population of points: instead of considering one point at
the time as is done in random search, multi-start local optimization or simulation annealing,
genetic algorithms consider sets of possible solutions in each iteration step. They can escape
from local minima since a whole population of possible solutions is considered. And they use
probabilistic transition rules.

8 Exercises for Chapter 11: Integer optimization

Exercise 8.1. Consider the process modeled by the following linear discrete-time system: y(n+
1) = ay(n) + bu(n) + e(n), where y(n) is the output, u(n) ∈ {0, 1} the input (binary input),
a = 0.9 and b = 0.1 are the model parameters, and e(n) is white noise of mean value 0 and
standard deviation σ. At instant time n the output y(n) = 0.5 is measured and we have to
obtain a control action u(n) ∈ {0, 1}. Let us define the prediction ŷ(n + 1) = ay(n) + bu(n),
and ŷ(n+ k) = aŷ(n+ k − 1) + bu(n+ k − 1) for k ∈ {2, 3, 4, 5}.

• Obtain the control action u(n) ∈ {0, 1} that minimizes J = (ŷ(n + 1) − r)2 + λu(n)2,
where λ = 0.01 is a weighting factor and r = 1 the output reference.
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• Using branch-and-bound, obtain the control sequence U = [u(n), u(n + 1), u(n + 2)], that
minimize min Jn+2

n =
∑3

k=1(ŷ(n+ k)− r)2 + λ
∑3

k=1 u(n+ k − 1)2.

Solution:

• We have 2 options:

– If u(n) = 0, then J = (ay(n)− r)2.

– If u(n) = 1, then J = (ay(n) + b− r)2 + λ.

Among those two options, we select the one that provides the minimum J . If a = 0.9,
b = 0.1, r = 1, λ = 0.01, and y(n) = 0.5 then J = 0.3025 for u(n) = 0, and J = 0.2125
for u(n) = 1, so the optimum is u(n) = 1.

• We can eliminate the equality constraints and to minimize the objective function: Jn+2
n =

(ay(n) + bu(n)− r)2 + (a2y(n) + abu(n) + bu(n+ 1)− r)2 +
(a3y(n) + a2bu(n) + abu(n+ 1) + bu(n+ 2)− r)2 + λ(u(n)2 + u(n+ 1)2 + u(n+ 2)2)

First choose U as real variable. This results in an unconstrained nonlinear optimization
problem that can be solved by the fminunc function in MATLAB and the obtained
optimum is therefore U∗ = [3.5568, 1.7930, 0.9301]T , with J = 0.2229. Now we split the
problem into two subproblems: In the first we introduce the constraint u(n) = 1, and in
the second u(n) = 0. In both problems, u(n + 1) and u(n + 2) are still chosen as real
variables. This leads to two subproblems SP1 and SP2:

– SP1 u(n) = 1, results in u(n+ 1) = 3.1374, u(n+ 2) = 1.3607, J = 0.3845.

– SP2 u(n) = 0, results in u(n+ 1) = 3.6632, u(n+ 2) = 1.5292, J = 0.5357.

In the same way we introduce the constraints for the second variable u(n + 1) = 1 and
u(n+ 1) = 0 for both subproblems SP1 and SP2. This leads to:

– SP11 u(n) = 1, u(n+ 1) = 1, results in u(n+ 2) = 2.3225, J = 0.4944.

– SP12 u(n) = 1, u(n+ 1) = 0, results in u(n+ 2) = 2.7725, J = 0.6213.

– SP21 u(n) = 0, u(n+ 1) = 1, results in u(n+ 2) = 2.7275, J = 0.7063.

– SP22 u(n) = 0, u(n+ 1) = 0, results in u(n+ 2) = 3.1775, J = 0.8585.

Now we introduce the constraints for the third variable u(n + 2) = 1 and u(n + 2) = 0.
In the subproblem SP11:

– SP111 u(n) = 1, u(n+ 1) = 1, u(n+ 2) = 1, results in J = 0.5294.

– SP112 u(n) = 1, u(n+ 1) = 1, u(n+ 2) = 0, results in J = 0.6023.

In this point we can conclude that the optimal solution is given by u(n) = 1, u(n+1) = 1,
u(n+2) = 1, because the value of the objective function in SP111 is lower than the others
SP12, SP21, SP22 (when including the constraints in u(n+2), the objective function will
increase in those problems). Next the results just to verify:

– SP121 u(n) = 1, u(n+ 1) = 0, u(n+ 2) = 1, results in J = 0.6841.

– SP122 u(n) = 1, u(n+ 1) = 0, u(n+ 2) = 0, results in J = 0.7750.

37



– SP211 u(n) = 0, u(n+ 1) = 1, u(n+ 2) = 1, results in J = 0.7660.

– SP212 u(n) = 0, u(n+ 1) = 1, u(n+ 2) = 0, results in J = 0.8551.

– SP221 u(n) = 0, u(n+ 1) = 0, u(n+ 2) = 1, results in J = 0.9533.

– SP222 u(n) = 0, u(n+ 1) = 0, u(n+ 2) = 0, results in J = 1.0604.
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