
Exam — October 2021 – Grading template

Optimization for Systems and Control (SC42056)

Important: Please recall the following instructions from the exam procedure:

• Note that – just as in previous years – correct results without proper and correct motivation

will not receive any marks.

For an example on how proper and correct motivations look like, please consult the worked solutions

for Sample Exams 1 and 2 and for the exams of October 2013 and October 2014

Additional scoring guidelines

S0: correct result without proper and correct motivation: 0

S1a: small computation error that does affect result: −0.5

S1b: small computation error that does not affect result: −0.25

S2: partially incomplete motivation for convexity or simplification: −50%

S3: missing, wrong, or not properly motivated N× in Question 1: score 0 for (c) and penalty −1

for (b)

S4: multi-start listed when it is not needed: −0.5

S5: ∇ f as row vector: −0.5

S6: if in Question 1 the answer for (c) and/or (d) is formally correct, but an error is made in (a) or

(b) that affects the result for (c) and/or (d): 0 for (c) and/or (d)

S7: redundant function in stopping criterion: 0

S8: introduction of redundant variables or constraints that are not needed at all: −0.75

S9: introduction of additional wrong constraints and/or wrong classification of extra/unsimplified

constraint: −1

CE: Even if the answers to (a)-(d) are wrong, you can still score marks for (e) if and only if (a)-(d)

are internally consistent and all result in the answer given in (e) and if (e) is 100 % correct and

complete.

On the next pages concise answers are given with scores marked in red. To earn the indicated score

the corresponding answer has to be given completely, including the information inside the brackets;

else the score is 0.
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QUESTION 1 (9×8 = 72 points)

• P1

(a)1 The objective function should not be simplified : 0.5

The first constraint can be rewritten as: ‖x‖2 ≤ 4
√

1000 (1)

As (·)5 is a nondecreasing function, the second constraint can be simplified to

x6
1 + x2

2 −3x3 +8x2
4 − x5x7 +4x2

5 +8x2
7 + x9 − x10 ≤ 2 (2)

0.5 (for both (1) and (2) together, with penalty of -0.25 if it is not mentioned that (·)5 is

nondecreasing when simplifying the second constraint)

(b)4 The function A1(3·), 2A2(·), A3(6 ·)+8A4(2 ·) are convex, as a convex function of a linear

argument is convex and as the positively weighted sum of convex functions is convex

Since 3(·) is convex and increasing, and since its argument is convex, the function 3A3(6 ·)+8A4(2 ·)

is also convex

Since the objective function is the maximum of convex functions is also convex: 2

Constraint (1) as ‖ · ‖2 is convex: 0.5

If constraint (1) was not simplified yet, it should mentioned that the constraint is convex

as (·)4 is convex and increasing (for nonnegative arguments) and ‖ · ‖2 is convex.

Constraint (2) is convex as is the sum of even powers, a square of a linear term (i.e.,

(x5 −0.5x7)
2), and an affine term, all of which are convex : 1.5

(c)1 CP: convex optimization problem

(d)1.5 We have a convex problem, but the gradient of the objective function cannot be computed

analytically; moreover, due to the high number of variables and the long time it takes

to evaluate the objective function, numerical computation of the gradient would be very

time-consuming; hence, a gradient-free method is recommended. So the best method is:

M10: Penalty function approach + Powell : 1; no multi-start needed as Powell can follow

the shape of the function : 0.5 or

multi-run : 0.5 + M11: Simulated annealing : 1

(e)0.5 | fs(xk)− fs(xk−1)| ≤ ε f and gs(xk)≤ εg (for M10: Penalty function + Powell) or

Tk < Tfinal (for M11: Simulated annealing)
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• P2

(a)1 The objective function cannot be simplified : 0.25

Constraint (1), (3), and (4) can stay as they are : 0.25

Actually, (2) makes (3) redundant.

As log(·) is an increasing function (and its argument its positive due to constraint (3)), the

second constraint can be rewritten as 20−8x2
1 −6x2

2 − x3 − x4 +2x5 ≥ e9 or equivalently

8x2
1 +6x2

2 + x3 + x4 −2x5 ≤ 20− e9 (2) : 0.5

(b)4 As the argument of the cosh(·) is not always nonnegative, we cannot show that the first

term of the objective function is convex; actually, it is even nonconvex (this can easily

be shown by considering the simplified case cosh(x2 − y) (so x1 = x, x2 = x3 = 0, 2x5 =
−y): we get a function value cosh(0) = 1 for the points (1,1) and (−1,1), while the

intermediate point (0,1) has a function value cosh(−1) ≥ 1. So the line connecting 2

points on the function surface is not below the function surface: 3

Constraint (1) is linear

Constraint (2) and (3) are similar and they are both convex as the positive sum of squares

and a linear function is convex : 0.5

Constraint (4) is convex as (·)4 is convex and increasing for nonnegative arguments, and

as the function (x1,x2) 7→ x2
1 + x2

2 is convex and nonnegative, and as the sum of a convex

function and an affine function is convex: 0.5

(c)1 NCC: nonconvex constrained optimization problem

(d)1.5 as the gradient (subgradient for the second term (which is convex) of the objective func-

tion) and the hessian can be computed analytically, the best choice is:

multi-start: 0.5 + M9: Barrier function approach + steepest descent

(e)0.5 KKT conditions with ε (list them!) or

‖∇ fbarrier+(xk)‖2 ≤ ε (where fbarrier+ is the sum of the objective function f and the barrier

function)
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• P3

(a)1 As the argument is always positive, we can get rid of the exponent −5 (as it is then a

decreasing function) and of the constant 7, resulting in a maximization problem:

maxx∈Z53|x1|+2|x2|+8|x3|+6|x4|+3|x5| or equivalently

minx∈Z5 −3|x1|−2|x2|−8|x3|−6|x4|−3|x5| : 1

As the weights in the objective function are negative we cannot use the trick with dummy

variables to obtain a linear objective function; if that is done anyway the score for (a) is

0.

for simplifications of the constraints, see (b)

(b)4 We can either consider 25 = 32 different problems with linear objective functions ±3x1±
2x2 ±8x3 ±6x4 ±3x5 or — taking into account the analysis of the first constraint and in

view of computational efficiency (see also item (c)), — consider the objective function to

be nonconvex (due to the negative coefficients in front of the convex terms |xi|): 1.5

Constraint (1) is nonconvex (as it can be rewritten as 4−‖x‖∞ ≤ 0, i.e., with a minus sign

in front of the convex terms ‖x‖∞), but can be written as the union of 2 · 5 = 10 linear

constraints: 4 ≤ x1 OR 4 ≤−x1 OR 4 ≤ x2 OR . . . OR 4 ≤−x5 : 1.75

Constraint (2) can be written as 3+ 2x1 + x2 − 5x3 + 9x4 − 2x5 ≥ 10, which is a linear

constraint: 0.25

Constraint (3) can be written as a set (intersection!) of 25 = 32 linear constraints ±5x1 ±
4x2 ±3x3 ±3x4 ± x5 ≤ 50: 0.5

(c)1 32 (due to objective function) × 10 (due to constraint (1)) = 320 × MILP: mixed-integer

linear programming problem or

NCC: nonconvex constrained optimization problem

if MILP is specified, but the objective function was not identified or not correctly proven

(as indicated above) to be 32 × linear in (b), then S6 applies and the scores for (c) and (d)

will be 0

(d)1.5 We need to select an algorithm that can deal with integer variables. So the most appropri-

ate algorithm is:

M12: Branch-and-bound method for mixed-integer linear programming or

multi-run: 0.5 M11: Simulated annealing: 1

(e)0.5 optimum found once entire tree is explored (for M11) or

Tk < Tfinal (for M11: Simulated annealing)
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• P4

(a)1 Since 7
√

(·) is a nondecreasing function, we can also minimize its argument:

min
x∈R4

fs := min
x∈R4

(x1 +6x2 +8x3 −9x4 −10)2

Note that the square has to stay! 1

We keep the constraint as is.

(b)4 The objective function fs is convex quadratic: 2

The constraint is nonconvex as it is an equality constraint and the left-hand side is not an

affine function: 2 S0 applies the latter is not stated explicitly

(c)1 NCC: nonconvex constrained optimization problem

(d)1.5 As the gradient and the Hessian can be computed analytically, the best choice is:

multi-start: 0.5 + M8: Lagrange method + Broyden-Fletcher-Goldfarb-Shanno quasi-

Newton algorithm: 1

(e)0.5 ‖∇ fs(xk)+∇hs(xk)λ‖ ≤ ε1 and ‖hs(xk)‖ ≤ ε2

P4 (alternative solution, with elimination)

This solution has 1 variable less, but it uses a first-order method (steepest descent) instead of a

second-order one (BFGS)

(a)1 Since 7
√

(·) is a nondecreasing function, we can also minimize its argument:

min
x∈R4

f1 := min
x∈R4

(x1 +6x2 +8x3 −9x4 −10)2

Note that the square has to stay! 0.25

Next, we can use the constraint, which is a quadratic function in x4, to eliminate x4:

x4 =±
√

1

8

(

100− exp(2x2
1 +2x2

2 +2x2
1x2

2 + x4
3)−2x2

1 − x4
2 − x6

3

)

0.5

If we fill out each of the 2 solutions into the quadratic objective function f1 defined above

and if we add the constraint that the argument of the square root has to be nonnegative:

100− exp(2x2
1 +2x2

2 +2x2
1x2

2 + x4
3)−2x2

1 − x4
2 − x6

3 ≥ 0 or equivalently

exp(2x2
1 +2x2

2 +2x2
1x2

2 + x4
3)+2x2

1 + x4
2 + x6

3 −100 ≤ 0 (1)

we get two problems of the form minx∈R3 fs(k) s.t. (1) 0.25

(b)4 The objective function fs defined above is nonconvex since x4 is a nonconvex function of

x1, x2, and x3 : 2

Constraint (1) of item (a) is not convex as the product x2
1x2

2 cannot be absorbed in a sum

of squares: 2

(c)1 2 × NCC nonconvex constrained optimization problem

if only one solution for x4 was provided in (a), then S3 applies, and the score will be 0 for

(c) and a penalty −1 holds for (d)

(d)1.5 as the gradient and the Hessian can be computed analytically, the best choice is:

multi-start: 0.5 + M9: Barrier function approach + steepest descent: 1

(e)0.5 KKT conditions with ε (list them!) or

‖∇ fbarrier+(xk)‖2 ≤ ε (where fbarrier+ is the sum of the objective function fs and the barrier

function)
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• P5

(a)1 As sinh(·) is an increasing function we can maximize its argument; next, the constant 1

can be dropped: 0.5

as −cosh is a decreasing function for nonnegative arguments (note that the term x3x4 can

be absorbed), we can minimize the argument. So we finally get minx fs(x) :=minx∈R4 2x2
1+

4x2
2 + x2

3 +(x3 −4x4)
2: 0.5

for simplifications of the constraints, see (b)

(b)4 The objective function fs can be written as a sum of squares (see (a)), so it is a convex

quadratic function: 2

Constraint (1) can be written as the union of 2 linear constraints:

−25 ≤ x1 +2x2 +3x3 +4x4 ≤−1 OR 1 ≤ x1 +2x2 +3x3 +4x4 ≤ 25 : 1

Since an even power is a U-shaped function, constraint (2) can be transformed into the

union of 2 linear constraints: 7x1 + . . .≤−2 OR 7x1 + . . .≥ 2 : 1

(c)1 4 × QP: convex quadratic programming problem

(d)1.5 M3: Interior point algorithm: 1

as there is no dedicated QP algorithm: 0.5

(e)0.5 | fs(xk)− fs(x
∗)| ≤ ε f and gs(xk)≤ εg

Actually, for the interior point method the constraint is always satisfied; but you have to

say this explicitly.
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• P6

(a)1 By introducing x1 = cosθ1, x2 = sinθ2, x3 = θ3, x4 = sinθ4, x5 = θ5, x6 = sinθ6, we get

the following problem:

min
x∈R6

7500

∑
k=1

ε2(k,x) s.t. xi ∈ [0,1] for i = 1,2,4,6 and x j ∈ [0,π/2] for j = 3,5

and with a discrete-time model

y(k) = x1 · e2y(k−1)+ x2 · y(k−3)cos(u(k))+ x3|u(k−3)|+

x4u4(k−2)+ x5y(k−4)sin(y(k−1))+ x6 ·
u2(k−1)

1+ y2(k−2)u(k−2)

(b)4 note that y(k) and thus also ε(k,x) depend linearly on x, which means that the objective

function is convex quadratic: 3.5

the constraints on xi are simple bound constraints, and thus they linear: 0.5

(c)1 QP: convex quadratic programming problem

(d)1.5 M3: Interior point algorithm: 1

as there is no dedicated QP algorithm: 0.5

(e)0.5 | fs(xk)− fs(x
∗)| ≤ ε f and gs(xk)≤ εg

Actually, for the interior point method the constraint is always satisfied; but you have to

say this explicitly.
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• P7

(a)1 Maximizing 2 − arctan(cosh(. . .)) is equivalent to minimizing arctan(cosh(. . .). Since

arctan(·) is a nondecreasing function, we can also minimize cosh(. . .) instead: 0.5

The argument of the cosh(. . .) part can be rewritten as fs(x) =
11
4

x2
1+(1

2
x1+x2)

2+(2x3−
2x4)

2 + x2
4, which is nonnegative. Since cosh(·) is increasing for nonnegative arguments,

we can minimize its argument instead: 0.5

for simplifications of the constraints, see (b)

(b)4 as the objective function fs is a positive sum of squares of linear functions, it is a convex

quadratic function: 1.5

Since exp(·) is nondecreasing and since exp(a)exp(b) = exp(a+ b), the first constraint

can be rewritten as 3+2x1 +4x2 + x3 −2x4 ≤ 17, which is linear : 0.5

The second constraint can be written as a set (intersection!) of 2 linear constraints: 2x1 +
x2 +3x3 + x4 ≥ 12 and 7x1 − x2 +6x3 −6x4 ≥ 12 : 1

The third constraint consists of a positive sum of even power (which are convex) and

therefore it is a convex constraint: 1

(c)1 CP: convex optimization problem

(d)1.5 M3: Interior point algorithm

(e)0.5 | fs(xk)− fs(x
∗)| ≤ ε f and gs(xk)≤ εg

Actually, for the interior point method the constraint is always satisfied; but you have to

say this explicitly.

8



• P8

(a)1 no simplification possible

(b)4 Due to presence of cos: 1.5, the objective function will be a nonconvex function: 1.5

Note that sinh is convex for nonnegative arguments, so the presence of sinh alone cannot

be used to motivate nonconvexity

The constraints are simple bound constraints and thus linear : 1

(c)1 NCC: nonconvex constrained optimization problem

(d)1.5 The integral that appears in the objective function cannot be computed analytically, so

numerical computation is required, which will be time-consuming. Therefore, and also

due to the high number of variables, a gradient-free method is recommended. So the best

choice is:

multi-start: 0.5 + M10: Penalty function approach + Powell : 1 or

multi-run : 0.5 + M11: Simulated annealing: 1

(e)0.5 | fs(xk)− fs(xk−1)| ≤ ε f and gs(xk)≤ εg (for M10: Penalty function + Powell) or

Tk < Tfinal (for M11: Simulated annealing)
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• P9

(a)1 Since (·)4 is increasing for nonnegative arguments, and since the argument is indeed non-

negative as it is a sum of absolute values, we can rewrite the problem as minx∈R4 4|x1|+
3|x2|+ |x3|+2|x4|+1: 0.5

The constant 1 can be dropped, and we can introduce dummy variables αi, i = 1,2,3,4
with αi ≥ |xi| or equivalently αi ≥ xi and αi ≥−xi for i = 1,2,3,4. Then we get a problem

of the form minx,α 4α1+3α2+α3+2α4 subject to the given constraint as well as αi ≥ xi,

αi ≥−xi for i = 1,2,3,4: 0.5

for simplifications of the constraints, see (b)

(b)4 The objective function is linear (in α): 1

As exp(·) is an increasing function we can rewrite the first constraint as (6+ 3x1 + x2 −
x3 − x4)

4 ≤ log(16000). Since an even power is a U-shaped function, this constraint can

be transformed into the intersection of 2 linear constraints: − 4
√

log(16000) ≤ 6+ 3x1 +

x2 − x3 − x4 ≤ 4
√

log(16000) : 0.5

Note that the 4th power applies to the expression in the brackets, not to exp; in the latter

case we would have to write exp4(. . .) or [exp(. . .)]4

The second constraint can be written as a set (intersection!) of 3 linear constraints: 3+
2x1 +3x2 − x4 ≤ 9 and 4x2 +3x4 ≤ 9 and 2x1 −8 ≤ 9: 0.5

The third constraint can be written as max(|x1|, |x2|, |x3|, |x4|)+ |x1|+ |x2|+ |x3|+ |x4| ≥ 2.

or max(2|x1|+ |x2|+ |x3|+ |x4|, |x1|+ 2|x2|+ |x3|+ |x4|, |x1|+ |x2|+ 2|x3|+ |x4|, |x1|+
|x2|+ |x3|+ 2|x4|) ≥ 2, or as the union of 4 constraints: 2|x1|+ |x2|+ |x3|+ |x4| ≥ 2 or

2|x1|+2|x2|+ |x3|+ |x4| ≥ 2 or 2|x1|+ |x2|+2|x3|+ |x4| ≥ 2 or 2|x1|+ |x2|+ |x3|+2|x4| ≥
2. Each of these 4 constraints can in its turn be written as the union of 24 = 16 linear

constraints: e.g., for the first one we get 2x1 + x2 + x3 + x4 ≥ 2 or 2x1 + x2 + x3 − x4 ≥ 2

or 2x1 + x2 − x3 + x4 ≥ 2 or . . . or −2x1 − x2 − x3 − x4 ≥ 2. So third constraint leads to a

union of 4 ·16 = 64 linear constraints: 2

Note that we cannot substitute αi in these constraints since these would result in additional

lower bounds for αi, as a consequence of which the relation α∗
i = |x∗i | can no longer be

guaranteed.

(c)1 64 × LP

(d)1.5 M1: Simplex algorithm for linear programming

(e)0.5 The simplex algorithm will always find a global optimum in a finite number of iterations
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QUESTION 2 (9+16+3 = 28 points)

• Question 2.1

(a)7 Mention/provide at least the following:

– representation of feasible set with ellipsoids: 0.5

– use of subgradient inequality: 0.5

– in each step we first intersect ellipsoid with hyper-half-space and next determine

smallest ellipsoid that contains the intersection: 1

– update formulas for center and A matrix of the ellipsoids use the subgradient: 0.5

– in each step we discard points that are not optimal or that are not feasible (objec-

tive/constraint iteration): 1

– the volume of the ellipsoid gets smaller and smaller as the iteration progresses: 0.5

– stopping criterion ‖xk − x∗‖ ≤ εx, ‖ f (xk)− f (x∗)‖ ≤ ε f , g(xk)≤ εg: 1

– picture: 2

In case of wrong statements, a penalty of -0.75 applies for each wrong statement.

(b)2 For final solution the ellipsoid algorithm, we also know how far we are maximally away

from the true optimum in the variable space: 1

The size of the LP problems in the cutting-plane and thus also the time needed per iteration

increase with each iteration; for the ellipsoid algorithm the computational complexity does

not increase as the algorithm progresses: 1

• Question 2.2

(a)2 if the problem is characterized as nonconvex, the score for the entire subquestion (a) will

be 0

First of all we transform the maximization problem into a minimization problem:

min
(x,y)∈R2

10+4x2 + y2 −2xy−50x+20y

s.t. |x|+ |2y| ≤ 8

1 ≤ 2(y−1)2 ≤ 216

The second constraint can be equivalently rewritten as 0 ≤ (y− 1)2 ≤ 16 since 2(·) is an

increasing function. Moreover, the part 0 ≤ (y−1)2 always hold and can thus be dropped.

The other part of the constraint can be equivalently rewritten as |y−1| ≤ 4 or equivalently

−3 ≤ y ≤ 5. This then results in the following optimization problem:

min
(x,y)∈R2

10+4x2 + y2 −2xy−50x+20y

s.t. |x|+ |2y| ≤ 8

−3 ≤ y ≤ 5

The objective function can be written as a sum of squares and of linear terms: 3x2 +(x−
y)2 −50x+20y+10 and therefore it is convex: 0.5

The first constraint involves a sum of norm functions (which are convex), and therefore

the constraint is convex: 0.5

The second constraint involves the norm of a linear function, and therefore this constraint

is also convex: 0.75 [ this also includes correct simplification of the constraint ]

hence, the given problem is convex: 0.25
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(b)12 Note that the constraints can be rewritten as ±x± 2y ≤ 8, −3 ≤ y ≤ 5, which are linear

constraints. So we can indeed apply the gradient projection method.

First we compute the gradient of the objective function: 2

∇ f (x,y) =

[

8x−2y−50

2y−2x+20

]

If a sign error is made here or any other computation error later on, marks can still be

scored for: use of negative gradient [1], line search equation [1], and the determination of

s∗ [1], unless s∗ is negative or leads to an infeasible point.

In the gradient projection approach the search direction is the negative gradient: 1

So we evaluate the negative gradient in the point (5,0): −∇ f (5,0) =
[

10 −10
]T

. Since

(5,0) is in the interior of the feasible set, no projection is required. So we perform a

line search in the direction (10,-10) or equivalently (1,-1), which yield the search line

(x,y) = (5,0)+ s(1,−1) = (5+ s,−s) where s is the step size: 1

If we fill out the values for x and y in the objective function and simplify, we obtain

f̄ (s) = 7s2 −20s−140. We first take the derivative w.r.t. s and put it equal to 0: 1

The resulting value is of s is s∗ =
20

14
=

10

7
; as this value is positive it corresponds to the

line minimum; however, this step size would create an infeasible point. So we also take

the constraints into account: ±x±2y ≤ 8, −3 ≤ y ≤ 5, which imply that −13

3
≤ s ≤ 1. So

the largest allowed step size is s = 1. This yields the point (x1,y1) = (6,−1): 3

The negative gradient in (x1,y1) = (6,−1) is −∇ f (6,−1) =
[

0 −6
]T

, which is pointing

away from the feasible set. So we have to project (0,−6) on the active boundary, i.e., on

the line x−2y = 8 : 1

The directional vector of this line is (2,1). Since (0,−6) points in the direction of de-

creasing y values, the projected search direction thus is (−2,−1) : 1

The search line is thus defined by (x,y) = (6,−1)+ t(−2,−1) = (6−2t,−1− t) where t

is the step size. If we fill out the values for x and y in the objective function and simplify,

we obtain f̄ (t) = 13t2 −6t −153. We first take the derivative w.r.t. t and put it equal to 0.

The resulting value is of t is t∗ =
6

26
=

3

13
; as this value is positive, it corresponds to the

line minimum. Moreover, the resulting point (x2,y2) = (
72

13
,−16

13
) = (5+

7

13
,−1− 3

13
)≈

(5.5,−1.25) is feasible: 2

A graphical representation of the procedure above is given by the following picture, where

the gray area represents the feasible set and the red dot corresponds to the point (x2,y2):

(−8,0)

(0,−4)

(0,−3)

(5,0)

(0,4)

(8,0)

(6,−1)

G2

G1

S2

x

y
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(c)2 We can compute the negative gradient in (x2,y2): ∇ f (x2,y2) =

[

−42

13

84

13

]T

and see

that it is orthogonal to the active boundary (which has direction vector s2 =
[

−2 −1
]T

,

as indicated above; it is easy to verify that (∇ f (x2,y2))
Ts2 = 0). Moreover, ∇ f (x2,y2)

points away from the feasible region: 1

This also implies that the projection of the gradient in (x2,y2) onto the active boundary

will be the zero vector. This in turn implies that the point (x2,y2) is a local optimum, and

since the problem is convex, also the global optimum: 1

• Question 2.3

3 Note that µTg(x) = 0 is equivalent to ∑m
i=1 µigi(x) = 0 where m is the number of inequality

constraints. As µi ≥ 0 and gi(x) ≤ 0, this sum is a sum of negative or zero numbers, which

means that it can only be equal to 0 if all the terms µigi(x) are equal to 0: 1.5

So if µi > 0, we should have gi(x) = 0, i.e., the ith inequality constraint is active (or, in other

words, it holds with equality: 1.5
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