Exam — November 2023 — Grading template

Optimization for Systems and Control (SC42056)

Important: Please recall the following instructions from the exam procedure:

* Note that — just as in previous years — correct results without proper and correct motivation

will not receive any marks.

For an example on how proper and correct motivations look like, please consult the worked solutions
for Sample Exams 1 and 2 and for the exams of October 2013 and October 2014.

Additional scoring guidelines

SO:

SI:
S2a:
S2b:

S3:

S4:

S5:

Sé6:

S7:

S8:

S10:

CE:

correct result without proper and correct motivation: 0
likewise: if in Question 1 the answer for (c) and/or (d) is formally correct, but an error is made
in (a) or (b) that affects the result for (c) and/or (d): O for (c¢) and/or (d)

partially incomplete motivation for (non)convexity or simplification: —50%

small computation error that does affect result: —0.5

small computation error that does not affect result: —0.25

missing, wrong, or not properly motivated N x in Question 1(c): —2 for (¢) and (d) together
multi-start listed when it is not needed: —0.5

Vf as row vector: —0.5

redundant function in stopping criterion: 0

introduction of redundant variables or constraints that are not needed at all: —1

introduction of additional wrong constraints and/or wrong classification of extra/unsimplified
constraint: —1

as indicated in instructions: if 2 or more solutions are given, the worst one is assumed to have
been selected

Even if the answers to (a)-(d) are wrong, you can sometimes still score marks for (e) if and only if
(a)-(d) are internally consistent and if they all result in the answer given in (e) and if (e) is 100 %
correct and complete.

On the next pages concise answers are given with scores marked in red. To earn the indicated score
the corresponding answer has to be given completely, including the information inside the brackets;
else the score is 0.




QUESTION 1 (8 x 9 =72 points)

* P1
1 (a)

4 (b)

1 (¢)
2.5 (d)
0.5 (e)

First we turn the maximization problem into a minimization problem:

rrenz% fs(x) := —exp(x; + 5xp +x3 — 8) — sinh(x] 4 5x3 +x3 — 8)
X
Since —exp(+) is an decreasing function of its argument, and the same holds for — sinh(-)
and since they both have the same argument xj 4 5x; 4+ x3 — 8 we can maximize the argu-
ment instead. Turning this again into a minimization problem and dropping the constant
—8& we obtain: 1

min —x; —5xp — x3

x€Z?

For simplifications of the constraint, see (b)

The simplified objective function f; is linear: 1.5

Constraint (1) is equivalent to |x;| + |x2| + |x3| < 12 can be written as the intersection of
23 — 8 affine constraints: +x; +x, £x3 <: |

Since (-)? is an increasing function, constraint (2) can be rewritten as 5+ 3x; +x, — x3 <
3+v/3, which is an affine constraint: 0.5

Constraint (3) can be rewritten as the union of 3 affine constraints: 3 +2x; +3x; > 5 or
dxro+3x3 =5 or 8 —x1+x—x3>5:1

3 x MILP: mixed-integer linear programming problem
M12: Branch-and-bound method for mixed-integer linear programming

Optimum is found once entire tree is explored



P2

1 (a) As the function +/- is a nondecreasing function, we can minimize the argument instead.
Note that the (-)? function has to stay. Furthermore, since (-)? = | -|? and since (-)? is
increasing for nonnegative arguments, we can minimize |- |: 0.5
The constraint can be used to express x4 as a function of the other variables: 0.5

1
u=s (123 ~36) Z 3% — 22 log(.. .))

Next, x4 can be eliminated from the objection function, resulting in an unconstrained
problem of the form miny, y, x; felim With

folim = |x1+6x2 +8x3 —553.5+4.5-30) 4 13.5x, +4.555 +4.510g(...)

4 (b) The function fgjin, is nonlinear and nonconvex: indeed, as the argument of the absolute-
value function is nonlinear and can be negative, we cannot conclude that fei, 1S convex.

1 (c) NCU: nonconvex unconstrained optimization problem

2.5 (d) The gradient and the Hessian of the objective function can be computed analytically. As
there is no pure second-order algorithm available, the best choice is
multi-start: 0.5 + M5: BFGS quasi-Newton algorithm: 1

0.5 (&) ||Vferim(x)|| <€



* P3
1 (a)

4 (b)

1 (¢)
2.5 (d)

0.5 (e)

As arctan(+) is an increasing function, we can maximize its argument; next, the constant 1
can be dropped: 0.25

Since (-)4 is an increasing function for nonnegative arguments (note that the term —8x3x4
can be absorbed, see below, so the argument is positive definite and thus nonnegative),
we can minimize the argument. So we finally get min, f(x) := min g4 2x% + 4x% —I—x% +
(x3 —4x4)%: 0.75

For simplifications of the constraints, see (b)

The objective function fs can be written as a nonnegative sum of squares (see (a)), so it is
a convex quadratic function: 2

Constraint (1) can be rewritten as the union of 2 affine constraints:

—12<x1 4+ 20 +3x3+4xs < —vV2 or V2<x1+2x0+3x3+4x4 <12 ;1
Constraint (2) can be rewritten as 3" + [3xp — 2x3 + 5x4|3 < 12. Since 30) is a convex
function, the first term of this constraint is convex. Since (-)* is convex and increasing
for nonnegative arguments and since its argument is convex and nonnegative, |3x; — 2x3 +
5x4|3 is convex. Since the sum of convex functions is convex, constraint (2) is convex: 1

2 x CP: convex optimization problem
M3: Ellipsoid algorithm
if multi-start is checked: —0.5

| fs(xk) — fs(x*)| < &7 and/or ||x; —x*[|2 < &
and gs(xk) < &
if the condition gs(x) < &, is missing: 0



. P4

1 (a) Since cosh(+) is increasing for nonnegative arguments, we can minimize the argument in-
stead. The constant 2 can be dropped: 0.5
So the objective function to be minimized is 7|x;| 4 4|xz| + |x3| + 2|x4, which is a non-
negative sum of absolute values. By introducing dummy variables ; > |x;| (which can
be rewritten as affine constraints o; > x;, ; > —x;), we can instead consider ming , 70¢ +
4op+o3+204 : 0.5
For simplifications of the constraints, see (b)

4 (b) The simplified objective function is linear: 1
Since an even power is U-shaped, constraint (1) can be rewritten is —15 < 64 3x; +x2 —
x3 — x4 < 15, which is an affine constraint: 0.5
Constraint (2) can be rewritten as the intersection of 3 affine constraints: 3 +2x; + 3x, —
x4 = 9and 4x; +3x4 > 9and 2x; —8 > 9: 0.5
Constraint (3) can be rewritten as' max(|x1|, |x2|, |x3|, |x4|) = 7 or as a union of 2-4 =8
affine constraints x; > 7 or x| < —7T Or ... X4 > T Or x4 < —7:2

1 (c) 8x LP: mixed-integer linear programming problem
2.5 (d) M1: Simplex algorithm for linear programming

0.5 (e) The simplex algorithm will always find a global optimum in a finite number of iterations

"Note that we cannot substitute this for max (o, &, 3, 04) > 7, as this could cause o* to be larger than |x}], e.g., if
we replace rr}%n |x| s.t. |x| > 1 by mirﬁ{a st.oo>x, > —x, a>1then a* =1 and x* € [—1,1] so we do not always
XERset x,0e

have o* = |x*| anymore.



* PS5

1 (a) The objective function cannot be simplified.
For simplifications of the constraints, see (b)

4 (b) Due to presence of cos or sin (or a similar correct argument) in the argument of the inte-
gral, the objective function is a nonconvex function: 2.5

The constraints can be rewritten as —2 < v; < 2 for i = 1,2,...,10, which are affine
constraints: 1.5

1 (c) NCC: nonconvex constrained optimization problem

2.5 (d) The integral that appears in the objective function cannot be computed analytically, so
numerical computation is required, which will be time-consuming. Therefore, and also
due to the high number of variables, a gradient-free method is recommended. So the best
choice is’:
multi-run : 0.5 + M11: Simulated annealing: 2

0.5 (e) Temperature becomes less than some threshold (7" < Tqpar)

ZNote that in view of the number of variables (10), M10: barrier + Nelder-Mead is not an acceptable choice here.

6



* P6

1 (a) The objective function cannot be simplified
For simplifications of the constraints, see (b)

4 (b) The terms 2x1x3 and 2x4x5 cannot be absorbed, so f is a nonconvex function: 1
Since (-)4 is a U-shaped function, constraint (1) can be rewritten as —2 < xj 4+ 2xp + 8x3 —
9x4 4+ 8x5 < 2, which is an affine constraint: 0.5
Since 20) is an increasing function, constraint (2) can be rewritten as —x; + 3xp —x3 +
6x4 + x5 > 2, which is an affine constraint: 0.5

Constraint (3) can be rewritten as |x1 |+ |[x2| + [x3| + x4 |+ |x5]| +max (|x |, |x2], [x3], |xa], [x5]) <
9, which is equivalent to the set (intersection!) of the 5 following constraints:

21|+ 2| + |x3] + |xa + [xs]
1 |+ 2]x2] + [x3] + [xa] + [xs]
1| 4 2] -+ 2[xs| + |xa] + |xs|
1] 4 2] + |x3] + 2|xa| + |xs|
x|+ x|+ |x3| + |xa| +2[xs]

NN NN N
© © © Vv ©

which results in 5-2° = 5-32 = 160 affine constraints:

+2x1 £xp £ x3 £ x4 £ x5
+x1 E2x) x3Ex4 £ X5
+x; £xp £ 2x3 £ x4 £ x5
+x; £xp x3 £ 2x4 £ x5
+x; £xp £ x3 £ x4 +2x5

INCINCIN NN
© © v v ©

1 (c) NCC: nonconvex constrained optimization problem

2.5 (d) multi-start: 0.5 + M2: Gradient projection: 2
(as this uses 1st-order information and as gradient is easy to compute, while no methods
that use 2nd-order information like SQP are available)
multi-start: 0.5 + M9: penalty + steepest descent would also be accepted: 2

0.5 (e) KKT conditions with € (list them!) or

|V fpenatty+ (Xk)|| < € where fenary+ is the sum of the simplified objective function after
elimination and the penalty function



- P7
1 (a)

4 (b)

1 (c)
2.5 (d)

0.5 (e)

We turn the maximization problem into a minimization problem:
min fy(x) := ~3log(x1 +2x2 + 6x3 x4 + 1) + (Jx1 +x2 — 4wz — x4 +3] = 1)*

For simplifications of the constraints, see (b)

Although the first term f; is convex, the second term is not as the argument of (-)* can
become negative due to the term -1 (this occurs, e.g., for x; = x, = x4 = 0 and x3 = 3/4).
In fact, the function (| - | — 1)* looks like a smooth W-shaped function (e.g., the function
equals 1 if the argument is 0, O if the argument equals £1, and it is positive again if the
argument is less than —1 or larger than 1). So the simplified objective function is not
convex: 2

Constraint (1) con be written as the intersection of two affine constraints: x| +2xp > 1 and
6x34+x4>1:0.5

Constraint (2) contains a positive sum of even powers (which are convex) and is thus
convex: 0.5

Constraint (3) contains 2 terms. As (-)? is convex and increasing for positive arguments
(note that 2() and 30) both yield positive values), and as both 2() and 3() are convex, the
first term of (3) is convex. Since the absolute value function is convex in its argument and
as that argument is affine here, the second term of (3) is also convex. Hence, constraint
(3) is convex: 1

NCC: nonconvex constrained optimization problem
multi-start: 0.5 + M9: Penalty function approach + steepest descent method: 2

(as this uses 1st-order information and as gradient is easy to compute?, while no methods
that use 2nd-order information like SQP are available)

KKT conditions with € (list them!) or
|V foenatty+ (Xk)|| < € where fpenalry+ is the sum of the simplified objective function after
elimination and the penalty function

Alternative solution in view of the full analysis of the constraints:

1 (a)

First we turn the maximization problem into a minimization problem:
mxin —3log(x; +2x3+6x3+ x4+ 1)+ (Jx; +x2 —4dx3 — x4+ 3| — 1)4

Next we consider two cases, depending on whether or not x; +x, —4x3 —x4+3 > 0. Then
we get 2 problems:

P7a:min —3log(xy +2x +6x3 x4+ 1) + (x1 12 — 4wy — x4 +3 — 1)*
s.t. (1)-B)and x; +xp —4x3—x4+3 >0
and
P7b:mxin —3log(x; +2x2+6x3+x4+ 1)+ (—x; —xp+4x3+x4 —3— 1)4
s.t. (I)-(3)and x; +x2 —4x3 —x4+3 <0

For simplifications of the constraints, see (b)

3Note that although | - | is a non-smooth V-shaped function, the 4th power makes the function smooth; as a result, the
gradient is defined for the entire domain of the function.



4 (b) As —log(-) and (-)* are convex functions, as they have affine arguments in P7a and P7b,
and as the (positive) sum of two convex functions is convex, the objective functions of P7a
and P7b are convex: 2

Constraint (1) can be written as the intersection of two affine constraints: x; +2x; > 1 and
6x3+x4>1:0.5

Constraint (2) contains a positive sum of even powers (which are convex) and is thus
convex: 0.5

Constraint (3) contains 2 terms. As ()2 is convex and increasing for positive arguments
(note that 2() and 3() both yield positive values), and as both 2() and 3() are convex, the
first term of (3) is convex. Since the absolute value function is convex in its argument and
as that argument is affine here, the second term of (3) is also convex. Hence, constraint
(3) is convex: 1

1 (c) 2x CP: convex optimization problem

2.5 (d) M3: Ellipsoid algorithm
if multi-start is checked: —0.5

0.5 (e) [fs(w) = fs(x")
and gs(x;) < &
where f; represents the objective function of P7a or P7b, and g, represents the constraint
function of P7a or P7b after all the constraints have been simplified as explained in (b)
if the condition g(x;) < &g is missing: 0

< &7 and/or ||x; —x*||2 < &



* P8

1 (a) The maximization problem is first transformed into a minimization problem. The constant
—1 can be dropped. Moreover, since exp(-) is increasing, we can minimize the argument
instead. In addition, the constant —8 can be dropped, which leads to: 1

min fi(x) = 5x} + 2x3 — 8xpx3 + 2x3 — 5x1 — 62 + 2x3
X

For simplifications of the constraints, see (b)

4 (b) The term —8x,x3 cannot be absorbed, so fs is a nonconvex (quadratic) function: 1.25

As (-)? is a U-shaped function, constraint (1) can be rewritten as —10° < cosh(x; +
xa —x3) < 10°. Since cosh(-) is always positive, we only have to consider the part
cosh(x] +x; —x3) < 103. As cosh is a U-shaped function, this results in the affine con-
straint —acosh(10%) < x; +x, —x3 < acosh(103): 1.5

Constraint (2) results the union of (the intersection of) 2 affine constraints and 1 affine
constraint: —625 < 14+x; +20xp +30x3 —6 < 625 or x| +8xp —x3—5< 5¢/5:1.25

1 (c) 2x* NCC: nonconvex constrained optimization problem

2.5 (d) multi-start: 0.5 + M2: Gradient project method with variable step size line minimization:
2
(as this uses 1st-order information and as gradient is easy to compute, while no methods
that use 2nd-order information like SQP are available)
multi-start: 0.5 + M9: penalty + steepest descent would also be accepted: 2

0.5 (e) KKT conditions with € (list them!)
for M9 we could also use: ||V foenalty+ (X) || < € where fyenalty+ is the sum of the simplified
objective function after elimination and the penalty function

“We need to put the factor 2 here, due to the or in the simplified constraint (2)

10



QUESTION 2 (9+15-+4 = 28 points)

¢ Question 2.1

7 (a)

1 (b)

1 (c)

Mention/provide at least the following:

[1] used for convex optimization problems: 0.5
m

[2] use of convex barrier function ¢ defined by ¢ (x) = — Z log(—gi(x)) if x is feasible
i=1

and +oo otherwise: 1

[3] minimization of ¢ f + ¢ for ¢ > 0, which is a convex unconstrained optimization prob-
lem: 1

[4] resulting optimal point x*(¢) is always inside feasible set: 1

[5] start with low ¢ and gradually increase ¢: 0.5

[6] increasing ¢ makes optimal point x*(7) converge to the optimum x* of the original
convex problem: |

[7] stopping criterion on ¢ of the form f(x*(¢)) — f(x*) < — < € with m the number of

=13

inequality constraints: 1
(1) illustrative drawing: 1

A required condition to be able to apply the interior-point method is that the feasible set
should have a non-empty interior (as else the barrier function would always be 4-0): 0.5
At first sight, the latter condition would exclude the presence of constraints of the form
h(x) = 0, but as these should be affine, we can use them to eliminate variables (as an affine
function of the other variables, thus preserving convexity after substitution). The resulting
problem is thus still convex and has only inequality constraints: 0.5

We would need multi-start if the selected barrier or penalty function would not be convex
in the optimization variable x, as then resulting unconstrained optimization problem would
be nonconvex in general.

If the selected barrier or penalty function is convex in x, then the overall objective function
is convex, and as the resulting unconstrained optimization problem is convex then, a local
optimum would also be a global optimum. So in that case multi-start would not be needed.

11



* Question 2.2

2 (a) If the problem is characterized as convex, the score for the entire subquestion (a) will be 0
If the problem is first simplified”, the score for the entire subquestion (a) will be 0

First of all we transform the maximization problem into a minimization problem, and we
rewrite the constraints: 0.5

min —\xl +Xxp — 2|4

x€R?2
st. —4<x; <4 fori=1,2
X1+x <6
—Xx;1—x <7
As —|-|* = —(-)*is concave, the objective function is not convex: 1.5

Hence, the given problem is nonconvex.

12 (b) As —(-)* is a decreasing function for nonnegative arguments (as is the case here due to
the absolute value), we can maximize the argument instead; we also merge constraint (2)
and (3), which yields: 1  [1]

max |x| +x; — 2|
x€R?

st. —4<x; <4 fori=1,2
—T7<x1+x <6

This leads to 2 linear programming problems: 2 [2]

Pl :maxx; +xp —2
x€R?

st. —4<x; <4 fori=1,2
—T7<x1+x <6
X1+x—22>20

and

P2:max—x;—xp+2=—minx; +xp—2
x€R2 xeR?

st. —4<x;<4 fori=1,2
—7<x1+x<6
X1 +x—2<0

The feasible sets S (magenta) and S, (cyan) of P1 and P2 are given in the following figure:
2 [3]

>Note that simplification can affect convexity: e.g., the problem I%lin | x> is not convex, while the simplified problem
xe[—1,1

min x is convex.
xe[-1,1]

12



1 (c)

S2

. (4,-4)

The boundary lines of the form x +y = ¢ of the feasible sets are also indicated in the
figure.

In order to solve P1 we have to move this line as far up as possible while still have an
intersection with the feasible set. This yields the line between the points (2,4) and (4,2)
as optimal solutions with function value 4: 2 [4]

In order to solve P2 we have to move the line x4y = ¢ as far down as possible while still
have an intersection with the feasible set. This yields the line between the points (—3, —4)
and (—4, —3) as optimal solutions with function value 9: 2 [5]

So the set of globally optimal solutions of the given optimization problem is given by the
line between the points (—3,—4) and (—4,—3): 3  [6]

If due to error, only problem P2 is solved, but P1 is not considered: —6

If only endpoints are given and not the entire line segment in [6]: —2.5

As we have split the original problem in the union of two linear programming problems
and as for each of the two linear programming problems we have determined the set of
globally optimal solutions, the optima we found are indeed globally optimal solutions of
the given problem.

13



¢ Question 2.3
4 Mention/provide at least the following:

[1] multi-objective optimization problem: 1
[2] no other feasible points x such that F(x) < F(x*) and F;(x) < F;(x*): 2

[3] illustrative drawing with some correct explanation: 1

14



