
Worked solutions for Sample Exam 2

“Optimization in Systems and Control” (SC4091)

QUESTION 1: Optimization methods I

Please note that for some questions more than one answer might be correct. However, below

only one answer is listed. Furthermore, the footnotes are for further clarification only and are not

considered to be a required part of the answers.

The various εs appearing in the stopping criteria below are all assumed to be small positive

numbers.

Answers for Question 1

P1. (a) The objective function of this optimization problem is convex in its argument x since it

is the sum of three convex functions:

* |2x1 − x2 + x3 −3x4| is convex since the absolute value function is convex and since

a convex function of an affine function is also convex,

* −6log(5+x1+x2+x3) is convex since − log(x) (and thus also −6log(x)) is a convex

function, and since a convex function of an affine function is also convex,

* x2
4 is convex.

The constraint is also convex since g(x) = x2
1 + x4

2 + x2
3 + x4

4 − 1 is the sum of several

convex functions. Hence, the optimization problem is convex. This implies that a suited

optimization algorithm is the ellipsoid method (M12).

(b) For the ellipsoid method a suited stopping criterion is

| f (xk)− f (x∗)| ≤ ε f , ‖xk − x∗‖2 ≤ εx and g(xk)≤ εg ,

where xk is the current iteration point, x∗ is the (yet unknown) optimum of this optimization

problem, f denotes the objective function, and the constraint function g is as defined above.

P2. (a) This maximization problem can be transformed into a minimization problem by con-

sidering the opposite of the objective function. This results in

min
x∈R4

−
x1 + x2

2 − x1x2 − x3
3 +2x4

1+5

√

x4
1 + x6

2 + x8
3 + x4

4

. (1)

This problem is an unconstrained optimization problem with a non-convex objective func-

tion (e.g., due to the presence of −x3
3). Hence, a multi-start method is required. The
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gradient and the Hessian of the objective function can be computed analytically. This im-

plies that a suited optimization algorithm is multi-start Levenberg-Marquardt1 (M6).

(b) The most appropriate stopping criterion is

‖∇ f (xk)‖2 ≤ ε ,

where xk is the current iteration point and f is the objective function of the optimization

problem (1).

P3. (a) This maximization problem can be transformed into a minimization problem by con-

sidering the opposite of the objective function. The objective function of the resulting

minimization problem is non-convex (e.g., due to the cos term). Hence, we have a nonlin-

ear, non-convex optimization problem and therefore a multi-start method is required.

The constraints of the problem can also be simplified somewhat: Since log is a non-

decreasing function the first constraint can be recast as follows:

exp(−2)≤ 1+3x2
1 +2x2

2 +8x2
3 ≤ exp(3)

The second constraint can be rewritten as −4 ≤ xi ≤ 4 for i = 1,2, . . . ,5.

The gradient and Hessian of the objective function and the Jacobian of the constraints can

be computed analytically. This implies that a suited optimization algorithm is multi-start

sequential quadratic programming (M3).

(b) The most appropriate stopping criterion is2: there exists a µk such that

‖∇ f (xk)+∇g(xk)µk ‖2 ≤ ε1

|µT
k g(xk) | ≤ ε2

µk ≥−ε3

g(xk)≤ ε4

where xk is the current iteration point, f is the objective of the minimization problem,

and g is the inequality constraint function (written in the form g(x) ≤ 0) of the simplified

optimization problem.

P4. (a) By introducing a dummy variable t and adding extra constraints the problem

1The Levenberg-Marquardt algorithm is to be preferred above the BFGS quasi-Newton method since the

Levenberg-Marquardt algorithm uses the exact Hessian (i.e., 2nd-order information) whenever possible, whereas

the BFGS method uses an approximation of the Hessian based on function values and gradients (i.e., 1st-order

information).
2There are no equality constraints; so the equality constraint function h does not appear here.
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minx∈R4 max(|x1|,2|x2|,3|x3|,4|x4|) can be recast as

min
t∈R,x∈R4

t

subject to − t ≤ x1 ≤ t

− t ≤ 2x2 ≤ t

− t ≤ 3x3 ≤ t

− t ≤ 4x4 ≤ t .

(2)

This is a linear programming problem. The constraints of the original problem can be

recast as

x1 + x2 + x3 + x4 ≤ 9

and

−6 ≤ x1 + x2 − x3 −6x4 ≤ 6 .

Adding these constraints to the problem (2) still results in a linear programming problem.

So a suited optimization algorithm is the simplex algorithm (M1).

(b) Since the simplex algorithm finds the optimal solution in a finite number of steps, no

stopping criterion is required3.

P5. (a) This problem is an unconstrained nonlinear least-squares problem. Since the problem

is non-convex, a multi-start method is required. The gradients and Hessians of the compo-

nents of the error function can be computed analytically. Hence, an appropriate method is

the multi-start Gauss-Newton least-squares algorithm (M5).

(b) An appropriate stopping criterion is

‖∇e(θk)‖2 ≤ ε ,

where e denotes the error function (i.e., the optimization problem is of the form

minθ∈R7 ‖e(θ)‖2).

P6. (a) The objective function is a quadratic function. It is convex since it can be written as
1
2
xTHx+ cx+d with

H =





8 4 6

4 10 2

6 2 6





and with H positive definite (since its leading principal minors all have positive determi-

nants).

The first constraint of the given optimization problem is convex4 since g(x) = x2
1 + 2x2

2 +

3However, in practice a maximum number of iterations is usually specified.
4This constraint cannot be further simplified into a linear constraint. Hence, the problem is not a quadratic

programming problem.
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6x2
3 −4 is a convex function. Indeed, the scalar functions xi 7→ x2

i and x 7→ −4 are convex,

and a weighted sum of convex function with positive weights is also convex.

The second constraint of the given optimization problem can be recast as two linear — and

thus convex — inequality constraints.

So the problem is a convex optimization problem. This implies that a suited optimization

algorithm is the ellipsoid method (M12).

(b) For the ellipsoid method a suited stopping criterion is

| f (xk)− f (x∗)| ≤ ε f , ‖xk − x∗‖2 ≤ εx and g(xk)≤ εg ,

where xk is the current iteration point, x∗ is the (yet unknown) optimum of this optimization

problem, f is the objective function, and g contains the inequality constraints (in the form

g(x)≤ 0).

P7. (a) The objective function is nonlinear and non-convex. Hence, we have a nonlinear,

non-convex optimization problem and therefore a multi-start optimization algorithm is re-

quired. The constraints are linear. Computing an analytic expression for the gradient of

the objective function is not easy. Furthermore, evaluating the function requires numerical

integration, which is computationally expensive. This implies that it is not recommended

to compute the gradient of the objective function analytically or numerically. As a con-

sequence, a gradient-free optimization method is recommended. By using a penalty or

barrier function we can transform the problem into an unconstrained optimization prob-

lem. The most suited algorithm for this constrained optimization problem is a multi-start

penalty function method + line search method with Powell directions and line minimiza-

tion using parabolic interpolation (M11).

(b) A suited stopping criterion is5

| f (xk+1)− f (xk)| ≤ ε f and ‖xk+1 − xk‖2 ≤ εx ,

where f is the objective function of the unconstrained problem (so it also includes the

penalty term).

P8. (a) Since the objective function is nonlinear and non-convex (e.g., due to the x3
1 term),

we have a nonlinear, non-convex optimization problem. This implies that a multi-start

method is required. It is not possible to eliminate one of the variables from the equality

constraint. Therefore, the Lagrange method can be used to transform the problem into an

unconstrained problem. The gradient and Hessian of the objective function of the resulting

unconstrained optimization problem can be computed analytically. This implies that a

suited optimization algorithm is a multi-start Lagrange method + Levenberg-Marquardt

algorithm (M9).

5We cannot use the gradient here as we have argued in part (a) that the gradient should not be used.
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(b) The most appropriate stopping criterion is

‖∇ f (xk)+∇h(xk)λk‖2 ≤ ε1

‖h(xk)‖2 ≤ ε2 ,

where f and h are respectively the objective function and the equality constraint function of

the original constrained problem (with the equality constraint written in the form h(x) = 0).

P9. (a) First denote the quadratic argument inside the brackets by g. So g(x) = 7x2
1 + 2x2

2 +
x2

3 − 4x1x2 + 2x2x3 + 1. Note that g can also be rewritten as a sum of squares: g(x) =
3x2

1 +(2x1−x2)
2+(x2+x3)

2+1. So g is a nonnegative function. Now, since the function

h defined by h(y) = y
1
3 is a non-decreasing function for y ≥ 0, we can simplify the problem

to the minimization of g subject to the given constraints. The (convex) constraint ‖x‖1 ≤ 1

or equivalently |x1|+ |x2|+ |x3| ≤ 1 can be recast as a collection of 23 = 8 linear constraints:

x1 + x2 + x3 ≤ 1

x1 + x2 − x3 ≤ 1

x1 − x2 + x3 ≤ 1

x1 − x2 − x3 ≤ 1

−x1 + x2 + x3 ≤ 1

−x1 − x2 + x3 ≤ 1

−x1 + x2 − x3 ≤ 1

−x1 − x2 − x3 ≤ 1 .

This implies that we have a (convex) quadratic optimization problem. Therefore, a suited

optimization algorithm is the modified simplex algorithm for quadratic programming (M2).

(b) Since the modified simplex algorithm finds the optimal solution in a finite number of

steps, no stopping criterion is required.6

P10. (a) Since the function g defined by g(y) = 2y is a non-decreasing function, we can simplify

the problem to the minimization of |x1|+ |x2|+ |x3| subject to the given constraints. It is

moreover easy to verify that the constraints are linear: the first constraint can be recast as

x1 − x2 + 8 ≥ 5, 9− 2x1 + 3x2 ≥ 5, and the second constraint can be recast as (x1 + x2 −
x3 − 6)2 ≤ acosh(100) or as −

√

acosh(100) ≤ x1 + x2 − x3 − 6 ≤
√

acosh(100), where

acosh denotes the inverse of cosh. By introducing 3 dummy variables α1, α2, and α3,

considering the objective function α1 +α2 +α3 and adding the constraints αi ≥ |xi| for

i = 1,2,3 or equivalently, αi ≥ xi and αi ≥ −xi for i = 1,2,3 we end up with a linear

optimization problem. Therefore, a suited optimization algorithm is the simplex algorithm

for linear programming (M1).

6However, in practice a maximum number of iterations is usually specified.
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(b) Since the simplex algorithm finds the optimal solution in a finite number of steps, no

stopping criterion is required.

Answers for Question 2

The gradient of the objective function f is given by

∇ f (x) =





8x1 +4x2 +6x3 −1

4x1 +10x2 +2x3 +1

6x1 +2x2 +6x3



 .

The Hessian of f is given by

H(x) =





8 4 6

4 10 2

6 2 6



 .
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QUESTION 2: Optimization methods II

Answer for Question a)

[ Here we essentially expect a summary of Section 4.3 of the lecture notes including figures like

R
C

E

R = Reflection

E = Expansion

C = Contraction

x0

x1

x2

x3
xcenter

and like Figure 4.5, and an explanation of these figures. Be sure to mention and/or define the

following elements: simplex, n+1 points in R
n, point reflection of the point with largest function

value around center of the other points, xnew = xcenter + d with d = xcenter − xlargest function value,

iteration results in non-increasing sequence of function values, stop if reflection does not yield

a smaller function value any longer, extensions: contraction and expansion, formula: xnew =
xcenter +αd with α < 1 for contraction and α > 1 for expansion.]

Answer7 for Question b)

The initial simplex is defined by the points (0,0), (0,1), and (1,0). We have f (0,0) = 0,

f (0,1) = −1, f (1,0) = −3. So (0,0) is the point with the largest function value. Hence, we

reflect (0,0) around the center of (0,1), and (1,0), i.e., around (1
2
,

1
2
). This yields the point (1,1)

and a new simplex defined by the points (0,1), (1,0), (1,1).

We have f (1,1) = −5. So (0,1) is now the point with the largest function value. Hence, we

reflect (0,1) around the center of (1,0), and (1,1), i.e., around (1, 1
2
). This yields the point (2,0)

and a new simplex defined by the points (1,0), (1,1) and (2,0).

We have f (2,0) =−4. Now (1,0) is the point with the largest function value. Hence, we reflect

(1,0) around the center of (1,1), and (2,0), i.e., around (3
2
,

1
2
). This yields the point (2,1) and a

new simplex defined by the points (1,1), (2,0) and (2,1). We have f (2,1) =−7.

7For completeness we also provide here a figure illustrating the various steps:

(0,0)

(0,1)

(1,0)

(1,1) (2,1)

(2,0) x 1

2
x
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QUESTION 3: Controller design

Answer for Question a)

We have

y(k) = d(k)+P(q)
(
dp(k)−K(q)

(
ds(k)+ y(k)

))

= d(k)+P(q)dp(k)−P(q)K(q)ds(k)−P(q)K(q)y(k) .

Hence,

y(k) =
(
1+P(q)K(q)

)−1(
d(k)+P(q)dp(k)−P(q)K(q)ds(k)

)
.

We have

v(k) = K(q)
(
ds(k)+d(k)+P(q)

(
dp(k)− v(k)

))

= K(q)ds(k)+K(q)d(k)+K(q)P(q)dp(k)−K(q)P(q)v(k) .

Hence,

v(k) =
(
1+P(q)K(q)

)−1(
K(q)d(k)+K(q)P(q)dp(k)+K(q)ds(k)

)
.

So

M(q) =
(
1+P(q)K(q)

)−1

[
1 P(q) −P(q)K(q)

K(q) K(q)P(q) K(q)

]

.

Answer for Question b)

First we consider the expression (1+PK)−1 (where for the sake of simplicity of notation we have

dropped the q operator as argument). Substituting K = Q(1−PQ)−1 results in (1+PK)−1 =
(
1+ PQ

1−PQ

)−1
=
(
(1−PQ)−1

)−1
= 1−PQ. So

M = (1−PQ)

[

1 P −PQ(1−PQ)−1

Q(1−PQ)−1 Q(1−PQ)−1P Q(1−PQ)−1

]

=

[
1−PQ (1−PQ)P −PQ

Q QP Q

]

.

So the entries of M consist of sums and products of stable transfer functions (i.e., P and Q) and

since the set of stable transfer functions is closed under addition and multiplication, this implies

that all entries of M are stable.
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Answer for Question c)

We have M11 = 1−PQ. So in order to prove that the constraint ‖M11‖∞ ≤ 1 is closed-loop

convex, we have to prove that for all rational stable transfer functions Q1 and Q2 such that ‖1−
PQ1‖∞ ≤ 1 and ‖1−PQ2‖∞ ≤ 1 and for all λ ∈ [0,1] we have ‖1−P

(
(1−λ )Q1+λQ2

)
‖∞ ≤ 1.

Since

‖1−P((1−λ )Q1 +λQ2)‖∞ = ‖1−λ +λ −P
(
(1−λ )Q1 +λQ2

)
‖∞

= ‖(1−λ )+λ − (1−λ )PQ1 −λPQ2)‖∞

= ‖(1−λ )(1−PQ1)+λ (1−PQ2)‖∞

≤ ‖(1−λ )(1−PQ1)‖∞ +‖λ (1−PQ2)‖∞ (by the triangle inequality)

≤ |1−λ |‖1−PQ1‖∞
︸ ︷︷ ︸

≤1

+|λ |‖1−PQ2‖∞
︸ ︷︷ ︸

≤1

≤ |1−λ |+ |λ |

≤ 1−λ +λ (since 0 ≤ λ ≤ 1)

≤ 1 ,

the constraint ‖M11‖∞ ≤ 1 is indeed closed-loop convex.
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