
Optimization: Nonlinear Optimization with

Constraints
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Constraints in nonlinear optimization

Equality constraints

Linear equality constraints

Nonlinear equality constraints

Inequality constraints

Linear inequality constraints

Nonlinear inequality constraints
◮ penalty/barrier function
◮ SQP: Sequential Quadratic Programming
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Equality constraints

Linear constraints → Elimination

min
x∈Rn

f (x) , where Ax = b

x = x0 + ĀT x̄

such that Ax0 = b and AĀT = 0

min
x̄∈R(n−m)

f (x0 + ĀT x̄)

Use SVD (Singular Value Decomposition):

A = U
[
Σ 0

]
[
V T
1

V T
2

]

= U ΣV T
1

Define Ā = V T
2 and x0 = V1Σ

−1 UT b
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Equality constraints

Nonlinear equality constraints

min
x∈Rn

f (x) subject to h(x) = 0

Consider the function f (x) + λT h(x)

Note that zero-gradient condition for f (x) + λT h(x), i.e.,

∇x ,λ

(

f (x) + λT h(x)
)

= 0

is equivalent to Lagrange conditions

∇x f (x) +∇x h(x)λ = 0

∇λ

(

λT h(x)
)

= h(x) = 0
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Equality constraints

Unfortunately, it can be shown that local minima of
minx f (x) s.t. h(x) = 0 correspond to saddle points of f (x) + λT h(x)

So solving minx ,λ f (x) + λT h(x) does not work

However, to obtain points that satisfy zero-gradient condition

∇x ,λ

(

f (x) + λT h(x)
)

= 0

we can equivalently solve

min
x ,λ

∥
∥
∥∇x ,λ

(
f (x) + λT h(x)

)
∥
∥
∥

2

2

→ unconstrained optimization problem!
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Inequality constraints

min
x∈Rn

f (x) s.t. g(x) 6 0

Elimination

Mapping Φ : x̄ → x such that

{ x = Φ(x̄), x̄ ∈ R
m } = { x | x ∈ R

n , g(x) 6 0 }

New unconstrained minimization problem

min
x̄∈Rm

f
(

Φ(x̄)
)
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Gradient projection method

Linear inequality constraints: minx∈Rn f (x) s.t. Ax − b 6 0

What if −∇f (xk) points outside feasible region in boundary point xk?

For boundary point xk : aTj xk = bj for j ∈ A → “active”

aTj xk < bj for j 6∈ A

Rows indexed by A → submatrices Aa and ba with

Aa xi = ba

Define projection matrix:

P = I − AT
a (Aa A

T
a )

−1Aa

New search direction:
dk = −P ∇f (xk)

One-dimensional minimization problem:

min
s∈R

f (xk + dk s) s.t. A (xk + dk s)− b 6 0
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Gradient projection method (continued)
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Inequality constraints — Penalty/barrier function

Nonlinear inequality constraints

min
x∈Rn

f (x) , where g(x) 6 0

Ideally: feasibility function ffeas(x) given by

ffeas(x) = 0 if max
i

gi (x) 6 0 (or: g(x) 6 0)

ffeas(x) = ∞ if max
i

gi (x) > 0 (or: g(x) 66 0)

Unconstrained minimization:

min
x

(

f (x) + ffeas(x)
)

Feasibility function is not smooth !!

Penalty function

Barrier function
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Penalty function

fpen(x) = 0 for max
i

gi (x) 6 0

fpen(x) ≫ 0 for max
i

gi (x) > 0

Examples of penalty functions are:

fpen = β

m∑

i=1

max
(

0, gi (x)
)

, β ≫ 1

fpen = β

m∑

i=1

max
(

0, gi (x)
)2

, β ≫ 1

fpen = max
i

max(0, eβ gi (x) − 1)2 , β ≫ 1
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Barrier function

fbar(x) ≈ 0 for max
i

gi (x) ≪ 0

fbar(x) −→ ∞ for max
i

gi (x) ↑ 0

usually undefined for maxi gi (x) > 0

Examples of barrier functions are:

fbar = −
1

β

m∑

i=1

ln
(

−gi (x)
)

, β > 1

fbar = −
1

β

m∑

i=1

1

gi (x)
, β > 1

fbar = −
1

β
ln
(

−max
i

gi (x)
)

, β > 1
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Penalty & barrier functions

−1 0 1

f + fpen f + fbar f + ffeas

f
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Sequential Quadratic Programming

State-of-the art algorithm for

min
x

f (x) s.t. g(x) 6 0

Idea 1:
approximate f by quadratic function, g by linear function
→ does not always work in practice

Idea 2:
use Lagrange function:

L(x , λ) = f (x) + λT g(x)

⇒ min
x

L(x , λ) s.t. g(x) 6 0

zero-gradient condition: ∇xL(x , λ) = 0
=

first Karush-Kuhn-Tucker condition: ∇f (x) + λT∇g(x) = 0
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SQP (continued)

Quadratic approximation for L:

L(x , λk) ≈ L(xk , λk) +∇T
x L(xk , λk) (x − xk)

︸ ︷︷ ︸

d

+

1

2
(x − xk)

T

︸ ︷︷ ︸

dT

HL(xk , λk) (x − xk)
︸ ︷︷ ︸

d

Linear approximation of g :

g(x) = g(xk) +∇Tg(xk) (x − xk)
︸ ︷︷ ︸

d

→ quadratic programming problem in d

Note: In literature ∇f (xk) is mostly used instead of ∇xL(xk , λk) in
quadratic objective function since this yields better performance
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SQP algorithm

1 Current point: xk , λk
2 Compute (approximations) of ∇f (xk) and HL(xk , λk): Gk ,Hk

3 Define d = x − xk and solve QP:

min
d

1

2
dTHk d + GT

k d

s.t. g(xk) +∇Tg(xk)d 6 0

⇒ dk = d∗, ∆k = λ∗ − λk
with λ∗ the optimal Lagrange multiplier for the QP

4 Perform line search: sk = argmins ψ(xk + s dk)
with, e.g., ψ = f + fpen

5 Define the new estimate: xk+1 = xk + sk dk

λk+1 = λk + sk ∆k

6 If not optimal, goto step 1.
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Summary

Nonlinear optimization with constraints: Standard form

min
x

f (x)

s.t. h(x) = 0

g(x) 6 0

Main solution approaches:
◮ Elimination of constraints!
◮ Nonlinear equality constraints → Lagrange
◮ Linear inequality constraints → gradient projection
◮ Nonlinear inequality constraints → penalty or barrier function, SQP

Nonlinear Optimization with Constraints 16 / 16


