Optimization: Nonlinear Optimization with Constraints

Constraints in nonlinear optimization

Equality constraints

- Linear equality constraints
- Nonlinear equality constraints

Inequality constraints

- Linear inequality constraints
- Nonlinear inequality constraints
 - penalty/barrier function
 - SQP: Sequential Quadratic Programming

Equality constraints

Linear constraints \rightarrow Elimination

$$\min_{x\in\mathbb{R}^n} f(x) , \text{ where } Ax = b$$

$$x = x_0 + \bar{A}^T \bar{x}$$

such that $Ax_0 = b$ and $A\overline{A}^T = 0$

$$\min_{\bar{x}\in\mathbb{R}^{(n-m)}}f(x_0+\bar{A}^T\,\bar{x})$$

Use SVD (Singular Value Decomposition):

$$A = U \begin{bmatrix} \Sigma & 0 \end{bmatrix} \begin{bmatrix} V_1^T \\ V_2^T \end{bmatrix} = U \Sigma V_1^T$$

Define $\overline{A} = V_2^T$ and $x_0 = V_1 \Sigma^{-1} U^T b$

Equality constraints

Nonlinear equality constraints

 $\min_{x \in \mathbb{R}^n} f(x) \quad \text{subject to} \ h(x) = 0$

Consider the function $f(x) + \lambda^T h(x)$

Note that zero-gradient condition for $f(x) + \lambda^T h(x)$, i.e.,

$$\nabla_{x,\lambda}\left(f(x)+\lambda^T h(x)\right)=0$$

is equivalent to Lagrange conditions

$$\nabla_{x} f(x) + \nabla_{x} h(x) \lambda = 0$$
$$\nabla_{\lambda} \left(\lambda^{T} h(x) \right) = h(x) = 0$$

Equality constraints

Unfortunately, it can be shown that local minima of $\min_x f(x)$ s.t. h(x) = 0 correspond to saddle points of $f(x) + \lambda^T h(x)$

So solving $\min_{x,\lambda} f(x) + \lambda^T h(x)$ does not work

However, to obtain points that satisfy zero-gradient condition

$$abla_{x,\lambda}\left(f(x)+\lambda^T h(x)\right)=0$$

we can equivalently solve

$$\min_{x,\lambda} \left\| \nabla_{x,\lambda} (f(x) + \lambda^T h(x)) \right\|_2^2$$

 \rightarrow unconstrained optimization problem!

Inequality constraints

$$\min_{x\in\mathbb{R}^n}f(x) \quad \text{s.t.} \ g(x)\leqslant 0$$

Elimination

Mapping $\Phi: \bar{x} \to x$ such that

$$\{x = \Phi(\bar{x}), \ \bar{x} \in \mathbb{R}^m\} = \{x \mid x \in \mathbb{R}^n, \ g(x) \leq 0\}$$

New unconstrained minimization problem

$$\min_{\bar{x}\in\mathbb{R}^m} f\left(\Phi(\bar{x})\right)$$

Gradient projection method

Linear inequality constraints: $\min_{x \in \mathbb{R}^n} f(x)$ s.t. $Ax - b \leq 0$

What if $-\nabla f(x_k)$ points outside feasible region in boundary point x_k ?

For boundary point
$$x_k$$
: $a_j^T x_k = b_j$ for $j \in \mathcal{A} \rightarrow$ "active"
 $a_j^T x_k < b_j$ for $j \notin \mathcal{A}$

Rows indexed by $\mathcal{A}
ightarrow$ submatrices \mathcal{A}_{a} and b_{a} with

$$A_{a} x_{i} = b_{a}$$

Define projection matrix:

$$P = I - A_{\mathsf{a}}^{\mathcal{T}} (A_{\mathsf{a}} A_{\mathsf{a}}^{\mathcal{T}})^{-1} A_{\mathsf{a}}$$

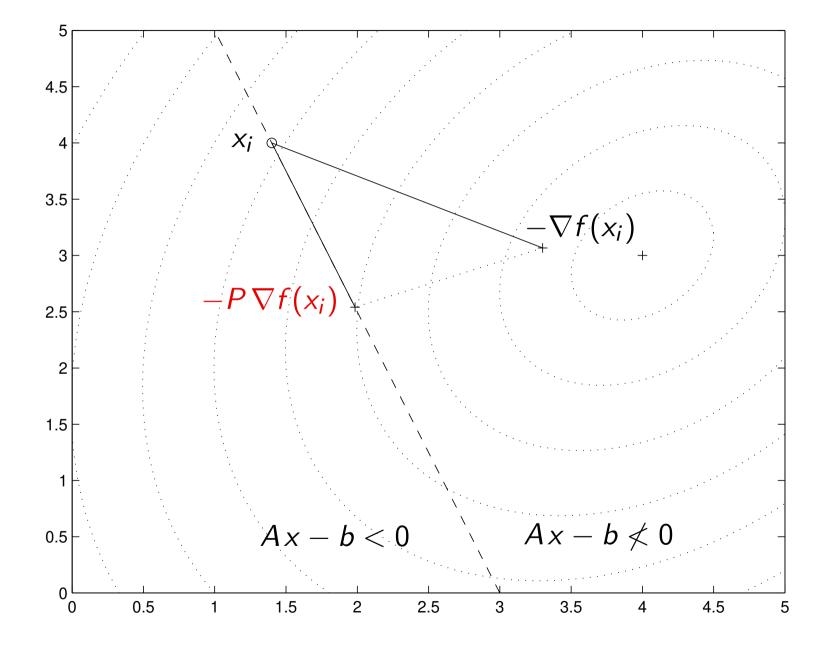
New search direction:

$$d_k = -P \,\nabla f(x_k)$$

One-dimensional minimization problem:

$$\min_{s\in\mathbb{R}}f(x_k+d_k\,s)\qquad \text{s.t.}\quad A(x_k+d_k\,s)-b\leqslant 0$$

Gradient projection method (continued)



Inequality constraints — Penalty/barrier function

Nonlinear inequality constraints

$$\min_{x\in\mathbb{R}^n}f(x)$$
, where $g(x)\leqslant 0$

Ideally: *feasibility* function $f_{feas}(x)$ given by

$$f_{\text{feas}}(x) = 0 \quad \text{if } \max_{i} g_i(x) \leq 0 \quad (\text{or: } g(x) \leq 0)$$
$$f_{\text{feas}}(x) = \infty \quad \text{if } \max_{i} g_i(x) > 0 \quad (\text{or: } g(x) \leq 0)$$

Unconstrained minimization:

$$\min_{x} \left(f(x) + f_{\mathsf{feas}}(x) \right)$$

Feasibility function is not smooth !!

- Penalty function
- Barrier function

Penalty function

$$f_{\text{pen}}(x) = 0$$
 for $\max_{i} g_i(x) \leq 0$
 $f_{\text{pen}}(x) \gg 0$ for $\max_{i} g_i(x) > 0$

Examples of penalty functions are:

$$f_{\mathsf{pen}} = eta \, \sum_{i=1}^m \max\left(\, 0, g_i(x) \,
ight) \, , \quad eta \gg 1$$

$$f_{\text{pen}} = \beta \sum_{i=1}^{m} \max\left(0, g_i(x)\right)^2, \quad \beta \gg 1$$
$$f_{\text{pen}} = \max_i \max(0, e^{\beta g_i(x)} - 1)^2, \quad \beta \gg 1$$

Barrier function

$$f_{\text{bar}}(x) \approx 0$$
 for $\max_{i} g_{i}(x) \ll 0$
 $f_{\text{bar}}(x) \longrightarrow \infty$ for $\max_{i} g_{i}(x) \uparrow 0$

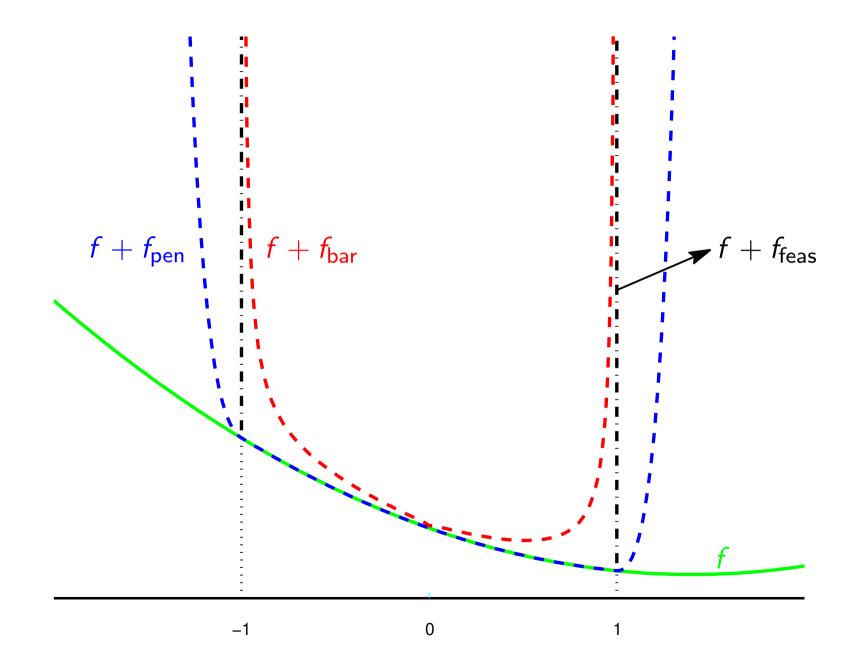
usually undefined for $\max_i g_i(x) \ge 0$

Examples of barrier functions are:

$$f_{\mathsf{bar}} = -rac{1}{eta} \sum_{i=1}^m \ln\left(-g_i(x)
ight) \ , \quad eta > 1$$

$$f_{ ext{bar}} = -rac{1}{eta} \sum_{i=1}^m rac{1}{g_i(x)} \ , \quad eta > 1$$
 $f_{ ext{bar}} = -rac{1}{eta} \ln \left(- \max_i g_i(x)
ight) \ , \quad eta > 1$

Penalty & barrier functions



Sequential Quadratic Programming

State-of-the art algorithm for

$$\min_{x} f(x) \quad \text{s.t.} \quad g(x) \leqslant 0$$

<u>ldea 1</u>:

approximate f by quadratic function, g by linear function \rightarrow does not always work in practice

Idea 2:

use Lagrange function:

$$L(x,\lambda) = f(x) + \lambda^T g(x)$$

 $\Rightarrow \min_{x} L(x,\lambda) \text{ s.t. } g(x) \leq 0$

zero-gradient condition: $\nabla_x L(x, \lambda) = 0$

first Karush-Kuhn-Tucker condition: $\nabla f(x) + \lambda^T \nabla g(x) = 0$

SQP (continued)

Quadratic approximation for *L*:

$$L(x,\lambda_k) \approx L(x_k,\lambda_k) + \nabla_x^T L(x_k,\lambda_k) \underbrace{(x-x_k)}_{d} + \underbrace{\frac{1}{2} \underbrace{(x-x_k)^T}_{d} H_L(x_k,\lambda_k) \underbrace{(x-x_k)}_{d}}_{d}$$

Linear approximation of g:

$$g(x) = g(x_k) + \nabla^T g(x_k) \underbrace{(x - x_k)}_d$$

 \rightarrow quadratic programming problem in d

<u>Note</u>: In literature $\nabla f(x_k)$ is mostly used instead of $\nabla_x L(x_k, \lambda_k)$ in quadratic objective function since this yields better performance

SQP algorithm

- Current point: x_k, λ_k
- **2** Compute (approximations) of $\nabla f(x_k)$ and $H_L(x_k, \lambda_k)$: G_k , H_k
- **③** Define $d = x x_k$ and solve QP:

$$\min_{d} \frac{1}{2} d^{T} H_{k} d + G_{k}^{T} d$$

s.t. $g(x_{k}) + \nabla^{T} g(x_{k}) d \leq 0$

 $\Rightarrow d_k = d^*$, $\Delta_k = \lambda^* - \lambda_k$ with λ^* the optimal Lagrange multiplier for the QP

- Perform line search: $s_k = \arg \min_s \psi(x_k + s d_k)$ with, e.g., $\psi = f + f_{pen}$
- **(5)** Define the new estimate: $x_{k+1} = x_k + s_k d_k$

$$\lambda_{k+1} = \lambda_k + s_k \, \Delta_k$$

If not optimal, goto step 1.

Summary

• Nonlinear optimization with constraints: Standard form

$$min_{x} f(x)$$

s.t. $h(x) = 0$
 $g(x) \leq 0$

- Main solution approaches:
 - Elimination of constraints!
 - Nonlinear equality constraints \rightarrow Lagrange
 - Linear inequality constraints \rightarrow gradient projection
 - Nonlinear inequality constraints \rightarrow penalty or barrier function, SQP