
Optimization: Integer Optimization

Integer Optimization 1 / 23

Integer optimization

Integer optimization:

min
x

f (x)

s.t. h(x) = 0
g(x) 6 0

where
x =

[

xr
xi

]

xr ∈ R
nr , xi ∈ Z

ni

Types of integer optimization problems:

Mixed integer optimization problem: nr, ni > 0

All integer optimization problem: nr = 0

Mixed integer linear programming (MILP):

min
x

cT x

s.t. Ax 6 b
where

x =

[

xr
xi

]

xr ∈ R
nr , xi ∈ Z

ni

Integer Optimization 2 / 23

Approximation using real values only?

Integer parameters may represent various quantities:

1 number of smart phones produced by a factory per year
→ approximation by a real value will probably cause

negligible errors

2 number of students that pass the “Modeling and Control of Hybrid
Systems” examination
→ may or may not be approximated by a real value

3 position of a switch in an electric circuit
→ cannot be approximated properly by a real value

Integer Optimization 3 / 23

Approximation using real values only? (continued)

max
x

x1 + 5x2

s.t. x1 + 10x2 6 30

x1 6 3

x1, x2 > 0

x1, x2 ∈ Z

x1

x2

x1 + 5x2 = 15

0 1

1

2

2

3

3

optimal solution

→ rounded solutions not optimal

Integer Optimization 4 / 23

Approximation using real values only? (continued)

max
x

x1 + 5x2

s.t. 38x1 − 25x2 6 19

− 33x1 + 30x2 6 15

x1, x2 > 0

x1, x2 ∈ Z

x1

x2

x1 + 5x2 = 15

0

1

1 2

2

3

3

4

optimal solution

→ rounded solutions not feasible

Integer Optimization 5 / 23

Complexity

Use enumeration?

combinatorial explosion
↔ growth in computer power / parallel computing

Example:

Scheduling 10 batches, 10 machines, 5 days (=120 h)
Allocate machines to batches for each slot of 1 hour:

xijk =

{

1 if batch i uses machine j in slot k

0 otherwise

possibilities: 210·10·120 ≈ 103612

So what?? . . . just use fast computer with parallel processors

Integer Optimization 6 / 23

Complexity (continued)

Processor at size of proton

processors = # protons in universe

Clock period = time for light to traverse proton

Run time is 10 × current age of universe

Number of evaluations ≈ 10168 ↔ 103612 required

⇒ enumeration fails even for small-sized problems

Integer Optimization 7 / 23

Search
Essence of combinatorial optimization: searching through a tree

Start at the top node: no decisions have been made yet

Each decision results in an arc leading to a child node

Leaf: no additional decisions can be made (each leaf represents a
potential solution)

Top node Partial solutions / nodes
❅

❅
❅

Leaf / Solution

Branch

Integer Optimization 8 / 23

Search tree: Example

Consider
min

x1,x2∈{0,1}
f (x1, x2) = min

x1,x2

(

x1 −
1

3

)2

+ (x2 − 1)2

Search tree:

Root node: x1, x2 both real-valued

Intermediate layer: x1 fixed, x2 real-valued

Leaf nodes: x1, x2 both fixed

f ∗ = 0

f ∗ = 10/9 f ∗ = 13/9

f ∗ = 1/9

f ∗ = 1/9

f ∗ = 4/9

f ∗ = 4/9

x1 = 0 x1 = 1

x2 = 0x2 = 0 x2 = 1x2 = 1

Integer Optimization 9 / 23

Tree search
Categorization of optimization techniques based on basic tasks in tree
searching:

search strategy

test for the feasibility and optimality of leaves (i.e., of fully
determined solutions)

Theoretically, these two are sufficient

In order to improve speed of search, four basic refinements can be
recognized:

1 branch pruning

2 branch merging

3 search rearrangement

4 problem decomposition

Integer Optimization 10 / 23

Search strategy

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

a. Breadth-first search

1

2 9

3 6 10 13

4 5 7 8 11 12 14 15

b. Depth-first search

a. Breadth-first search
→ requires large amounts of memory

b. Depth-first search
→ generates single candidate solutions step by step

c. Combination of breadth-first and depth-first

d. Generate fully determined candidate solution in one step
→ only leaves are generated and tested; used in many nonlinear

programming solvers (e.g., hill-climbing and stochastic search)

Integer Optimization 11 / 23

Refinement: Branch pruning

Branch pruning is obtained by test for feasibility and optimality of
nodes (i.e., partial solutions)

If partial solution is rejected, none of its descendants need to be
evaluated. Therefore, a single test (at node) can replace many tests
(at all descendants of the node)

Three basic tests:
1 Test of feasibility of the decisions made so far

2 Test of feasibility of the descendants of this partial solution

3 Evaluation of optimality of a partial solution
(if lower bound for optimum in branch is larger than best solution so
far)

Integer Optimization 12 / 23

Refinement: Branch pruning (continued)

0(1)

5(2)

15 17(3) (8)

18 21 26 18
(4) (7) (9) (10)

20 21 19 22
(5) (6) (11)(12)

25(13)

Branch-and-Bound

First depth-first search yields solution with cost 20. So f ∗←20

While backtracking, other partial solutions are evaluated. If lower
bound on costs of partial solution is higher than f ∗, there is no need
to evaluate any other node of this branch (only the green nodes are
evaluated)

If during search better solution is found, then f ∗ is updated

Integer Optimization 13 / 23

Overview of integer optimization methods

Integer optimization methods

Most important approaches are:

Mixed Integer (Non)-Linear Programming (MI(N)LP)

Dynamic programming

Constraint Logic Programming (CLP)

Heuristic methods

Integer Optimization 14 / 23

Mixed integer linear programming

Mixed Integer Linear Programming (MILP):

min
x

cT x

s.t. Ax 6 b
where x =

[

xr
xi

]

, xr ∈ R
nr , xi ∈ Z

ni

LP relaxation:

min
x

cT x

s.t. Ax 6 b
where xk ∈ R for all k

→ can be solved using, e.g., simplex method
→ solve LP relaxation and round solution (in feasible direction)
→ feasible?

optimal?

cT x∗LP 6 cT x∗MILP → relaxed LP yields lower bound for MILP

Integer Optimization 15 / 23

Basic branch-and-bound algorithm for MILP

Initialization:
U∗ := f (best feasible mixed integer/real solution) = +∞
I: indices of integer variables
solve LP relaxation of original problem → x∗

Iteration:
◮ Branching:

take most recently created subproblem
select branching variable xj (j ∈ I, x

∗

j 6∈ Z)
create two new subproblems with constraints

xj 6
⌊

x∗j
⌋

xj >
⌊

x∗j
⌋

+ 1

◮ Bounding:
compute lower bounds Li using LP relaxation

◮ Pruning: prune branch i if
⋆ Li > U∗

⋆ no feasible solution for LP relaxation
⋆ LP solution x∗ with x∗

j ∈ Z for all j ∈ I

→ set U∗ = min(U∗

, Li)

Stop if no remaining subproblems
Integer Optimization 16 / 23

Example: MILP using branch-and-bound

min
x

20− 4x1 + 2x2 − 7x3 + x4

s.t. x1 + 5x3 6 10

x1 + x2 − x3 6 1

6x1 − 5x2 6 0

−x1 + 2x3 − 2x4 6 3

x1, x2, x3, x4 > 0

x1, x2, x3 ∈ Z

Integer variables: x1, x2, x3, Continuous variable: x4

Initialization: U∗ =∞, I = {1, 2, 3}

LP relaxation:
→ x∗ = [1.25 1.5 1.75 0], L0 = 5.75

Integer Optimization 17 / 23

Example: MILP using branch-and-bound
Iteration 1:

Branching variable: x1 with x∗1 = 1.25

Two new subproblems: P1: P0 + additional constraint x1 6 1
P2: P0 + additional constraint x1 > 2

LP relaxations: P1 → x∗ = [1 1.2 1.8 0], L1 = 5.8
P2 → no feasible solutions → prune

no feasible solutions(1,1.2,1.8,0)

5.8

(1.25,1.5,1.75,0)

5.75
P0

P1 P2x1 6 1 x1 > 2

original MILP

Integer Optimization 18 / 23

Example: MILP using branch-and-bound (cont.)

Iteration 2:

Select subproblem P1 ,

Branching variable: x2 with x∗2 = 1.2

Two new subproblems: P3: P1 + additional constraint x2 6 1
P4: P1 + additional constraint x2 > 2

LP relaxations P3 → x∗ = [0.833 1 1.833 0], L3 = 5.833
P4 → x∗ = [0.833 2 1.833 0], L4 = 7.833

no feasible solutions

(0.83,2,1.83,0)

7.83

(1,1.2,1.8,0)

5.8

5.833
(0.83,1,1.83,0)

(1.25,1.5,1.75,0)

5.75
P0

P1 P2

P3 P4

x1 6 1 x1 > 2

x2 6 1 x2 > 2

original MILP

Integer Optimization 19 / 23

Example: MILP using branch-and-bound (cont.)
Iteration 3:

Select subproblem P3

Branching variable: x1 with x∗1 = 0.833

Two new subproblems: P5: P3 + additional constraint x1 6 0
P6: P3 + additional constraint x1 > 1

LP relaxations P5 → x∗ = [0 0 2 0.5], L5 = 6.5
feasible integer/real solution of MILP
set U∗ = 6.5

P6 → no feasible solutions

Integer Optimization 20 / 23

Example: MILP using branch-and-bound (cont.)

no feasible solutions

no feasible solutions

(0.83,2,1.83,0)

7.83

(1,1.2,1.8,0)

5.8

(0,0,2,0.5)

6.5

5.833
(0.83,1,1.83,0)

(1.25,1.5,1.75,0)

5.75

x1 6 1 x1 > 2

x2 6 1 x2 > 2

x1 6 0 x1 > 1

P0

P1 P2

P3 P4

P5 P6

original MILP

L4 = 7.833 > U∗ ⇒ problem P4 can be fathomed

→ no remaining subproblems

⇒ optimal solution: x = [0 0 2 0.5]

Integer Optimization 21 / 23

Heuristic search techniques

Heuristic search techniques

Random search

Genetic algorithms

Simulated annealing

Tabu search

Randomized algorithms

. . .

→ no guaranteed convergence to (global) optimum
but: “good” solutions on the average

Integer Optimization 22 / 23

Summary

Defined integer optimization + complexity

Search strategies

Integer optimization methods
◮ mixed integer (non)-linear programming

— branch-and-bound
◮ heuristic methods: random, genetic, simulated annealing

Integer Optimization 23 / 23

