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Optimization deals with how to do things in the best possible manner:
@ Design of multi-criteria controllers
Clustering in fuzzy modeling

Trajectory planning of robots

)
)

@ Scheduling in process industry

@ Estimation of system parameters

@ Simulation of continuous time systems on digital computers
)

Design of predictive controllers with input-saturation

Related courses:
@ S5SC42025: Filtering & identification
SC42125: Model predictive control
SC42101: Networked and distributed control systems

WI4227-14: Discrete optimization
WI14410: Advanced discrete optimization
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)
)
e EE4530: Applied convex optimization
)
)




Overview

Three subproblems:

Formulation (other courses):

Translation of engineering demands and requirements into a

mathematically well-defined optimization problem

Optimization procedure:
Choice of right algorithm
Various optimization techniques
Various computer platforms

Initialization & approximation (other courses):
Choice of initial values for parameters
Approximation of problem by more simple one
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Teaching goals

@ Insight into basic operation of optimization algorithms

@ Optimization problem — most efficient and best suited optimization
algorithm

@ Reduce complexity of optimization problem using simplifications
and/or reformulations
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Mathematical framework

mXin f(x)
s.t. h(x) =0
g(x) <0

@ f : objective function
@ X ! parameter vector
@ h(x) =0 : equality constraints

@ g(x) < 0 : inequality constraints

f(x) is a scalar
g(x) and h(x) may be vectors
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@ Unconstrained optimization:
f(x™) = min f(x)

where
x* = argmin f(x)
X

@ Constrained optimization:
f(x*) = min f(x)

h(x*) =0
g(x") <0

where

x* = arg ( mXin f(x)s.t. h(x)=0, g(x) <0 )
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Maximization = Minimization

max /(x)=—min ( — f(x))

X X
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Classes of optimization problems

@ Linear programming
-

WV

mnc x , Ax=b, x>0

X

mnc'  x , Ax<b, x>0
X

@ Quadratic programming

mXin %XTHX—FCTX , Ax=b, x>0

mXin %XTHX—I—CTX , Ax<b, x>0
@ Convex optimization

min f(x) , g(x) <0 where f and g are convex

@ Nonlinear optimization

min f(x) , h(x) =0, g(x) <0

X

where f, h, and g are non-convex and nonlinear
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Convex set

Set C in R" is convex if for all x,y € C, and for all A € [0,1] :

(L-A)x+ Ay €C
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Unimodal function

A function f is unimodal if

a) The domain dom(f) is a convex set.
b) 3 x* € dom(f) such

f(x*) < f(x) ¥x € dom(f)

c) For all xp € dom(f)
there is a trajectory x(\) € dom(f)
with x(0) = xp and x(1) = x*

such that
f(x()\)) < flx) YA€ [0,1]
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Rosenbrock function

f(Xl,XQ) = 100(X2 — X12)2 -+ (1 — X1)2

3000

2500
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Quasiconvex function

A function f is quasiconvex if
a) Domain dom(f) is a convex set

b) For all x,y € dom(f)
and 0 <A<

there holds

f((l — \)x + )\y> < max (f(x), f(y))
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Quasiconvex function

Alternative definition:

A function f is quasiconvex if the sublevel set

L(a)={xedom(f): f(x)<a}

is convex for every real number «
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Convex function

A function f is convex if
a) Domain dom(f) is a convex set.

b) For all x,y € dom(f)
and 0 <A <1

there holds

F((L= Vx4 dy) < (1= 2)F(x) + M(y)
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Convex function

A

f(y)

(1 —Nf(x)+ Af(y)

f(x)
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Test: Unimodal, quasiconvex, convex

Given: Function f with graph
A

Question: f is (check all that apply)

[ ] unimodal

[ ] quasiconvex

[ ] convex
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Gradient and Hessian

Gradient of f:

Hessian of f:

Vf(x) =

H(x) =
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Jacobian

X:. vector
h: vector-valued

- Ohy  Ohy Ohm -
Ox; Ox1 = Oxg
ohy  Oho Ohm
Vh(x)=| 72 o %
Ohy Oh» Ohm
. Ox, Ox, = Oxp A
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Graphical interpretation of gradient

@ Directional derivative of function f in xg in direction of unit vector £:
Dsf(x0) = V' f(x0)-B = ||VF(x0)|]2 cosb
with 6 angle between Vf(xp) and 3

e Dgf(xp) is maximal if Vf(xp) and 3 are parallel
— function values exhibit largest increase in direction of Vf(xp)

— function values exhibit largest decrease in direction of —Vf(xp)
@ —Vf(xp) is called steepest descent direction

e Dgf(xp) is equal to O (i.e., function values f do not change) if
Vf(x) L 8
— VI (xp) is perpendicular to contour line through xp
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Subgradient

Let £ be a convex function.

Vf(xg) is a subgradient of f in xq if
f(x) > f(x) + V(x)(x —xo)

for all x € R"

A f

f(Xo) -+ va(Xo)(X — Xo)
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Positive definite matrices

Let A € R" " be symmetric
A is positive definite (A > 0) if x" Ax > 0 for all x € R"\ {0}
A is positive semi-definite (A > 0) if x" Ax > 0 for all x € R”

Property

@ A > 0 if all its leading principal minors are positive or if all its
eigenvalues are positive

@ A > 0 if all its principal minors are nonnegative or if all its eigenvalues
are nonnegative

Note:

@ principal minor: determinant of submatrix A, consisting of rows and
columns in J

@ leading principal minor: determinant of submatrix A, with
J={1,2,...,k}, k<n
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Classes of optimization problems

@ Linear programming
-

WV

mnc x , Ax=b, x>0

X

mnc'  x , Ax<b, x>0
X

@ Quadratic programming

mXin %XTHX—FCTX , Ax=b , x>0

mXin %XTHX—I—CTX , Ax<b, x>0

@ Convex optimization

min f(x) , g(x) <0 where f and g are convex

@ Nonlinear optimization

min f(x) , h(x) =0, g(x) <0

X

where f, h, and g are non-convex and nonlinear
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Necessary conditions for extremum
— learn by heart!

@ Unconstrained optimization problem: min f(x)
Zero-gradient condition: Vf(x) =0

@ Equality constrained optimization problem: min f(x)
Lagrange conditions: ;t_ h(x) =0
Vf(x)4+ Vh(x)A =0
h(x) =0
@ Inequality constrained optimization problem: min f(x)
Karush-Kuhn-Tucker conditions: ;t_ g(x) <0
Vf(x)+Vg(x)pu+ Vh(x)A =0 h(x) =
p'g(x)=0
w=0
h(x) =0
g(x) <0
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Necessary and sufficient conditions for extremum

@ Unconstrained optimization problem: min f(x)
Vf(x) =0 and H(x) > 0 — local minimum ’
Vf(x) =0 and H(x) < 0 — local maximum
Vf(x) =0 and H(x) indefinite — saddle point

@ Convex optimization problem: min f(x)

Karush-Kuhn-Tucker conditions are s.t. g(x) <0
necessary and sufficient
for global optimum
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Unconstrained optimization

local mininum
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Stopping criteria
@ Linear and Quadratic programming: Finite number of steps

e Convex optimization: |f(xx) — f(x*)| < er, g(xk) < €4, and for
ellipsoid: ||xx — x*||2 < ex

@ Unconstrained nonlinear optimization: |V f(xk)|2 < ev

@ Constrained nonlinear optimization:

| VF(xk) + Vg(xk) u+ Vh(xk) A2 < exr1
w" g(x) | < ek
2 —EKT3
| h(xk) ]2 < ekTa
g(xk) < ekTs

@ Maximum number of steps

@ Heuristic stopping criteria (/ast resort):
Ixrr = xull2 <exor [Fxqa) = )| < er
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Summary

@ Standard form of optimization problem:
min f(x) s.t. h(x) =0, g(x) <0

@ Classes of optimization problems: linear, quadratic, convex, nonlinear
@ Convex sets & functions
@ Gradient, subgradient, and Hessian

@ Conditions for extremum

@ Stopping criteria
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Test: Gradient

Given: Level lines of unimodal function f with minimum x*, a point X,
and vectors vy, v», v3, va, v5, one of which is equal to Vf(xp).

Question: Which vector v; is equal to Vf(xp)?
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