Optimization: Multi-objective optimization

Multi-objective optimization

In practice: vector of objectives that must be traded off in some way:

$$\min_{x \in \mathbb{R}^n} F(x)$$

s.t. $g(x) \leqslant 0$
 $h(x) = 0$

with F a vector-valued function

- Pareto optimality
- Algorithms (\rightarrow scalar objective function)
 - ▶ weighted-sum strategy, *ε*-constraint method, goal attainment

Pareto optimality

 $\min_{x \in \mathbb{R}^n} F(x)$ s.t. $g(x) \leq 0$ h(x) = 0

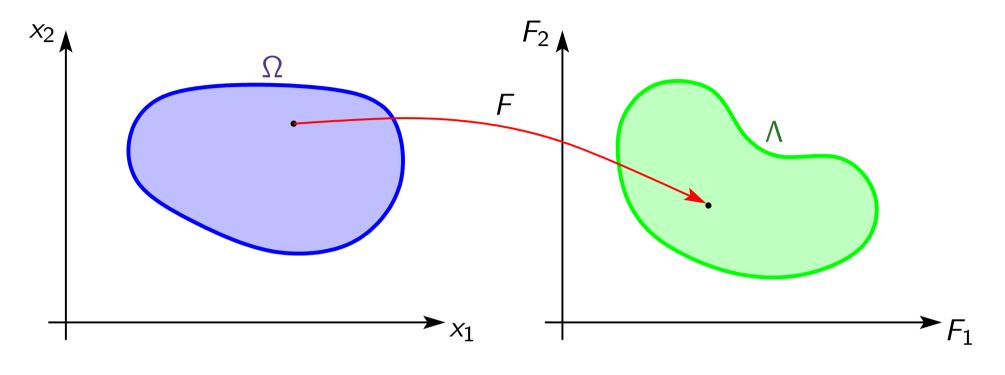
F is vector

- \rightarrow if components of F are competing, no unique solution!
- \rightarrow non-inferior solution (=Pareto optimal point)

 x^* is *Pareto optimal* if there does not exist another feasible point \tilde{x} such that

 $F(\tilde{x}) \leqslant F(x^*)$ and $F_i(\tilde{x}) < F_i(x^*)$ for some *i*

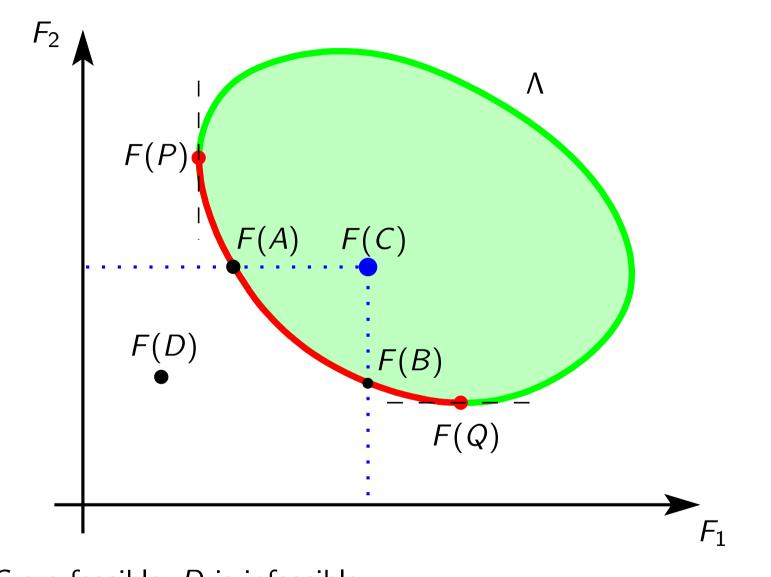
Pareto optimality (continued)



 Ω feasible set for x

 Λ feasible set for F

Pareto optimality (continued)



A, B, C are feasible; D is infeasible A, B are Pareto optimal (i.e., no \tilde{x} with $F(\tilde{x}) \leq F(x^*)$ and $F_i(\tilde{x}) < F_i(x^*)$)

Solution methods for multi-objective optimization

Methods for multi-objective optimization

- \rightarrow generation and selection of Pareto optimal points
- \rightarrow transformation into scalar objective
 - Weighted-sum strategy
 - ε -constraint method
 - Goal attainment method

Weighted-sum strategy

Weighted-sum strategy:

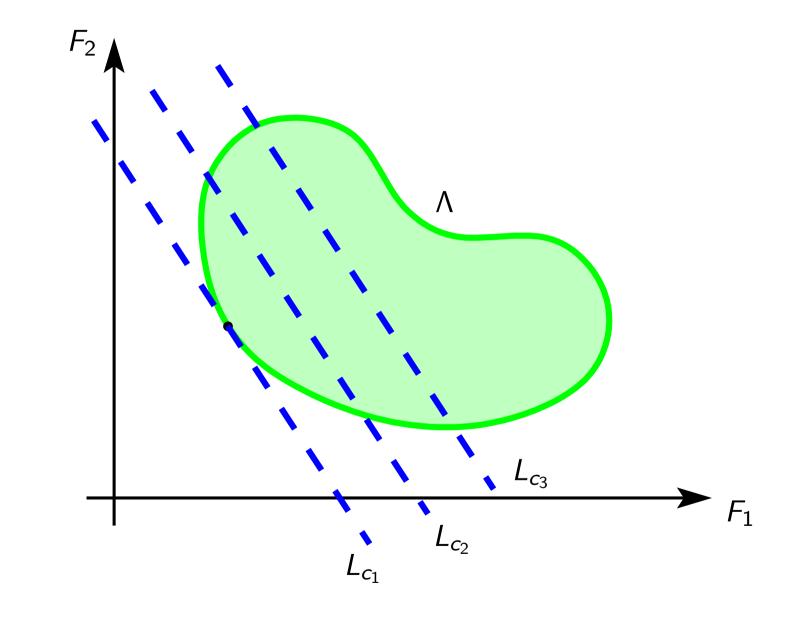
$$\min_{x} \sum_{i=1}^{m} w_i F_i(x)$$

s.t. $g(x) \leq 0$
 $h(x) = 0$

Main problems:

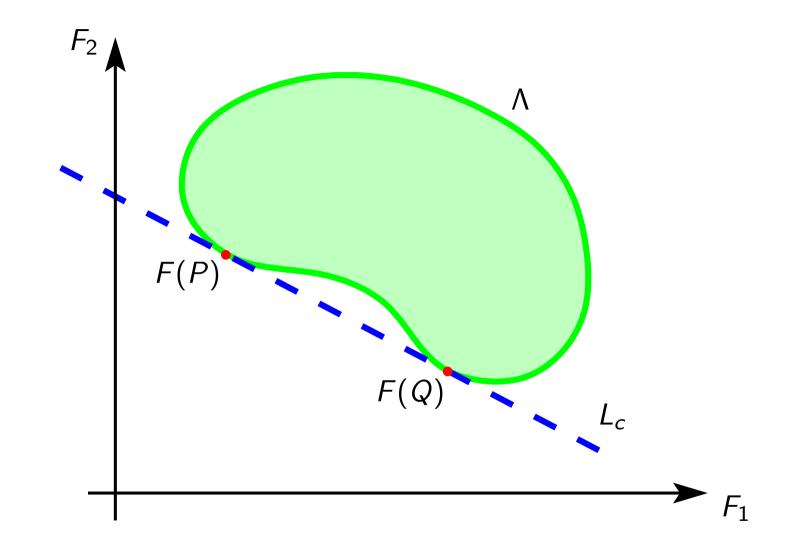
- Assigning appropriate weighting coefficients w_i
- Not all Pareto optimal solutions are accessible by appropriate selection of weights w_i

Weighted-sum strategy (continued)



Line L_c : points for which $w^T F(x) = c$

Weighted-sum strategy (continued)



 \rightarrow Pareto-optimal points between F(P) and F(Q) are not accessible

ε -constraint method

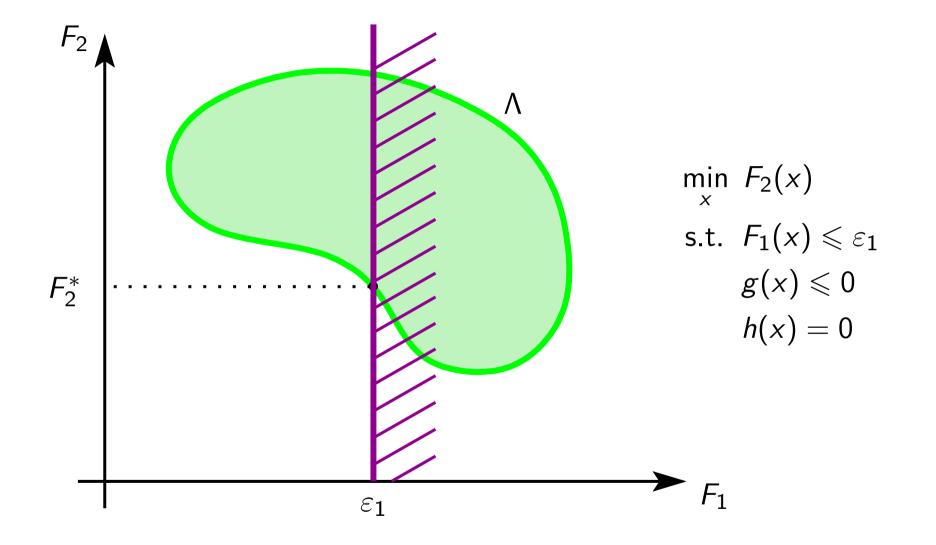
- ε -constraint method:
- \rightarrow minimize primary objective F_{i_p} and express other objectives in form of inequality constraints

$$\min_{x} F_{i_{p}}(x)$$
s.t. $F_{i}(x) \leq \varepsilon_{i}$ for $i = 1, ..., m$ with $i \neq i_{p}$

$$g(x) \leq 0$$

$$h(x) = 0$$

ε -constraint method (continued)



ε -constraint method (continued)

- ε-constraint method is able to identify Pareto optimal solutions that are not obtainable using weighted-sum technique
- Problems:
 - suitable selection of ε e.g., if ε is too small, then maybe no feasible solution
 - hard constraints are used in *ε*-constraint method
 ↔ expressing true design objectives

Goal attainment method

Goal attainment method:

Define vector of design goals:

$$F^{\text{goal}} = [F_1^{\text{goal}} \ F_2^{\text{goal}} \ \dots \ F_m^{\text{goal}}]^T$$

Allow objectives to be under- or overachieved

 \rightarrow designer can be relatively imprecise about initial design goals

Relative degree of under- or over-achievement of goals is controlled by weighting coefficients w

Goal attainment method (continued)

$$\begin{split} \min_{\gamma,x} \gamma \\ \text{s.t.} \ & F_i(x) - w_i \gamma \leqslant F_i^{\text{goal}} \quad \text{for } i = 1, \dots, m \\ & g(x) \leqslant 0 \\ & h(x) = 0 \end{split}$$

- This problem can be solved using, e.g., SQP
- Term $w_i \gamma$ in inequality constraints introduces an element of slackness: $F_i(x) \leq F_i^{\text{goal}} + w_i \gamma$

To introduce hard constraint i': set $w_{i'} = 0$

• Implemented in Matlab: fgoalattain

Summary

• Multi-objective optimization: Standard form

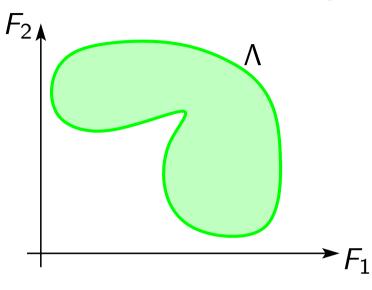
$$\min_{x} F(x)$$

s.t. $g(x) \leq 0$
 $h(x) = 0$

- Pareto optimality
- Algorithms for multi-objective objective optimization problems:
 - weighted-sum strategy
 - ε-constraint method
 - goal attainment
 - \rightarrow scalar optimization problem

Test: Pareto optimal points

Consider vector-valued function F represented by feasible set Λ :



Which of the following red sets is the Pareto optimal set of F?

