Optimization: Summary

Optimization problem

. — most suited algorithm?
Set of algorithms } &

@ Simplification of objective function and/or constraints

@ Determination of most efficient available algorithm

© Determination of stopping criterion
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Simplification of objective function or constraint

No systematic procedure.

Examples:

° min exp(x? + x1x0 + 2x5 + x35)
xeR

s.t. (x1+x +x3)° <9
-
arctan(x; — xpx3) > "

can be recast as:

min x? + x1x2 + 2x5 + X2
x€R3

st. —3<x1+x+x3<3

X1——XQX3;21
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Simplification of objective function/constraint
(continued)

o min [|x||; = min D x| st Ax<b

can be recast as LP:

min Z o Ax < b

! X <«

—X < o

o mXin 1|00 = mXin mlax]x,-] st. Ax < b
can be recast as LP:

mtin t st. Ax<b
X; <t
—X; <t

Also valid with positive weights added (see lecture notes)
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Proof

(1) (2)
min Z xi| = min F1(x) < min Z aj = min F(a)
s.t. Ax< b s.t. Ax<b
—X <«

@ First prove: feasible solution of (1) <« feasible solution of (2)
@ x*: optimal solution of (1), define a* = |x*|
@ X,(: optimal solution of (2)
1 s
&
Suppose &; > |X;| for some j
Set &; = [Xj]

= still feasible, but lower value of F» = impossible
= @&; = |X;| for all j, so & = |X]|
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Proof (continued)

(1) (2)
mXin Z x| = mXin Fi(x) < moinz aj = min F(«)

s.t. Ax< b s.t. Ax<b
—X <«

@ x*,a* is feasible solution of problem (2)
— Fl()?) — FQ(&) < F2(Of*) — Fl(X*)
= X is also optimal solution of (1)

@ X is feasible solution of problem (1)
— Fg(a*) — Fl(X*) < Fl()?) — FQ(&)
= x*, a* is also optimal solution of (2)
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Examples

@ min max(xy, x2, X3, Xa)
X

S.t. ’Xl —|—X2—2X3—|—X4—|—9’ <2

@ minjx|+ |l +|xs

st. x3+x0+x3 >3
X1 —2xp +4x3 > 1

— is LP / can be recast as LP?
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Selection of algorithm

© Linear objective + linear constraints:
simplex (or interior-point, if >1000 variables or constraints)

@ (Convex) quadratic objective + linear constraints:
modified simplex (or interior-point)

© Convex objective + convex constraints:
cutting-plane, ellipsoid, or interior-point

© Multiple local minima:
multi-start local optimization, multi-run simulated annealing, or
multi-run genetic algorithm

© Nonlinear non-convex problems
— use gradient and Hessian if possible!
analytic/numerical computation



Selection of algorithm

@ Nonlinear non-convex, unconstrained:
@ Levenberg-Marquardt or Newton

@ quasi-Newton algorithm
© steepest descent
@ Powell's perpendicular method (or Nelder-Mead)

@ Nonlinear non-convex constrained:

@ equality constraints:
elimination, Lagrange method

@ linear inequality constraints:
gradient projection or SQP

© nonlinear inequality constraints:
SQP, or penalty or barrier function
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Stopping criterion

@ Simplex & modified simplex: finite number of steps
@ Convex optimization algorithms:

F(x7) — F(x)]

[x* — X ||2

EFf, g(Xk) < €

VAN/A

Ex (for ellipsoid)
@ Unconstrained nonlinear optimization: | Vf(xx) |2 < ¢

@ Constrained nonlinear optimization:

| VF(xk) + Vag(xi) p+ Vh(xk) A2 < ekT1
1" g(xi) | < et
[ = —EKT,3
| h(xi) |l2 < exT.4
g(xk) < ekTs
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Stopping criterion (continued)

@ Simulated annealing, genetic algorithm, .. .:
maximum number of iterations

In general, it is recommended to always include this (provided
maximum number is taken large enough)

@ [ast resort:

[ X1 — Xk |2 < exs | Flugr) — Fxe) | < ef

@ Combinations
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Examples

@ max 4x; + bxy — bx3
x€R3

&t.|0g’2X1%—7X2%—5X3‘<;1
‘Xb)Q,X3;2(101

o min3 max (cosh(x1 + X2 + x3), (5x1 — 6x2 + 7x3 + 6)2)
xeR

st |Ix]|> < 10

eX 4 e %
Remark: cosh x =

22
@ max e X% (x? + xyxo + 6x7)
x€ER?

X1X2X3
@ max

mw1+@+é+@

st. x1+x0+x3 =1
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Summary

Optimization problem . .
o . — most suited algorithm?
Set of algorithms

e Simplification of objective function and/or constraints
@ Determination of most efficient available algorithm

@ Stopping criterion
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