
Delft University of Technology
Fac. of Information Technology and Systems Control Systems Engineering

Technical report bds:00-01

Model predictive control for max-min-plus
systems∗

B. De Schutter and T. van den Boom

If you want to cite this report, please use the following reference instead:
B. De Schutter and T. van den Boom, “Model predictive control for max-min-plus
systems,” in Discrete Event Systems: Analysis and Control (Proceedings of the 5th
International Workshop on Discrete Event Systems (WODES2000), Ghent, Belgium,
Aug. 2000) (R. Boel and G. Stremersch, eds.), vol. 569 of The Kluwer International
Series in Engineering and Computer Science, Boston, Massachusetts: Kluwer Aca-
demic Publishers, ISBN 0-7923-7897-0, pp. 201–208, 2000.

Control Systems Engineering
Faculty of Information Technology and Systems
Delft University of Technology
Delft, The Netherlands
Current URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/00_01.html

https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/00_01.html


MODEL PREDICTIVE CONTROL FOR

MAX-MIN-PLUS SYSTEMS

Bart De Schutter
Control Lab, Fac. Information Technology and Systems, Delft University of Technology

P.O.Box 5031, 2600 GA Delft, The Netherlands

b.deschutter@its.tudelft.nl

Ton van den Boom
Control Lab, Fac. Information Technology and Systems, Delft University of Technology

t.j.j.vandenboom@its.tudelft.nl

Keywords: max-min-plus algebra, model predictive control, state space models

Abstract Model predictive control (MPC) is a widely used control design method
in the process industry. Its main advantage is that it allows the inclusion
of constraints on the inputs and outputs. Usually MPC uses linear
discrete-time models. We extend MPC to max-min-plus discrete event
systems. In general the resulting optimization problems are nonlinear
and nonconvex. However, if the state equations are decoupled and if
the control objective and the constraints depend monotonically on the
states and outputs of system, the max-min-plus-algebraic MPC problem
can be recast as problem with a convex feasible set. If in addition
the objective function is convex, this leads to a convex optimization
problem, which can be solved very efficiently.

Introduction

Conventional control design techniques such as pole placement, LQG,
H∞, H2, . . . yield optimal controllers or control input sequences for the
entire future evolution of the system. Extending these methods to in-
clude additional constraints on the inputs and outputs is not easy. How-
ever, Model Predictive Control (MPC) easily allows the inclusion of such
constraints due to the use of a receding finite horizon strategy. This ad-
vantage, in combination with the low computational requirements and
the possibility to deal with slowly time-varying systems, has led to a
widespread use of MPC in the process industry. Traditionally MPC uses
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2 DISCRETE EVENT SYSTEMS: ANALYSIS AND CONTROL

linear discrete-time models for the process that has to be controlled. Re-
cently we have extended the MPC framework to the class of max-plus
discrete event systems (De Schutter and van den Boom, 1999). In this
paper we further extend MPC to the class of max-min-plus systems.

1. MODEL PREDICTIVE CONTROL

In this section we give a short introduction to MPC for linear discrete-
time systems. Since we will only consider the deterministic, i.e. noiseless,
case for max-min-plus systems, we will also omit the noise terms in this
introduction to MPC. More extensive information on MPC can be found
in (Clarke et al., 1987; Garćıa et al., 1989) and the references therein.

Consider a plant with m inputs and l outputs that can be modeled
by a linear discrete-time state space description of the following form:

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) .

In MPC we compute an optimal control strategy over a given prediction
horizon Np and control horizon Nc at each sample step k. We define a
cost criterion J = Jout + λJin that reflects the reference tracking error
(Jout) and the control effort (Jin) (Clarke et al., 1987):

J =

Np
∑

j=1

(

ŷ(k + j|k)− r(k + j)
)T(

ŷ(k + j|k)− r(k + j)
)

+

λ

Np
∑

j=1

uT (k + j − 1)u(k + j − 1)

where ŷ(k+ j|k) is the estimate of the output at sample step k+ j based
on the information available at step k, r is a reference signal, and λ is
a nonnegative scalar. In MPC the input is taken to be constant from a
certain point on: u(k+j) = u(k+Nc−1) for j = Nc, . . . , Np−1. The use
of a control horizon leads to a reduction of the number of optimization
variables. This results in a decrease of the computational burden, a
smoother controller signal, and has a stabilizing effect. MPC uses a
receding horizon approach: after computation of the optimal control
sequence {u(k), . . . , u(k + Nc − 1)}, only the first control sample u(k)
will be implemented, subsequently the horizon is shifted one sample and
the optimization is restarted with new information of the measurements.

Define ũ(k) = [uT (k) . . . uT (k + Np − 1) ]T and ỹ(k) = [ ŷT (k +
1|k) . . . ŷT (k+Np|k) ]

T . The MPC problem at each sample step k for a
linear discrete-time system is defined as follows:
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Find the input sequence {u(k), . . . , u(k+Nc−1)} that minimizes the
cost criterion J subject to the linear constraint

Ac(k) ũ(k) +Bc(k) ỹ(k) 6 cc(k) (1)

and the control horizon constraint u(k + j) = u(k + Nc − 1) for
j = Nc, . . . , Np − 1.

Recall that due to the receding horizon approach this problem has to be
solved at each sample step k.

2. MAX-MIN-PLUS SYSTEMS

We use the following notation for the basic matrix operations of the
max-min-plus algebra (Baccelli et al., 1992):

(A ∨B)ij = aij ∨ bij = max(aij , bij)

(A⊗ C)ij =
∨

k

aik ⊗ ckj = max
k

(aik + ckj)

(A ∧B)ij = aij ∧ bij = min(aij , bij)

(A⊙ C)ij =
∧

k

aik ⊙ ckj = min
k

(aik + ckj)

with A,B ∈ R
m×n

and C ∈ R
n×p

where R = R ∪ {−∞,+∞}. Now
we consider max-min-plus systems, i.e. systems that can be described
by equations in which the operations maximization, minimization and
addition appear. Such systems are extensions of the max-plus-algebraic
discrete event systems and have been studied by several authors (Gu-
nawardena, 1994; Jean-Marie and Olsder, 1996; Olsder, 1994). We fur-
ther extend their models by adding inputs and outputs. More specifi-
cally, we consider systems that can be described by a model of the form

x(k + 1) = Axx ⊗ x(k) ∨Axx̄ ⊗ x̄(k) ∨Bx ⊗ u(k)

x̄(k + 1) = Ax̄x ⊙ x(k) ∧Ax̄x̄ ⊙ x̄(k) ∧Bx̄ ⊙ u(k)

y(k) = Cx ⊗ x(k)

ȳ(k) = Cx̄ ⊙ x̄(k) ,

where the vectors x(k) and x̄(k) correspond to the state of the system
at (event) step k. The vector u(k) is the input at step k and the vector
y(k) = [ yT (k) ȳT (k) ]T is the output of the system at step k. We
assume that the components of x, x̄ and y are always finite. Note that
this condition always holds for a “physical” system.
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3. MODEL PREDICTIVE CONTROL FOR

MAX-MIN-PLUS SYSTEMS

In this section we extend and adapt the MPC framework from linear
discrete-time systems to max-min-plus systems. If possible we use analog
constraints and cost criteria for both types of systems. However, in some
cases different constraints and cost criteria are more appropriate.

3.1. COST CRITERION

Just as in MPC for linear discrete-time systems, we also define the
MPC cost criterion for max-min-plus systems as J = Jout + λJin, where
Jout is related to the output and Jin is related to the input. Now we
discuss some possible choices for Jout and Jin.

If the due dates r for the finished products are known and if we have
to pay a penalty for every delay, a possible output cost criterion is

Jout,1 =

Np
∑

j=1

l
∑

i=1

max(ŷi(k + j|k)− ri(k + j), 0) .

If we have perishable goods, we could minimize the differences between
the due dates and the actual output time instants. This leads to

Jout,2 =

Np
∑

j=1

l
∑

i=1

|ŷi(k + j|k)− ri(k + j)| .

If we want to balance the output rates, we could consider the following
cost criterion:

Jout,3 =

Np
∑

j=2

l
∑

i=1

|∆2ŷi(k + j|k)|

where ∆2ŷi(k + j|k) = ŷi(k + j|k)− 2ŷi(k + j − 1|k) + ŷi(k + j − 2|k).
The conventional MPC input cost criterion ũT (k)ũ(k) would lead to

a minimization of the input time instants. Since this could result in
internal buffer overflows, a better objective is tomaximize the input time
instants. For a manufacturing system, this would correspond to a just-
in-time production scheme, in which raw material is fed to the system as
late as possible. As a consequence, the internal buffer levels are kept as
low as possible. So for max-min-plus systems a more appropriate input
cost criterion is

Jin,0 = −ũT (k)ũ(k) .
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Note that this input cost criterion is exactly the opposite of the conven-
tional MPC input effort cost criterion.
Another objective function that leads to a maximization of the input
time instants is

Jin,1 = −

Np
∑

j=1

m
∑

i=1

ui(k + j − 1) .

If we want to balance the input rates we could take

Jin,3 =

Np−1
∑

j=1

l
∑

i=1

|∆2ui(k + j)| .

Note that we can also consider weighted mixtures of several cost criteria.

3.2. CONSTRAINTS

In the context of discrete event systems typical constraints are:

a1(k + j) 6 ∆u(k + j − 1) 6 b1(k + j) for j = 1, . . . , Nc

a2(k + j) 6 ∆ŷ(k + j|k) 6 b2(k + j) for j = 1, . . . , Np

ŷ(k + j|k) 6 r(k + j) for j = 1, . . . , Np ,

where ∆u(k+j) = u(k+j)−u(k+j−1). Note that all these constraints
can be recast as a linear constraint of the form (1).

Since for max-min-plus systems the input sequence usually corre-
sponds to occurrence times of consecutive events, it should always be
nondecreasing. Therefore, we also have to add the condition ∆u(k+j) >
0 for j = 0, . . . , Np − 1. This is also a constraint of the form (1).

For max-min-plus systems the condition that the input should stay
constant from step k+Nc on, is not very useful since the input sequences
should normally be increasing. Therefore, we change this condition as
follows: the feeding rate should stay constant beyond step k + Nc, i.e.
∆u(k + j) = ∆u(k + Nc − 1) for j = Nc, . . . , Np − 1, or equivalently
∆2u(k + j) = 0 for j = Nc, . . . , Np − 1.

3.3. THE STANDARD MPC PROBLEM FOR

MAX-MIN-PLUS SYSTEMS

If we combine the material of previous subsections, we finally obtain
the max-min-plus-algebraic MPC problem for event step k:

Find the input sequence vector ũ(k) that minimizes the cost criterion
J subject to

x(k + j + 1) = Axx ⊗ x(k + j) ∨Axx̄ ⊗ x̄(k + j)∨
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Bx ⊗ u(k + j) for j = 0, . . . , Np − 1 , (2)

x̄(k + j + 1) = Ax̄x ⊙ x(k + j) ∧Ax̄x̄ ⊙ x̄(k + j)∧ (3)

Bx̄ ⊙ u(k) for j = 0, . . . , Np − 1 , (4)

y(k + j) = Cx ⊗ x(k + j) for j = 1, . . . , Np , (5)

ȳ(k + j) = Cx̄ ⊙ x̄(k + j) for j = 1, . . . , Np , (6)

Ac(k) ũ(k) +Bc(k) ỹ(k) 6 cc(k) (7)

∆u(k + j) > 0 for j = 0, . . . , Np − 1 , (8)

∆2u(k + j) = 0 for j = Nc, . . . , Np − 1. (9)

Note that in this case we also use a receding horizon approach in which
in each step we effectively apply only the first input sample.

4. ALGORITHMS TO SOLVE THE

MAX-MIN-PLUS-ALGEBRAIC MPC

PROBLEM

4.1. NONLINEAR OPTIMIZATION

In general the max-min-plus-algebraic MPC problem is a nonlinear
nonconvex optimization problem. We could use standard multi-start
nonlinear nonconvex local optimization methods to compute the opti-
mal control policy. Using a reasoning that is an extension of the one
used in (De Schutter and van den Boom, 1999) it can be shown that the
set of feasible solutions defined by the constraints of the max-min-plus-
algebraic MPC problem coincides with the solution set of an Extended
Linear Complementarity problem (ELCP) (De Schutter and De Moor,
1995). In (De Schutter and De Moor, 1995) we have developed an algo-
rithm to compute a compact parametric description of the solution set
of an ELCP. In order to determine the optimal MPC policy we have to
determine for which values of the parameters the objective function J

over the solution set of the ELCP that corresponds to (2) – (9). However,
the algorithm of (De Schutter and De Moor, 1995) to compute the so-
lution set of a general ELCP requires exponential execution times. This
implies that the ELCP approach is not feasible if Nc, m or l are large.

4.2. MONOTONIC OBJECTIVE FUNCTIONS

AND CONSTRAINTS

Now we consider the relaxed MPC problem which is also defined by
(2) – (9) but with the =-sign in (2) and (5) replaced by a >-sign, and
the =-sign in (4) and (6) replaced by a 6-sign. As a consequence, the
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set of feasible solutions of the relaxed MPC problem is convex. Hence,
the relaxed problem is much easier to solve numerically.

We say that a function F is a monotonically nondecreasing (nonin-
creasing) function of y if y∗ 6 y♯ implies that F (y∗) 6 F (y♯)

(

F (y∗) >

F (y♯)
)

. Now consider the case in which (2) and (4) are decoupled, i.e.
(Axx̄)ij = −∞ and (Ax̄x)ij = +∞ for all i, j. Using a reasoning that
is an extension of that used in (De Schutter and van den Boom, 1999)
for the max-plus-algebraic MPC, it can be shown that if the objective
function J and the linear constraints are monotonically nondecreasing
functions of x and y and monotonically nonincreasing functions of x̄

and ȳ, then the optimal solution of the relaxed MPC problem can be
transformed into a solution of the original MPC problem1:

Theorem 1 Let (Axx̄)ij = −∞ and (Ax̄x)ij = +∞ for all i, j. Let
the objective function J and the mapping ỹ → Bc(k)ỹ be monotonically
nondecreasing functions of y (and x) and monotonically nonincreasing
functions of ȳ (and x̄), Let (ũ∗, ỹ∗) be an optimal solution of the relaxed
MPC problem. If we define ỹ♯ by

x♯(k + j + 1) = Axx ⊗ x♯(k + j) ∨Bx ⊗ u∗(k + j)

x̄♯(k + j + 1) = Ax̄x̄ ⊙ x̄♯(k + j) ∧Bx̄ ⊙ u∗(k + j)

y♯(k + j + 1) = Cx ⊗ x♯(k + j + 1)

ȳ♯(k + j + 1) = Cx̄ ⊙ x̄♯(k + j + 1)

for j = 0, . . . , Np − 1 and with x♯(k) = x(k) and x̄♯(k) = x̄(k), then
(ũ∗, ỹ♯) is an optimal solution of the original max-min-plus-algebraic
MPC problem.

So if the theorem holds2, then the optimal MPC policy can be com-
puted very efficiently. If in addition the objective function is convex
(e.g., if J = Jout,1 or Jin,1), we finally get a convex optimization prob-
lem, which can be solved very efficiently. Since Jin,1 is a linear function,
the problem even reduces to a linear programming problem for J = Jin,1.

1The proof of this theorem is similar to the proof of the fact that a feasible linear programming
problem with a finite optimal solution always has an optimal solution in which at least one
of the constraints is active.
2Note that we can always obtain an objective function that is a monotonically nondecreasing
function of y and a monotonically nonincreasing function of ȳ by eliminating ỹ(k) from the
expression for J using the evolution equations (2) – (6) before relaxing the problem. However,
some of the properties (such as convexity or linearity) of the original objective function may
be lost in that way.
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5. CONCLUSIONS

We have extended the popular MPC framework to max-min-plus dis-
crete event systems. The reason for using an MPC approach for max-
min-plus systems is the same as for conventional linear systems: MPC
allows the inclusion of constraints on inputs and outputs, it is easy to
tune and flexible for structure changes (since the optimal strategy is re-
computed regularly so that model changes can be taken into account as
soon as they are identified). In general the max-min-plus-algebraic MPC
problem leads to a nonlinear nonconvex optimization problem. However,
if the state equations are decoupled and if the objective function and the
constraints are monotonic functions of the states and the outputs, we
can relax the MPC problem to a problem with a convex feasible set.
If in addition the objective function is convex or linear, this leads to a
problem that can be solved very efficiently.

Topics for future research include: extension of the MPC framework to
nondeterministic max-min-plus-algebraic models, thorough investigation
of the effects of the tuning parameters (input cost weight, the predic-
tion horizon, and the control horizon), and determination of appropriate
values for the tuning parameters.
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