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Abstract

We further extend the model predictive control framework,

which is very popular in the process industry due to its abil-

ity to handle constraints on inputs and outputs, to a class of

discrete event systems that can be modeled using the opera-

tions maximization, minimization, addition and scalar multi-

plication. This class encompasses max-plus-linear systems,

min-max-plus systems, bilinear max-plus systems and poly-

nomial max-plus systems. In general the model predictive

control problem for max-min-plus-scaling systems leads to

a nonlinear non-convex optimization problem, that can also

be reformulated as an optimization problem over the solution

set of an extended linear complementarity problem. We also

show that under certain conditions the optimization problem

reduces to a convex programming problem, which can be

solved very efficiently.

1 Introduction

Model predictive control (MPC) is a very popular controller

design method in the process industry. MPC provides many

attractive features: it is an easy-to-tune method, it is appli-

cable to multivariable systems, it can handle constraints in a

systematic way, and it is capable of tracking pre-scheduled

reference signals.

Usually MPC uses discrete-time models. We will extend

MPC to a class of discrete event systems that can be mod-

eled using maximization, minimization, addition and scalar

multiplication, and that are called max-min-plus-scaling

(MMPS) systems. Typical examples of MMPS systems are

digital circuits, computer networks, telecommunication net-

works, and manufacturing plants. A key advantage of con-

ventional MPC is that it allows the inclusion of constraints

on the inputs and outputs. This is also one of the main rea-

sons why we introduce MPC for MMPS systems. Further-

more, MPC uses a receding horizon strategy which allows

us to regularly update the model of the system.

The work presented in this paper unifies our previous re-

sults on MPC for max-plus-linear systems [11], max-min-

plus systems [10], and first-order linear hybrid systems sub-

ject to saturation [8], since all these classes of systems are

in fact special subclasses of MMPS systems. In addition, in

[15] it has been shown that the class of MMPS systems coin-

cides with the class of mixed-logic dynamic (MLD) systems

[3], which includes piecewise affine dynamic systems, linear

hybrid systems, finite state machines, linear systems, linear

systems with discrete inputs, bilinear systems with discrete

inputs, etc. Therefore, MMPS form a interesting and rele-

vant subclass of hybrid systems.

In [3] Bemporad and Morari have developed an MPC

method for MLD systems. The main difference between

MPC for MLD systems and MPC for MMPS systems is

that MLD-MPC requires the solution of mixed integer-real

quadratic optimization problems whereas in the MMPS-

MPC optimization problems all variables are real-valued.

However, in general both MLD-MPC and MMPS-MPC lead

to computationally hard optimization problems. Therefore,

we also investigate under which conditions MMPS-MPC

leads to convex optimization problems.

2 Max-min-plus-scaling systems

We use the symbol ∨ to denote maximization and ∧ to de-

note minimization. So if a,b ∈R then a∨b = max(a,b) and

a∧b = min(a,b).

Definition 2.1 A max-min-plus-scaling (MMPS) expression

f of the variables x1, . . . ,xn is defined by the grammar1

f := xi |α | fk ∨ fl | fk ∧ fl | fk + fl |β fk

with i ∈ {1, . . . ,n}, α,β ∈ R, and where fk and fl are again

MMPS expressions.

Some examples of MMPS expressions of the variables

x1, x2, x3 in conventional notation are x1 − x2 + 3,

max(min(3x1,−x2),x1 + x3), and x1 − 2max(x1 + 3x2 −
4x3,x1 −min(x1,x2 − x3,max(x3,x1 − x2 − x3))).

Now we consider discrete event systems that can be de-

scribed by state space equations of the following form:

x(k) = Mx(x(k−1),u(k)) (1)

y(k) = My(x(k),u(k)) (2)

1The symbol | stands for “or”. Also note that the definition is recursive.

So an MMPS expression is a variable or a constant, or the maximum or

minimum or sum of two MMPS expressions, or a scalar multiple of an

MMPS expression.



where Mx and My are MMPS expressions. In general these

expressions may even depend on the event counter k. For a

discrete event system x(k) would typically contain the time

instants at which the internal events occur for the kth time,

u(k) the time instants at which the input events occur for

the kth time, and y(k) the time instants at which the output

events occur for the kth time.

The model (1)–(2) can be considered as a generalized frame-

work that encompasses several special subclasses of discrete

event systems such as max-plus-linear discrete event sys-

tems [2, 7], max-min-plus systems [14, 16, 17], max-plus-

bilinear2 systems, and max-plus-polynomial3 systems.

Note that the class of MMPS systems is a non-trivial su-

perset of the max-min-plus systems considered in [14, 16]

since in contrast to the min-max expressions of [14, 16] we

also allow addition of two MMPS expressions and scaling in

the definition of MMPS expressions. Furthermore, the min-

max-plus systems considered in [14, 16] are autonomous

(i.e., only the state is considered, and there is no input or

explicit output), whereas in the model (1)–(2) we have in-

cluded inputs and outputs.

3 Model predictive control

In this section we give a short introduction to MPC for deter-

ministic nonlinear discrete-time systems. Since we will only

consider the deterministic, i.e. noiseless, case for MMPS

systems, we will also omit the noise terms in this intro-

duction to MPC. More extensive information on MPC for

(linear and nonlinear) discrete-time systems can be found in

[1, 4, 5, 6, 13] and the references therein.

Consider a plant with m inputs and l outputs that can be mod-

eled by a nonlinear discrete-time state space description of

the following form:

x(k) = f (x(k−1),u(k)) (3)

y(k) = h(x(k),u(k)) (4)

where f and h are smooth functions of x and u.

Remark Apart from the fact that in (1)–(2) the components

of the input, the output and the state are event times, an

important difference between the descriptions (1)–(2) and

(3)–(4) is that the counter k in (1)–(2) is an event counter

(and event occurrence instants are in general not equidis-

2Max-plus-bilinear systems are an extension of max-plus-linear systems

where we also allow max-plus-algebraic cross-products between a state

component and an input component in the right-hand side of the state equa-

tion and the output equation.
3Max-plus-polynomial systems are an extension of max-plus-linear sys-

tems where we also allow max-plus-algebraic polynomial expressions of

the state components and the input components in the right-hand side of the

state equation and the output equation. Note that models with a right-hand

side of the form max(A1x(k),A2x(k), . . .), which can be used in the design

of traffic signal switching schemes [18], also belong to this class.

tant), whereas in (3)–(4) k is a sample counter that increases

each clock cycle.

In MPC we consider the future evolution of the system over

a given prediction horizon Np. For the system (3)–(4) we

can make an estimate ŷ(k+ j|k) for the output at sample step

k+ j based on the state at step k and the future inputs u(k+ i),
i = 0,1, . . . , j. Using successive substitution, we obtain an

expression of the following form:

ŷ(k+ j|k) = Fj(x(k−1),u(k), . . . ,u(k+ j))

for j = 0,1, . . . ,Np −1. If we define the vectors

ũ(k) =
[

uT (k) . . . uT (k+Np −1)
]T

ỹ(k) =
[

ŷT (k|k) . . . ŷT (k+Np −1|k)
]T

,

we can derive the expression

ỹ(k) = F̃(x(k−1), ũ(k)) ,

which characterizes the estimated future evolution of the out-

put of the system at sample step k over the prediction horizon

Np for the input sequence u(k),u(k+1), . . . ,u(k+Np −1).

The cost criterion J used in MPC reflects the reference track-

ing error (Jout) and the control effort (Jin):

J(k) = Jout(k)+λJin(k)

=
(

ỹ(k)− r̃(k)
)T(

ỹ(k)− r̃(k)
)

+λ ũT(k)ũ(k)

where λ is a nonnegative integer, and r̃(k) contains the ref-

erence signal (defined similarly to ỹ(k)). In practical situa-

tions, there will be constraints on the input and output signals

(caused by limited capacity of buffers, limited transportation

rates, saturation, etc.) This is reflected in the nonlinear con-

straint function

Cc(k, ũ(k), ỹ(k))6 0 .

The MPC problem at sample step k consists in minimizing

J(k) over all possible future input sequences subject to the

constraints. This is usually a non-convex optimization prob-

lem. To reduce the complexity of the optimization problem a

control horizon Nc is introduced in MPC, which means that

the input is taken to be constant beyond sample step k+Nc:

u(k+ j) = u(k+Nc −1) for j = Nc, . . . ,Np −1.

MPC uses a receding horizon principle. This means that af-

ter computation of the optimal control sequence u(k),u(k+
1), . . . ,u(k +Nc − 1), only the first element of the optimal

sequence (u(k)) is applied to the system. Next the horizon is

shifted and a new MPC optimization is performed for sample

step k+1.

So the MPC problem at sample step k for the nonlinear

discrete-time system described by (3)–(4) is defined as fol-

lows:



Find the input sequence {u(k), . . . ,u(k + Np − 1)} that

minimizes the cost criterion J(k) subject to the evolution

equations (3)–(4) of the system, the nonlinear constraint

Cc(k, ũ(k), ỹ(k)) 6 0 and the control horizon constraint

u(k+ j) = u(k+Nc −1) for j = Nc, . . . ,Np −1.

Recall that due to the receding horizon approach this prob-

lem has to be solved at each sample step k. Note however

that the use of a control horizon leads to a reduction of the

number of optimization variables. This results in a decrease

of the computational burden, a smoother controller signal

(because of the emphasis on the average behavior rather than

on aggressive noise reduction), and a stabilizing effect.

4 Model predictive control for MMPS systems

In [11] we have extended and adapted the MPC framework

from linear discrete-time systems to max-plus-linear discrete

event systems, while using — as for as possible — analogous

constraints and cost criteria for both types of systems. Since

the constraints and objective functions introduced there can

also be used for MMPS discrete event systems, we will not

discuss them extensively here but only repeat the most im-

portant conclusions and results here.

Just as in MPC for nonlinear discrete-time systems, we also

define the MPC cost criterion for MMPS systems as J(k) =
Jout(k)+ λJin(k), where Jout(k) is related to the output and

Jin(k) is related to the input. For Jout(k) we could e.g. take

the tardiness

Jout,1(k) =
lNp

∑
i=1

max(ỹi(k)− r̃i(k),0) .

which penalizes the delays w.r.t. the due dates r̃. For per-

ishable goods, where we want to minimize the differences

between the due dates and the actual output time instants,

we could take

Jout,2(k) =
lNp

∑
i=1

|ỹi(k)− r̃i(k)| .

Using the conventional MPC cost criterion ũT(k)ũ(k) for

Jin would lead to a minimization of the input time instants,

which could result in internal buffer overflows. Therefore, a

better objective is to maximize the input time instants:

Jin,0(k) =−ũT(k)ũ(k)

or Jin,1(k) =−
mNp

∑
i=1

ũi(k).

Of course several other choices are possible for Jout(k) and

Jin(k) (including the one used in [3] for MLD systems).

In the context of discrete event systems typical constraints

are

a1(k+ j)6 ∆u(k+ j−1)6 b1(k+ j) for j = 1, . . . ,Nc

a2(k+ j)6 ∆ŷ(k+ j|k)6 b2(k+ j) for j = 1, . . . ,Np

ŷ(k+ j|k)6 r(k+ j) for j = 1, . . . ,Np ,

where ∆u(k+ j) = u(k+ j)−u(k+ j−1). Note that all these

constraints can be rewritten as a linear constraint of the form

Ac(k) ũ(k)+Bc(k) ỹ(k)6 cc(k) .

In general we can consider constraints of the form

Mc(k, ũ(k), ỹ(k),x(k−1))6 0

where Mc is an MMPS expression.

Since for the type hybrid systems we are considering the

input sequence usually corresponds to occurrence times

of consecutive events, it should always be nondecreasing.

Therefore, we also add the condition

∆u(k+ j)> 0 for j = 0, . . . ,Np −1 .

Finally, we introduce a control horizon condition in order to

reduce the number of variables in the optimization problem:

the input “rate” should stay constant beyond step k+Nc, i.e.

∆u(k+ j) = ∆u(k+Nc −1) for j = Nc, . . . ,Np −1, or equiv-

alently

∆2u(k+ j) = 0 for j = Nc, . . . ,Np −1 .

So we finally obtain the following problem at event step k:

Find the input sequence vector ũ(k) that minimizes the

cost criterion J(k) subject to

x̂(k+ j|k) = Mx(x̂(k+ j−1|k),u(k+ j)) (5)

for j = 0, . . . ,Np −1,

ŷ(k+ j|k) = My(x̂(k+ j−1|k),u(k+ j)) (6)

for j = 0, . . . ,Np −1,

Mc(k, ũ(k), ỹ(k),x(k−1))6 0 (7)

∆u(k+ j)> 0 for j = 0, . . . ,Np −1, (8)

∆2u(k+ j) = 0 for j = Nc, . . . ,Np −1, (9)

with x̂(k−1|k) = x(k−1).

This problem will be called the MMPS-MPC problem for

event step k. Note that in this case we also use a receding

horizon approach in which in each step we effectively apply

only the first input sample.

5 Algorithms to solve the MMPS-MPC problem

5.1 The Extended Linear Complementarity Problem

The Extended Linear Complementarity Problem (ELCP) is

defined as follows [9]:



Given A ∈ R
p×n, B ∈ R

q×n, c ∈ R
p, d ∈ R

q and m subsets

φ1, . . . ,φm of {1, . . . , p}, find z ∈ R
n such that

∏
i∈φ j

(Az− c)i = 0 for j = 1, . . . ,m, (10)

subject to Az > c and Bz = d, or show that no such z exists.

Equation (10) represents the complementarity condition of

the ELCP. One possible interpretation of this condition is the

following: each set φ j corresponds to a group of inequalities

of Az > c and in each group at least one inequality should

hold with equality, i.e. the corresponding residue should be

equal to 0. So for each j there should exist an index i ∈ φ j

such that (Az− c)i = 0.

In general, the solution set of the ELCP defined above con-

sists of the union of faces of the polyhedron defined by

the system of linear equations and inequalities (Az > c and

Bz = d) of the ELCP. In [9] we have developed an algorithm

to compute the complete solution set of an ELCP. This al-

gorithm yields a description of the solution set by vertices,

extreme rays and a basis of the linear subspace correspond-

ing to the largest affine subspace of the solution set.

5.2 Link between the MMPS-algebraic MPC problem

and the ELCP

Let us now show how the MMPS-MPC problem can be re-

formulated using the ELCP. This will be done by showing

that each of the 6 constructions for MMPS expressions fit

the ELCP framework:

• Expressions of the form f = xi, f = α , f = fk + fl and

f = β fk (or their combinations) result in linear equations

of the form Bz = d where z contains the variables4 f , xi,

fk and fl .

• An expression of the form f = fk ∨ fl = max( fk, fl) can

be rewritten as

f > fk

f > fl

f = fk or f = fl

or equivalently

f − fk > 0

f − fl > 0

( f − fk)( f − fl) = 0 ,

which is an ELCP.

• In a similar way an expression of the form f = fk ∧ fl =
min( fk, fl) can be rewritten as

fk − f > 0

fl − f > 0

( fk − f )( fl − f ) = 0 ,

which is also an ELCP.

4In this case f , fk and fl are dummy variables.

This implies that by introducing additional dummy vari-

ables if necessary, any MMPS expression can be recast as an

ELCP. Furthermore, two or more ELCPs can be combined

into one large ELCP. The constraints (8)–(9) just yield ad-

ditional linear (in)equalities. So the system (5)–(9), which

defines the feasible set of the MMPS-MPC problem, can be

rewritten as an ELCP. We can compute a compact paramet-

ric description of the solution set of an ELCP using the algo-

rithm of [9]. In order to determine the optimal MPC policy

we then have to determine for which values of the parameters

the objective function J(k) over the solution set of the ELCP

that corresponds to (5)–(9). The algorithm of [9] to compute

the solution set of a general ELCP requires exponential exe-

cution times. This implies that the ELCP approach sketched

above is not feasible if Nc, m or l are large. In that case

we could use standard multi-start nonlinear non-convex local

optimization methods to compute the optimal control policy.

However, in the next section we will show that under cer-

tain conditions the MMPS-MPC problem leads to a convex

optimization problem, which can be solved very efficiently.

5.3 Monotonic objective functions and constraints

Definition 5.1

A max-plus-positive-scaling (MaxPPS) expression f of the

variables x1, . . . ,xn is defined by the grammar

f := αxi |β | fk ∨ fl | fk + fl |ρ fk

with i ∈ {1, . . . ,n}, α,β ,ρ ∈ R, ρ > 0 and where fk and fl

are again MaxPPS expressions.

A min-plus-positive-scaling (MinPPS) expression f of the

variables x1, . . . ,xn is defined by the grammar

f := αxi |β | fk ∧ fl | fk + fl |ρ fk

with i ∈ {1, . . . ,n}, α,β ,ρ ∈ R, ρ > 0 and where fk and fl

are again MinPPS expressions.

In the remainder of this section we consider the MPC prob-

lem for a subclass of MMPS systems that can be described

by the following state space model:

x∨(k) = M
∨
x (x

∨(k−1),u(k)) (11)

x∧(k) = M
∧
x (x

∧(k−1),u(k)) (12)

y∨(k) = M
∨
y (x

∨(k),u(k)) (13)

y∧(k) = M
∧
y (x

∧(k),u(k)) (14)

where M ∨
x and M ∨

y are MaxPPS expressions, and M ∧
x

and M ∧
y are MinPPS expressions. The vector x(k) =

[ (x∨)T (k) (x∧)T (k) ]T is the state of the system at event step

k, and y(k) = [ (y∨)T (k) (y∧)T (k) ]T is the output of the sys-

tem at event step k. Furthermore, we consider a linear con-

straint instead of the general MMPS constraint (7). So the



MPC constraints are

Ac(k) ũ(k)+Bc(k) ỹ(k)6 cc(k) (15)

∆u(k+ j)> 0 for j = 0, . . . ,Np −1, (16)

∆2u(k+ j) = 0 for j = Nc, . . . ,Np −1. (17)

Now we consider the relaxed MMPS-MPC problem for the

system described by (11)–(14). This problem is defined by

the evolution equations (11)–(14) and the constraints (15)–

(17) but with the =-sign in (11) and (13) replaced by a >-

sign, and the =-sign in (12) and (14) replaced by a 6-sign:

x∨(k)> M
∨
x (x

∨(k−1),u(k)) (18)

x∧(k)6 M
∧
x (x

∧(k−1),u(k)) (19)

y∨(k)> M
∨
y (x

∨(k),u(k)) (20)

y∧(k)6 M
∧
y (x

∧(k),u(k)) . (21)

These equations describe a convex set5. Furthermore, the

constraints (15)–(17) are linear and thus convex. As a con-

sequence, the set of feasible solutions of the relaxed MMPS-

MPC problem is convex. Hence, the relaxed problem is

much easier to solve numerically.

We say that a function F is a monotonically nondecreas-

ing (nonincreasing) function of y if y∗ 6 y♯ implies that

F(y∗) 6 F(y♯)
(

F(y∗) > F(y♯)
)

. Using a reasoning that is

an extension of that used in [11] for the max-plus-algebraic

MPC, it can be shown that if the objective function J(k) and

the linear constraints are monotonically nondecreasing as

function of ỹ∨(k) and monotonically nonincreasing functions

of ỹ∧(k), then the optimal solution of the relaxed MMPS-

MPC problem can be transformed into a solution of the orig-

inal MPC problem:

Theorem 5.2 Consider an MMPS system that can be mod-

eled by (11)–(14). Let the objective function J(k) and the

mapping ỹ(k) → Bc(k)ỹ(k) be monotonically nondecreas-

ing functions of ỹ∨(k) (and x∨(k)) and monotonically non-

increasing functions of ỹ∧(k) (and x∧(k)), Let (ũ∗(k), ỹ∗(k))
be an optimal solution of the relaxed MMPS-MPC problem.

If we define ỹ♯(k) by

x∨,♯(k+ j|k) = M
∨
x

(

x∨,♯(k+ j−1|k),u∗(k+ j)
)

x∧,♯(k+ j|k) = M
∧
x

(

x∧,♯(k+ j−1|k),u∗(k+ j)
)

y∨,♯(k+ j|k) = M
∨
y

(

x∨,♯(k+ j|k),u∗(k+ j)
)

y∧,♯(k+ j|k) = M
∧
y

(

x∧,♯(k+ j|k),u∗(k+ j)
)

for j = 0,1, . . . ,Np−1 and with x∨,♯(k−1|k) = x∨(k−1) and

x∧,♯(k − 1|k) = x∧(k − 1), then (ũ∗(k), ỹ♯(k)) is an optimal

solution of the original MMPS-MPC problem.

5It is easy to verify that any MaxPPS expression f can be written in a

conjunctive normal form f = f1 ∨ f2 ∨ ·· · ∨ fn where f1, . . . , fn are affine

expressions. Hence, e.g., the ith subequation of (18) can be rewritten as

x∨i (k+1)> f1∨ f2∨·· ·∨ fn where f1, f2, . . . , fn are affine expressions. This

inequality is equivalent to the system of linear inequalities x∨i (k+ 1) > f1,

x∨i (k+1)> f2, . . . x∨i (k+1)> fn, which defines a convex set.

Proof: The proof of this theorem is an extension to MMPS

systems of the proof of Theorem 5.1 of [11] for the max-

plus-algebraic MPC. In fact, the proof is similar to the proof

of the property that a feasible linear programming problem

with a finite optimal solution always has an optimal solution

in which at least one of the constraints is active. For more

details the interested reader is referred to [12].

Note that we can always obtain an objective function that is a

monotonically nondecreasing function of ỹ∨(k) and a mono-

tonically nonincreasing function of ỹ∧(k) by eliminating ỹ(k)
from the expression for J(k) using the evolution equations

(11)–(14) before relaxing the problem. However, some of

the properties (such as convexity or linearity) of the original

objective function may be lost in that way.

Recall that the relaxed MMPS-MPC problem has a convex

feasible set. So if Theorem 5.2 applies the optimal MPC pol-

icy can be computed much more efficiently than in the gen-

eral case. If in addition the objective function is convex (e.g.

if J(k) equals −Jin,0(k), ±Jin,1(k), Jout,1(k) or a weighted

combination of these objective functions), we finally get

a convex optimization problem, which can be solved effi-

ciently using, e.g. an interior point method. Since Jin,1(k)
is a linear function, the problem even reduces to a linear

programming problem for J(k) = ±Jin,1(k), which can be

solved very efficiently. Furthermore, it easy to verify that

for J(k) = Jout,1(k) the problem can also be reduced to a lin-

ear programming problem by introducing some additional

dummy variables.

6 Discussion

We have further extended the popular MPC framework from

nonlinear discrete-time systems to MMPS discrete event sys-

tems. The reason for using an MPC approach for MMPS

systems is the same as for conventional linear systems: MPC

allows the inclusion of constraints on the inputs and outputs,

it is an easy-to-tune method, and it is flexible for structure

changes (since the optimal strategy is recomputed every time

step or event step so that model changes can be taken into ac-

count as soon as they are identified).

We have also presented some methods to solve the MMPS-

MPC problem. In general this leads to a nonlinear non-

convex optimization problem. If the state and output equa-

tions can be split in max-plus-scaling and min-plus-scaling

parts that are decoupled, and if the objective function and the

constraints are monotonic functions of the states and the out-

puts, then we can relax the MMPS-MPC problem to problem

with a convex set of feasible solutions. If in addition the ob-

jective function is convex or linear, this leads to a convex or

linear optimization problem, which can be solved very effi-

ciently.

An important topic for further research is the investigation



of the effects of the three tuning parameters (the input cost

weight λ , the prediction horizon Np and the control horizon

Nc) and the selection of appropriate values for these tuning

parameters.

Another topic for further investigation is the comparison

of the MMPS-MPC approach with the MPC approach for

mixed-logic dynamic (MLD) systems introduced in [3] since

MMPS systems are equivalent to MLD systems [15]. The

main difference between MPC for MLD systems and MPC

for MMPS systems is that MLD-MPC requires the solu-

tion of mixed integer-real quadratic optimization problems

whereas MMPS-MPC requires the solution of optimization

problems with real-valued variables. In general both MLD-

MPC and MMPS-MPC result in computationally hard opti-

mization problems. Therefore, we will also compare the per-

formance of MLD-MPC and MMPS-MPC for several spe-

cial subclasses of MMPS or MLD systems. Moreover, it is

also an open question whether there exist other subclasses of

MMPS and MLD systems (apart from the decoupled max-

plus-scaling/min-plus-scaling systems considered in this pa-

per) for which the resulting MPC optimization problem can

be recast as a problem that can be solved efficiently.
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Birkhäuser Verlag, 2000.

[5] E.F. Camacho and C. Bordons, Model Predictive Con-

trol in the Process Industry. Berlin, Germany: Springer-

Verlag, 1995.

[6] D.W. Clarke, C. Mohtadi, and P.S. Tuffs, “Generalized

predictive control – Part I. The basic algorithm,” Automatica,

vol. 23, no. 2, pp. 137–148, Mar. 1987.

[7] R.A. Cuninghame-Green, Minimax Algebra, vol. 166

of Lect. Notes in Economics and Mathematical Systems.

Berlin, Germany: Springer-Verlag, 1979.

[8] B. De Schutter, “Optimal control of a class of linear

hybrid systems with saturation,” SIAM Journal on Control

and Optimization, vol. 39, no. 3, pp. 835–851, 2000.

[9] B. De Schutter and B. De Moor, “The extended

linear complementarity problem,” Mathematical Program-

ming, vol. 71, no. 3, pp. 289–325, Dec. 1995.

[10] B. De Schutter and T. van den Boom, “Model predic-

tive control for max-min-plus systems,” in Discrete Event

Systems: Analysis and Control (R. Boel and G. Stremersch,

eds.), vol. 569 of Kluwer Int. Series in Eng. and Computer

Sc., pp. 201–208, Boston: Kluwer Academic Publ., 2000.

[11] B. De Schutter and T. van den Boom, “Model predic-

tive control for max-plus-linear systems,” in Proc. of 2000

American Contr. Conf., Chicago, pp. 4046–4050, June 2000.

[12] B. De Schutter and T. van den Boom, “On model pre-

dictive control for max-min-plus-scaling discrete event sys-

tems,” Tech. rep. bds:00-04, Control Lab, Fac. of Informa-

tion Techn. and Systems, Delft Univ. of Techn., Delft, The

Netherlands, June 2000. Submitted for publication.

[13] C.E. Garcı́a, D.M. Prett, and M. Morari, “Model pre-

dictive control: Theory and practice — A survey,” Automat-

ica, vol. 25, no. 3, pp. 335–348, May 1989.

[14] J. Gunawardena, “Cycle times and fixed points of

min-max functions,” in Proc. 11th Int. Conf. on Analysis and

Optim. of Systems (Sophia-Antipolis, France, June 1994)

(G. Cohen and J.P. Quadrat, eds.), vol. 199 of Lect. Notes in

Contr. and Information Sc., pp. 266–272, London: Springer-

Verlag, 1994.

[15] W.P.M.H. Heemels, B. De Schutter, and A. Bempo-

rad, “On the equivalence between mixed logical dynamical

systems and complementarity systems,” Accepted for publi-

cation in Automatica, vol. 37, no. 7, July 2001.

[16] G.J. Olsder, “On structural properties of min-max sys-

tems,” in Proc. 11th Int. Conf. on Analysis and Optim. of

Systems (Sophia-Antipolis, France, June 1994) (G. Cohen

and J.P. Quadrat, eds.), vol. 199 of Lect. Notes in Contr. and

Information Sc., pp. 237–246, London: Springer-Verlag,

1994.

[17] Subiono and G.J. Olsder, “On bipartite min-max-plus

systems,” in Proc. European Contr. Conf. (ECC’97), Brus-

sels, Belgium, paper 207, July 1997.

[18] R.J. van Egmond, G.J. Olsder, and H.J. van Zuylen,

“A new way to optimise network traffic control using

maxplus algebra,” in Proc. 78th Annual Meeting of the

Transp. Res. Board, Washington DC, Jan. 1999. Paper 660.


