
Delft University of Technology
Fac. of Information Technology and Systems Control Systems Engineering

Technical report bds:00-04

On model predictive control for
max-min-plus-scaling discrete event

systems∗

B. De Schutter and T. van den Boom

June 2000

Control Systems Engineering
Faculty of Information Technology and Systems
Delft University of Technology
Delft, The Netherlands
Current URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/00_04.html

https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/00_04.html


On model predictive control for

max-min-plus-scaling discrete event systems

Bart De Schutter
∗
and Ton van den Boom

∗

June 2000

Abstract

We extend the model predictive control framework, which is very popular in the process
industry due to its ability to handle constraints on inputs and outputs, to a class of discrete
event systems that can be modeled using the operations maximization, minimization, ad-
dition and scalar multiplication, and that we call max-min-plus-scaling systems. We show
that this class encompasses several other classes of discrete event systems such as max-
plus-linear systems, bilinear max-plus systems, polynomial max-plus systems, separated
max-min-plus systems and regular max-min-plus systems. In general the model predic-
tive control problem for max-min-plus-scaling systems leads to a nonlinear non-convex
optimization problem, that can also be solved using extended linear complementarity
problems. We show that under certain conditions the optimization problem reduces to a
convex programming problem, which can be solved very efficiently.

Keywords: discrete event systems, model predictive control, nonlinear systems

1 Introduction

1.1 Overview

Model predictive control (MPC) is a very popular controller design method in the process
industry. If we look at the deployment of controllers in the process industry then conventional
PID controllers take up about 95% of the installed base and of the remaining 5% the majority
are MPC controllers, making MPC currently the most widely used advanced control design
method in the process industry. MPC is a proven technology for solving industrial problems
with a good economic pay-back. MPC provides many attractive features:

• It can handle constraints in a systematic way and it can keep the system behavior as
close as possible to the constraints without violating them.

• It is applicable to multivariable systems.

• It is capable of tracking pre-scheduled reference signals, using the concept of making
predictions based on a process model.

∗Control Lab, Faculty of Information Technology and Systems, Delft University of Technology, P.O.Box
5031, 2600 GA Delft, The Netherlands, phone: +31-15-278.51.13, email: {b.deschutter,t.j.j.vandenboom}@
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• It is an easy-to-tune method. Basically three parameters have to be chosen and adequate
tuning rules are available.

Furthermore, variance reduction and constraint pushing can be achieved using MPC. This
leads to an improved product quality, a faster adaptation to different working conditions, a
decrease of pollution effluents, and a reduction in the workload for the human operators.

Usually MPC uses discrete-time models. In this paper we extend MPC to a class of
discrete event systems that can be described using the operations maximization, minimization,
addition and scalar multiplication, and that will be called max-min-plus-scaling systems.
We also show that this class encompasses several other classes of discrete event systems.
Typical examples of max-min-plus-scaling systems are digital circuits, computer networks,
telecommunication networks, and manufacturing plants.

A key advantage of conventional MPC is that it allows the inclusion of constraints on the
inputs and outputs. This is also one of the main reasons why we introduce MPC for max-
min-plus-scaling systems. Furthermore, MPC uses a receding horizon strategy which allows
us to regularly update the model of the system and/or the estimates of the current state.

In order to compute an MPC controller for a max-min-plus-scaling system we have to
solve a nonlinear non-convex optimization problem. This can be solved using a nonlinear
optimization algorithm. An alternative approach consists in using an extended linear com-
plementarity problem to describe the possible trajectories of the system in a compact way and
then to minimize the cost criterion over the solution set of the extended linear complemen-
tarity problem. However, for systems with many inputs or outputs or if the control horizon
is large, these approaches are not tractable in practice. Therefore, we also investigate under
which conditions the problem can be recast as a problem with a convex feasible set, or as a
convex or even a linear programming problem.

To the authors’ best knowledge there are currently no other general control design methods
for max-min-plus-scaling systems. Nevertheless, several authors have developed control design
methods for some specific subclasses of max-min-plus-scaling systems such as max-plus-linear
systems (see e.g. [2, 4, 16, 17] and the references therein). However, in contrast to the MPC
method proposed in this paper, these methods do not allow the inclusion of general linear or
even more complex constraints on the inputs and the outputs of the system.

This paper is organized as follows. First we give a brief introduction to discrete event
systems. Next we introduce the class of max-min-plus-scaling systems. Then we describe the
conventional model predictive control framework for discrete-time systems. Next we extend
the MPC framework to max-min-plus-scaling systems. We also show that under certain
conditions the resulting optimization problem reduces to a convex programming problem,
which can be solved very efficiently. We conclude with a worked example.

1.2 Discrete event systems

Typical examples of discrete event systems are flexible manufacturing systems, telecommuni-
cation networks, parallel processing systems, traffic control systems and logistic systems. In
general, we could say that the class of discrete event systems consists of man-made systems
that contain a finite number of resources (e.g. machines, communications channels, or proces-
sors) that are shared by several users (e.g. product types, information packets, or jobs) all of
which contribute to the achievement of some common goal (e.g. the assembly of products, the
end-to-end transmission of a set of information packets, or a parallel computation) [2]. There
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are many modeling techniques for discrete event systems, such as (extended) state machines,
max-plus algebra, formal languages, automata, temporal logic, generalized semi-Markov pro-
cesses, Petri nets, computer simulation models and so on (see [2, 6, 14, 13] and the references
cited therein). When selecting the most appropriate model for a discrete event system, an
important trade-off that has to be taken into account is that of modeling power versus de-
cision power, i.e. modeling frameworks that can describe large and more general classes of
discrete event systems in general lend themselves less easily to mathematical analysis. There-
fore, several researchers have focused on special subclasses of discrete event systems that are
more amenable to mathematical analysis. One such class for which several analytic results
are available is the class of the max-plus-linear systems. Loosely speaking we could say that
this class corresponds to the class of discrete event systems in which there is synchronization
but no concurrency. Such systems can be modeled using the operations maximization (cor-
responding to synchronization1) and addition (corresponding to durations2). This leads to
a description that is linear in the max-plus algebra [2, 8] (see also Section 3.1). The oper-
ation minimization appears in discrete event descriptions when there is concurrency (e.g. if
several machines can process a part, then the part could be sent to the first machine that is
available). That is why in the next section we will consider discrete event systems that can
be described by models in which the operations maximization, minimization, addition and
scalar multiplication appear.

2 Max-min-plus-scaling systems

Definition 2.1 (Max-min-plus-scaling (MMPS) expression)
A max-min-plus-scaling expression f of the variables x1, x2, . . . , xn is defined by the grammar3

f := xi|α|max(fk, fl)|min(fk, fl)|fk + fl|βfk ,

with i ∈ {1, 2, . . . , n}, α ∈ R, and fk and fl are again max-min-plus-scaling expressions.

Some examples of MMPS expressions of the variables x1, x2, x3 are x1+8x2−5, min(max(x1−
3, x2+x3), x2−7x3), or x1−x2+3max(x1−x2+2x3, x1+min(x1−x2+x3, x2−x3,max(x1, x2−
x3 − 3))).

Now we consider discrete event systems that can be described by state space equations of
the following form:

x(k) = Mx(x(k − 1), u(k)) (1)

y(k) = My(x(k), u(k)) (2)

where Mx and My are MMPS expressions. For a discrete event system x(k) would typically
contain the time instants at which the internal events occur for the kth time, u(k) would
contain the time instants at which the input events occur for the kth time, and y(k) would
contain the time instants at which the output events occur for the kth time. Systems the

1A new operation starts as soon as all preceding operations have been finished.
2The finishing time of an operation equals the starting time plus the duration.
3The symbol | stands for “or”. Also note that the definition is recursive. So an MMPS expression is a

variable or a constant, or the maximum or minimum or sum of two MMPS expressions, or a scalar multiple of
an MMPS expression.
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behavior of which can be described by a model of the form (1)–(2) will be called MMPS
systems.

Let l, m and n be respectively the number of outputs, inputs and states of the MMPS
system.

Remark 2.2 In general the functions Mx and My in (1)–(2) may even depend on k. For
sake of simplicity we will only consider time-invariant MMPS descriptions here. Note however
that all the results obtained in this paper also hold for time-varying MMPS systems. ✸

3 MMPS systems and other classes of discrete event systems

In this section we will show that the model (1)–(2) can be considered as a generalized frame-
work that encompasses several subclasses of discrete event systems such as

• max-plus-linear systems

• max-plus-bilinear systems

• max-plus-polynomial systems

• separated max-min-plus systems

• max-min-plus systems

3.1 Max-plus-linear systems

Max-plus-linear systems [2, 8] are discrete event systems that can be described by a state
space model of the following form:

x(k) = A⊗ x(k − 1) ⊕ B ⊗ u(k) (3)

y(k) = C ⊗ x(k) ⊕ D ⊗ u(k) (4)

where the operations ⊕ and ⊗ are defined by

(U ⊕ V )ij = uij ⊕ vij = max(uij , vij) (5)

(U ⊗W )ij =

q
⊕

k=1

uik ⊗ wkj = max
k=1,...,q

(uik + wkj) (6)

for matrices U, V ∈ R
p×q
-∞ , and W ∈ R

q×r
-∞ with R -∞ = R ∪ {−∞}. Regarding the order of

evaluation, the operation ⊗ has precedence over ⊕. The reason for selecting the symbols ⊕
and ⊗ to represent max and + is that there is a remarkable analogy between the operations ⊕
and ⊗ on the one hand and the operations + and × on the other hand [2, 8]. Therefore, ⊕ is
called the max-plus-algebraic addition and ⊗ the max-plus-algebraic multiplication. This also
explains why the model (3)–(4) is called max-plus-linear, i.e. linear in the max-plus-algebraic
sense.

The model (3)–(4) can be rewritten as

xi(k) = max
(

max
j

(aij + xj(k − 1)), max
j

(bij + uj(k))
)

for i = 1, 2, . . . , n,

yi(k) = max
(

max
j

(cij + xj(k)), max
j

(dij + uj(k))
)

for i = 1, 2, . . . , l,

which is clearly a special case of an MMPS system.
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3.2 Max-plus-bilinear systems

Max-plus-bilinear systems are discrete event systems that can be described by a state space
model of the following form:

x(k) = A⊗ x(k − 1) ⊕ B ⊗ u(k) ⊕

m
⊕

p=1

Np ⊗ up(k)⊗ x(k − 1) (7)

y(k) = C ⊗ x(k) ⊕ D ⊗ u(k) (8)

with Np ∈ R
n×n
-∞ for p = 1, 2, . . . ,m. This description is the max-plus-algebraic equivalent

of conventional bilinear discrete-time systems. Max-plus-bilinear systems arise when some of
the inputs of a max-plus-linear system of the form (3)–(4) are used as a switch to control
the entries of the system matrix A, i.e. the constant system matrix A is replaced by the
input-dependent system matrix A ⊕ N1u1(k) ⊕ . . . ⊕ Nmum(k).

Since the model (7)–(8) can be rewritten as

xi(k) = max
(

max
j

(aij + xj(k − 1)), max
j

(bij + uj(k)), max
p,j

((Np)ij + up(k) + xj(k − 1))
)

for i = 1, 2, . . . , n,

yi(k) = max
(

max
j

(cij + xj(k)), max
j

(dij + uj(k))
)

for i = 1, 2, . . . , l,

max-plus-bilinear systems are also a subclass of the MMPS systems.

3.3 Max-plus-polynomial systems

The rth max-plus-algebraic power of the scalar variable v is defined by v⊗
r
= rv. A max-

plus-polynomial p of the scalar variables v1, v2, . . . , vn can be written as

p(v1, v2, . . . , vn) =

q
⊕

i=1

ci ⊗ v1
⊗
ri,1

⊗ v2
⊗
ri,2

⊗ . . .⊗ vn
⊗
ri,n

(9)

where ci and ri,j are scalars.
Max-plus-polynomial systems are a further extension of max-plus-linear and max-plus-

bilinear discrete event systems. They can be described by a state space model of the following
form:

x(k) = px(x(k − 1), u(k)) (10)

y(k) = py(x(k), u(k)) (11)

where px and py are max-plus-polynomials. In [23] a subclass of max-plus-polynomial systems4

has been used in the design of traffic signal switching schemes.
Since (9) can be rewritten as

p(v1, v2, . . . , vn) = max
i=1,...,q

(ci + ri,1v1 + ri,2v2 + · · ·+ ri,nvn) (12)

which is an MMPS expression, the system (10)–(11) is also an MMPS system.

4The systems in considered [23] have a state equation of the form x(k) = max(A1x(k − 1), A2x(k − 1), . . . ,
ANx(k − 1)), which can be considered as a max-plus-polynomial equation with the entries of the system
matrices A1, A2, . . . , AN as exponents (cf. (12) and (9)).
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3.4 Separated max-min-plus systems

Separated max-min-plus systems [15, 19, 22] are described by a model of the form

x(k) = A⊗ x(k − 1) ⊕ B ⊗ x̃(k − 1) (13)

x̃(k) = C ⊗′ x(k − 1) ⊕′ D ⊗′ x̃(k − 1) (14)

where ⊕ and ⊗ are defined as in (5)–(6), and where ⊕′ and ⊗′ are the min-plus-algebraic
equivalents of ⊕ and ⊗, i.e.

(U ⊕′ V )ij = uij ⊕
′ vij = min(uij , vij)

(U ⊗′ W )ij =

q
⊕

k=1

′

uik ⊗
′ wkj = min

k=1,...,q
(uik + wkj)

for matrices U, V ∈ R
p×q
∞ and W ∈ R

q×r
∞ with R∞ = R ∪ {+∞}.

In conventional notation (13)–(14) becomes

xi(k) = max
(

max
j

(aij + xj(k − 1)), max
j

(bij + x̃j(k − 1))
)

for i = 1, 2, . . . , n,

x̃i(k) = min
(

min
j

(cij + xj(k − 1)), min
j

(dij + x̃j(k − 1))
)

for i = 1, 2, . . . ,m,

which is clearly a special case of an MMPS model.

Remark 3.1 The separated max-min-plus descriptor systems considered in [18] correspond
to constrained MMPS systems, i.e. MMPS systems of the form (1)–(2) but with an addi-
tional MMPS constraint of the form Mc(x(k − 1), u(k), y(k)) = 0 where Mc is an MMPS
expression. ✸

3.5 Max-min-plus systems

Max-min-plus systems [12, 20] are described by the model

x(k) = Mmm(x(k − 1)) (15)

where Mmm is a max-min expression, i.e. an expression defined by the grammar

f := xi|fk + α|max(fk, fl)|min(fk, fl)

where α is a scalar, and fk and fl are again max-min expressions. So max-min expressions
are special cases of MMPS expressions. This implies that max-min-plus systems are also a
subclass of the MMPS systems.

Note that the class of MMPS systems is a non-trivial superset of the max-min-plus systems
described by (15) and considered in [12, 20] since in contrast to the max-min expressions of
[12, 20] we also allow the addition of two MMPS expressions and the multiplication by a scalar
in the definition of MMPS expressions. Furthermore, the max-min-plus systems considered
in [12, 20] are autonomous5 (i.e. only the state is considered, and there is no input) whereas
in the model (1) –(2) we have included inputs and outputs.

So the MMPS systems can be considered as a generalized framework for several classes of
discrete event systems.

5Note that in fact the separated max-min-plus system (13)–(14) considered in [15, 19, 22] are also au-
tonomous systems with state [ xT (k) x̃T (k) ]T .
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4 Model predictive control

In this section we give a short introduction to MPC for deterministic nonlinear discrete-time
systems. Since we will only consider the deterministic, i.e. noiseless, case for MMPS systems,
we will also omit the noise terms in this introduction to MPC. More extensive information
on MPC for (linear and nonlinear) discrete-time systems can be found in [1, 3, 5, 7, 11] and
the references therein.

Consider a plant with m inputs and l outputs that can be modeled by a nonlinear discrete-
time state space description of the following form:

x(k) = f(x(k − 1), u(k)) (16)

y(k) = h(x(k), u(k)) (17)

where f and h are smooth functions of x and u.
In MPC we consider the future evolution of the system over a given prediction horizon

Np. For the system (16)–(17) we can make an estimate ŷ(k + j|k) for the output at sample
step k + j based on the state at step k and the future inputs u(k + i), i = 0, 1, . . . , j. Using
successive substitution, we obtain an expression of the following form:

ŷ(k + j|k) = Fj(x(k − 1), u(k), u(k + 1), . . . , u(k + j))

for j = 0, 1, . . . , Np − 1. If we define the vectors

ũ(k) =
[

uT (k) uT (k + 1) . . . uT (k +Np − 1)
]T

ỹ(k) =
[

ŷT (k|k) ŷT (k + 1|k) . . . ŷT (k +Np − 1|k)
]T

,

we can derive the expression
ỹ(k) = F̃ (x(k − 1), ũ(k)) ,

which characterizes the estimated future evolution of the output of the system at sample step
k over the prediction horizon Np for the input sequence u(k), u(k + 1), . . . , u(k +Np − 1).

The MPC cost criterion J(k) measures the reference tracking error Jout(k) and the control
effort Jin(k) in the interval [k, k +Np − 1]:

J(k) = Jout(k) + λJin(k)

=

Np−1
∑

j=0

(

ŷ(k + j|k)− r(k + j)
)T (

ŷ(k + j|k)− r(k + j)
)

+ λ

Np−1
∑

j=0

uT (k + j)u(k + j)

=
(

ỹ(k)− r̃(k)
)T (

ỹ(k)− r̃(k)
)

+ λũT (k)ũ(k)

where λ is a nonnegative integer, the signal r(k) is the reference signal for y(k), and r̃(k) is
defined similarly to ỹ(k). In practical situations, there will be constraints on the input and
output signals. This is reflected in the nonlinear constraint function

Cc(k, ũ(k), ỹ(k)) 6 0 .

Often a linear function may reflect all the desired constraints, and we obtain

Ac(k)ũ(k) +Bc(k)ỹ(k)− cc(k) 6 0 . (18)
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The MPC problem at sample step k consists in minimizing J(k) over all possible future
input sequence vectors ũ(k) subject to Cc(k, ũ(k), ỹ(k)) 6 0. This is usually a non-convex
optimization problem. To reduce the complexity of the optimization problem a control horizon
Nc is introduced in MPC, which means that the input is taken to be constant beyond sample
step k +Nc:

u(k + j) = u(k +Nc − 1) for j = Nc, Nc + 1, . . . , Np − 1 . (19)

In addition to a decrease in the number of optimization parameters and thus also the com-
putational burden, a smaller control horizon Nc also gives a smoother control signal, which
is often desired in practical situations.

MPC uses a receding horizon principle. This means that after computation of the optimal
control sequence u(k), u(k+1), . . . , u(k+Nc−1), only the first element of the optimal sequence
(u(k)) is applied to the system. Next the horizon is shifted and a new MPC optimization
is performed for sample step k + 1. Note that the receding horizon approach implies that
the MPC optimization problem has to be solved at each sample step k. The computational
burden depends on the choices of the horizons Np and Nc, and on the complexity of the
prediction function F̃ and the constraint function Cc. More information on model predictive
control of nonlinear systems can be found in [1, 3].

5 Model predictive control for MMPS systems

In this section we extend and adapt the MPC framework from discrete-time systems to
MMPS systems. If possible we use analog constraints and cost criteria for both types of
systems. However, as we shall see, in some cases different constraints and cost criteria are
more appropriate. Also note that the counter k in the MMPS model (1)–(2) is an event counter
(and event occurrence instants are in general not equidistant), whereas in the discrete-time
model (16)–(17) k is a sample counter, which increases each clock cycle.

We will use the deterministic model (1)–(2) as an approximation of a discrete event system
with modeling errors or uncertainty. We also assume that at event step k the current state
x(k) can be measured, estimated or predicted using previous measurements. Since MPC uses
a receding finite horizon approach, we can regularly update the model and the state estimate
as new information and measurements become available.

5.1 Cost criterion

Just as in MPC for discrete-time systems, we define the MPC cost criterion for MMPS systems
at event step k as J(k) = Jout(k) + λJin(k), where Jout(k) is related to the output and Jin(k)
is related to the input. Now we discuss some possible choices for Jout(k) and Jin(k).

If the due dates r for the finished products are known and if we have to pay a penalty for
every delay, a possible output cost criterion is the tardiness:

Jout,1(k) =

Np−1
∑

j=0

l
∑

i=1

max(ŷi(k + j|k)− ri(k + j), 0) .

If we have perishable goods, then we want to minimize the differences between the due dates
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and the actual output time instants. This leads to

Jout,2(k) =

Np−1
∑

j=0

l
∑

i=1

|ŷi(k + j|k)− ri(k + j)| .

If we want to balance the output rates, we could consider the following output cost criterion:

Jout,3(k) =

Np−1
∑

j=1

l
∑

i=1

|∆2ŷi(k + j|k)|

where ∆2ŷi(k + j|k) = ŷi(k + j|k)− 2ŷi(k + j − 1|k) + ŷi(k + j − 2|k).
The conventional MPC input cost criterion ũT (k)ũ(k) would lead to a minimization of

the input time instants. Since this could result in internal buffer overflows, a better objective
is to maximize the input time instants. For a manufacturing system, this would correspond
to a production scheme in which raw material is fed to the system as late as possible. As a
consequence, the internal buffer levels are kept as low as possible6. So for MMPS systems a
more appropriate cost criterion is

Jin,0(k) = −ũT (k)ũ(k) .

Note that this input cost criterion exactly the opposite of the conventional MPC input effort
cost criterion.
Another objective function that leads to a maximization of the input time instants is

Jin,1(k) = −

Np−1
∑

j=0

m
∑

i=1

ui(k + j) .

If we want to balance the input rates we could use the following cost criterion:

Jin,2(k) =

Np−1
∑

j=1

l
∑

i=1

|∆2ui(k + j)| .

Remark 5.1 Sometimes we want to design a schedule that is robust against unexpected
internal delays in the system. In that case we should minimize the input time instants, which
leads to an input cost criterion Jin(k) = −Jin,0(k) or Jin(k) = −Jin,1(k). ✸

Note that for the input cost criteria defined above we could replace the upper summation index
Np by Nc or redefine ũ(k) accordingly. We could also replace both summations (or only the
second) in the definitions of the input and output cost criteria given above by maximizations,
add some weight factors to the terms of the cost criterion, or consider weighted mixtures of
several cost criteria.

6This also leads to a notion of stability if we let instability for the manufacturing system correspond to
internal buffer overflows. This is related to the “internal stability” as defined in [2]. Note that in general
several definitions of stability are possible for discrete event systems (see e.g. [2, 21]).
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5.2 Constraints

In the context of discrete event systems typical constraints are:

a1(k + j) 6 ∆u(k + j) 6 b1(k + j) for j = 0, 1, . . . , Nc − 1,

a2(k + j) 6 ∆ŷ(k + j|k) 6 b2(k + j) for j = 0, 1, . . . , Np − 1,

ŷ(k + j|k) 6 r(k + j) for j = 0, 1, . . . , Np − 1,

where ∆u(k + j) = u(k + j)− u(k + j − 1). It is easy to verify that all these constraints can
also be recast as a linear constraint of the form (18), which is used in conventional MPC.

Since for MMPS systems the input sequence usually corresponds to occurrence times of
consecutive events, it should always be nondecreasing. Therefore, we also have to add the
condition

∆u(k + j) > 0 for j = 0, 1, . . . , Np − 1 .

This is also a constraint of the form (18).
In general we could consider constraints of the form

Mc(k, ũ(k), ỹ(k), x(k − 1)) 6 0

where Mc is an MMPS expression.

5.3 The evolution of the input beyond the control horizon

In MPC for discrete-time systems the condition that from step k + Nc on the input should
stay constant, helps to reduce the number of variables in the MPC optimization problem.
Therefore, we also introduce a control horizon constraint in MPC for MMPS systems.

A straightforward application of that the input should stay constant from step k+Nc on
is not very useful for MMPS systems since the input sequences should normally be increasing.
Therefore, we change this condition as follows: the feeding rate should stay constant beyond
step k +Nc, i.e. ∆u(k + j) = ∆u(k +Nc − 1) for j = Nc, Nc + 1, . . . , Np − 1, or equivalently

∆2u(k + j) = 0 for j = Nc, Nc + 1, . . . , Np − 1 .

This condition introduces regularity in the input sequence. In addition it prevents the buffer
overflow problems that could arise when all resources are fed to the system at the same time
instant as would be implied by the conventional control horizon constraint (19).

5.4 The standard MPC problem for MMPS systems

If we combine the material of previous subsections, we finally obtain the following problem:

Find the input sequence vector ũ(k) that minimizes the cost criterion J(k) subject to

x̂(k + j|k) = Mx(x̂(k + j − 1|k), u(k + j)) for j = 0, 1, . . . , Np − 1, (20)

ŷ(k + j|k) = My(x̂(k + j − 1|k), u(k + j)) for j = 0, 1, . . . , Np − 1, (21)

Mc(k, ũ(k), ỹ(k), x(k − 1)) 6 0 (22)

∆u(k + j) > 0 for j = 0, 1, . . . , Np − 1, (23)

∆2u(k + j) = 0 for j = Nc, Nc + 1, . . . , Np − 1, (24)

with x̂(k − 1|k) = x(k − 1).
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This problem will be called the MMPS-MPC problem for event step k. Note that in this case
we also use a receding horizon approach in which in each step we effectively apply only the
first input sample.

6 Algorithms to solve the MMPS-MPC problem

6.1 Nonlinear optimization

The MMPS-MPC problem is a nonlinear nonconvex optimization problem. So we could use
multistart local constrained optimization algorithms to compute the optimal input sequence.
However, this will not always yield the global optimum. In addition the required computation
time may be too large to use this approach in practice. Therefore, we will now discuss two
other approaches, one based on the Extended Linear Complementarity Problem, which can
always be applied, and a much more efficient approach that can however only be used in some
special cases.

6.2 The Extended Linear Complementarity Problem

The Extended Linear Complementarity Problem (ELCP) is defined as follows [9]:

Given A ∈ R
p×n, B ∈ R

q×n, c ∈ R
p, d ∈ R

q and m subsets φ1, . . . , φm of {1, . . . , p}, find
z ∈ R

n such that
∏

i∈φj

(Az − c)i = 0 for j = 1, . . . ,m, (25)

subject to Az > c and Bz = d, or show that no such z exists.

Equation (25) represents the complementarity condition of the ELCP. One possible interpre-
tation of this condition is the following: each set φj corresponds to a group of inequalities
of Az > c and in each group at least one inequality should hold with equality, i.e. the corre-
sponding residue should be equal to 0. So for each j there should exist an index i ∈ φj such
that (Az − c)i = 0.

In general, the solution set of the ELCP defined above consists of the union of faces of the
polyhedron defined by the system of linear equations and inequalities (Az > c and Bz = d)
of the ELCP. In [9] we have developed an algorithm to compute the complete solution set
of an ELCP. This algorithm yields a description of the solution set of an ELCP by vertices,
extreme rays and a basis of the linear subspace corresponding to the largest affine subspace
of the solution set.

Let us now show how the MMPS-MPC problem can be solved using the ELCP. This will
be done by showing that each of the 6 basic constructors for an MMPS expression fits the
ELCP framework:

• Expressions of the form f = xi, f = α, f = fk + fl and f = βfk (or their combinations)
result in linear equations of the form Bz = d where z contains the variables7 f , xi, fk
and fl.

7In this case f , fk and fl are dummy variables.

11



• An expression of the form f = max(fk, fl) can be rewritten as

f > fk

f > fl

f = fk or f = fl

or equivalently

f − fk > 0

f − fl > 0

(f − fk)(f − fl) = 0 ,

which is an ELCP.

• In a similar way an expression of the form f = min(fk, fl) can be rewritten as

fk − f > 0

fl − f > 0

(fk − f)(fl − f) = 0 ,

which is also an ELCP.

This implies that by introducing additional dummy variables if necessary, any MMPS ex-
pression can be recast as an ELCP. Furthermore, two or more ELCPs can be combined into
one large ELCP. The constraints (23)–(24) just yield additional linear (in)equalities. So the
system (20)–(24), which defines the feasible set of the MMPS-MPC problem, can be rewrit-
ten as an ELCP. We can compute a compact parametric description of the solution set of
an ELCP using the algorithm of [9]. In order to determine the optimal MPC policy we then
have to determine for which values of the parameters the objective function J(k) over the
solution set of the ELCP that corresponds to (20)–(24). The algorithm of [9] to compute
the solution set of a general ELCP requires exponential execution times. This implies that
the ELCP approach sketched above is not feasible if Nc, m or l are large. However, in the
next section we will show that under certain conditions the MMPS-MPC problem leads to a
convex optimization problem, which can be solved very efficiently.

6.3 Monotonic objective functions and constraints

We say that a function F is a monotonically nondecreasing (nonincreasing) function of y if
y∗ 6 y♯ implies that F (y∗) 6 F (y♯)

(

F (y∗) > F (y♯)
)

.

Definition 6.1 (Max-plus-positive-scaling (MaxPPS) expression)
A max-plus-positive-scaling expression f of the variables x1, . . . , xn is defined by the grammar

f := αxi |β | max(fk, fl) | fk + fl | ρfk

with i ∈ {1, . . . , n}, α, β, ρ ∈ R, ρ > 0 and where fk and fl are again max-plus-positive-scaling
expressions.

12



Definition 6.2 (Min-plus-positive-scaling (MinPPS) expression)
A min-plus-positive-scaling expression f of the variables x1, . . . , xn is defined by the grammar

f := αxi |β | min(fk, fl) | fk + fl | ρfk

with i ∈ {1, . . . , n}, α, β, ρ ∈ R, ρ > 0 and where fk and fl are again min-plus-positive-scaling
expressions.

Now it is easy to verify that the following statements hold:

Statement 6.3 A MaxPPS function is a convex function of its arguments.

Statement 6.4 A MinPPS function is a concave function of its arguments.

Statement 6.5 A MaxPPS function is a monotonically nondecreasing function of its argu-
ments.

Statement 6.6 A MinPPS function is a monotonically nonincreasing function of its argu-
ments.

In the remainder of this section we consider the MPC problem for a subclass of MMPS systems
that can be described by the following state space model:

xmax(k) = Mmax
x (xmax(k − 1), u(k)) (26)

xmin(k) = Mmin
x (xmin(k − 1), u(k)) (27)

ymax(k) = Mmax
y (xmax(k), u(k)) (28)

ymin(k) = Mmin
y (xmin(k), u(k)) (29)

where Mmax
x and Mmax

y are MaxPPS expressions, and Mmin
x and Mmin

y are MinPPS expres-

sions. The vector x(k) = [ xTmax(k) xTmin(k) ]
T is the state of the system at event step k,

and y(k) = [ yTmax(k) yTmin(k) ]
T is the output of the system at event step k. Furthermore,

we consider a linear constraint instead of the general MMPS constraint (22). So the MPC
constraints are

Ac(k) ũ(k) +Bc(k) ỹ(k) 6 cc(k) (30)

∆u(k + j) > 0 for j = 0, . . . , Np − 1, (31)

∆2u(k + j) = 0 for j = Nc, . . . , Np − 1. (32)

Remark 6.7 It is easy to verify that any MaxPPS expression f of x1, . . . , xn can be written
in a conjunctive normal form:

f = max(f1, f2, . . . , fn)

where f1, . . . , fn are affine expressions of the variables x1, . . . , xn. In a similar way any
MinPPS expression f of x1, . . . , xn can be written in a disjunctive normal form:

f = min(f1, f2, . . . , fn)
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where f1, . . . , fn are affine expressions of the variables x1, . . . , xn.
This implies that the linear constraint (30) can also be considered to encompass MaxPPS and
MinPPS constraints of the form

Mmax
c (k, ũ(k), ỹ(k), x(k − 1)) 6 0

Mmin
c (k, ũ(k), ỹ(k), x(k − 1)) 6 0

where Mmax
c is a MaxPPS expression and Mmax

c is a MinPPS expression. ✸

Now we consider the relaxed MMPS-MPC problem for the system described by (26)–(29).
This problem is defined by the evolution equations (26)–(29) and the constraints (30)–(32)
but with the =-sign in (26) and (28) replaced by a >-sign, and the =-sign in (27) and (29)
replaced by a 6-sign:

xmax(k) > Mmax
x (xmax(k − 1), u(k)) (33)

xmin(k) 6 Mmin
x (xmin(k − 1), u(k)) (34)

ymax(k) > Mmax
y (xmax(k), u(k)) (35)

ymin(k) 6 Mmin
y (xmin(k), u(k)) . (36)

The constraints (30)–(32) are linear and thus convex. Furthermore, from Statements 6.3 and
6.4 it follows that the constraints (33)–(36) are also convex. As a consequence, the set of
feasible solutions of the relaxed MMPS-MPC problem is convex. Hence, the relaxed problem
is much easier to solve numerically.

Let ỹmax(k) and ỹmin(k) be defined in a similar way as ỹ(k). Using a reasoning that is an
extension of the one used in [10] for the max-plus-linear MPC, we will now show that if the
objective function J(k) and the linear constraints are monotonically nondecreasing functions
of xmax(k) and ỹmax(k) and monotonically nonincreasing functions of xmin(k) and ỹmin(k),
then the optimal solution of the relaxed MMPS-MPC problem can be transformed into a
solution of the original MPC problem:

Theorem 6.8 Consider an MMPS system that can be modeled by (26)–(29). Let the objective
function J(k) and the mapping ỹ(k) → Bc(k)ỹ(k) be monotonically nondecreasing functions of
ỹmax(k) (and xmax(k)) and monotonically nonincreasing functions of ỹmin(k) (and xmin(k)),
Let (ũ∗(k), ỹ∗(k)) be an optimal solution of the relaxed MMPS-MPC problem. If we define
ỹ♯(k) by

x♯max(k + j|k) = Mmax
x

(

x♯max(k + j − 1|k), u∗(k + j)
)

x
♯
min(k + j|k) = Mmin

x

(

x
♯
min(k + j − 1|k), u∗(k + j)

)

y♯max(k + j|k) = Mmax
y

(

x♯max(k + j|k), u∗(k + j)
)

y
♯
min(k + j|k) = Mmin

y

(

x
♯
min(k + j|k), u∗(k + j)

)

for j = 0, 1, . . . , Np−1 and with x
♯
max(k−1|k) = xmax(k−1) and x

♯
min(k−1|k) = xmin(k−1),

then (ũ∗(k), ỹ♯(k)) is an optimal solution of the original MMPS-MPC problem.

Proof : For ease of notation we define ũ∗
def
= ũ∗(k), ỹ∗

def
= ỹ∗(k), ỹ♯

def
= ỹ♯(k).

Clearly, (ũ∗, ỹ♯) is a feasible solution of the original MMPS-MPC problem.

14



Now we first show by induction that

x∗max(k + j|k) > x♯max(k + j|k) for j = 0, 1, . . . , Np − 1. (37)

By definition (37) holds for j = 0 since x∗max(k− 1|k) = x
♯
max(k− 1|k) = xmax(k− 1). Now we

assume that (37) holds for j = M with M ∈ {0, 1, . . . , Np − 2} and we show that it also holds
for j = M + 1. Since by Statement 6.5 Mmax

x is a monotonically nondecreasing function of
its arguments, the induction assumption implies that

x∗max(k +M |k) = Mmax
x

(

x∗max(k +M − 1|k), u∗(k +M)
)

> Mmax
x

(

x♯max(k +M − 1|k), u∗(k +M)
)

> x♯max(k +M |k) .

Hence, (37) holds for all values of j.

In a similar way we can show that ỹ∗max(k) > ỹ
♯
max(k), and — since MinPPS functions are

monotonically nonincreasing by Statement 6.6 — that x∗min(k + j|k) 6 x
♯
min(k + j|k) for

j = 0, 1, . . . , Np − 1 and thus ỹ∗min(k) 6 ỹ
♯
min(k). Since the objective function J(k) and the

mapping ỹ(k) → Bc(k)ỹ(k) are monotonically nondecreasing functions of ỹmax(k) and xmax(k)
and monotonically nonincreasing functions of ỹmin(k) and xmin(k), this implies that

(a) J(ũ∗, ỹ♯) 6 J(ũ∗, ỹ∗)

(b) (ũ∗, ỹ♯) is a feasible solution of the relaxed MMPS-MPC problem.

Since (ũ∗, ỹ∗) is an optimal solution of the relaxed MMPS-MPC problem, (a) and (b) imply
that J(ũ∗, ỹ♯) = J(ũ∗, ỹ∗). So (ũ∗, ỹ♯) is also an optimal solution of the relaxed MMPS-MPC
problem. Since in addition it is also a feasible solution of the original MMPS-MPC problem
and since the set of feasible solutions of the relaxed MMPS-MPC problem is a superset of the
set of feasible solutions of the original MMPS-MPC problem, this implies that (ũ∗, ỹ♯) is an
optimal solution of the original MMPS-MPC problem. ✷

Note that we can always obtain an objective function that is a monotonically nondecreasing
function of function of ỹmax(k) and a monotonically nonincreasing function of ỹmin(k) by
eliminating ỹ(k) from the expression for J(k) using the evolution equations (26)–(29) before
relaxing the problem. However, some of the properties (such as convexity or linearity) of the
original objective function may be lost in that way.

Recall that the relaxed MMPS-MPC problem has a convex feasible set. So if Theorem 6.8
applies the optimal MPC policy can be computed much more efficiently than in the general
case. If in addition the objective function is convex (e.g. if J(k) equals −Jin,0(k), ±Jin,1(k),
Jout,1(k) or a weighted combination of these objective functions), we finally get a convex
optimization problem, which can be solved efficiently using, e.g. an interior point method.
Since Jin,1(k) is a linear function, the problem even reduces to a linear programming problem
for J(k) = ±Jin,1(k), which can be solved very efficiently. Furthermore, it easy to verify that
for J(k) = Jout,1(k) the problem can also be reduced to a linear programming problem by
introducing some additional dummy variables (see also Footnote 8).
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7 Example

Consider the MMPS system that can be described by the following state space model

x1(k) = max(0.5x1(k − 1) + x2(k − 1) + 0.8u(k), x1(k − 1) + 0.6x2(k − 1))

x2(k) = max(x1(k − 1) + 0.4x2(k − 1) + u(k), 0.5x1(k − 1) + x2(k − 1))

x3(k) = min(0.5x3(k − 1) + x4(k − 1) + u(k), x3(k − 1) + 2x4(k − 1))

x4(k) = min(x3(k − 1) + 0.4x4(k − 1) + 0.8u(k), 1.5x3(k − 1) + x4(k − 1))

y1(k) = max(x1(k), x2(k))

y2(k) = min(x3(k), x4(k)) .

Let x0 = [ 1 2 3 1 ]T .
We will solve the MMPS-MPC problem for this system with Nc = 4, Np = 6, with the

following constraints:

1 6 ∆u(k) 6 5 for k = 1, 2, . . . , 6,

y2(k) > r2(k) for k = 1, 2, . . . , 6,

where {r1(k)}
6
k=1 = 5, 10, 15, 30, 55, 90, {r2(k)}

6
k=1 = 4, 10, 20, 35, 60, 100, and with the objec-

tive function

J(k) =
6

∑

k=1

max(y1(k)− r1(k), 0) + 0.02 ũT (k)ũ(k) ,

which makes a trade-off between the tardiness of the output y1 w.r.t. the reference signal r1,
and the input, which is minimized so that raw material is fed to the system as early as possible
to guarantee robustness against possible unexpected internal delays. Since the model of the
system is a model of the form (26)–(29), and since the objective function and the constraints
are monotonically nondecreasing as a function of ỹ1(k) and monotonically nonincreasing as
a function of ỹ2(k), Theorem 6.8 applies. Hence, we can consider the MMPS-MPC relaxed
problem when we want to compute the optimal input sequence. In addition, the objective
function J(k) is convex so that we can solve the relaxed problem using a convex optimization
algorithm.

In order to compare the efficiency of the different MMPS-MPC algorithms discussed in
Section 6, we have solved one step of the MMPS-MPC problem for k = 1 using the ELCP
method, using nonlinear constrained optimization, and using the relaxed problem with a
quadratic programming algorithm8. All methods yield the same optimal input sequence9:

{u(k)}6k=1 = 2.50, 3.98, 4.98, 7.72, 10.46, 13.20

with J(k) = 30.64 as the optimal value of the objective function. However, for the method
that uses nonlinear constrained optimization several runs with different initial starting points
where necessary to find the global optimum10, whereas for the two other methods starting

8If we introduce a dummy variable t and additional constraints 0 6 t, y1(k) − r1(k) 6 t for k = 1, 2, . . . , 6
and if we consider the objective function J̃ = t + 0.02ũT (k)ũ(k), we get a quadratic programming problem
that is equivalent to the relaxed MMPS-MPC problem.

9All numerical results in this section will be specified up to 2 decimal places.
10In an experiment with 20 random starting points 7 runs did not result in a feasible final solution. The

average value of the final objective function value for the 14 runs that resulted in a feasible final solution was
30.97 with a standard deviation of 0.87.
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Method CPU time

ELCP 7568.390

nonlinear optimization 0.679

quadratic programming 0.027

Table 1: CPU time (in seconds, on a 1 GHz PC with 256 MB RAM, up to 3 decimal places)
needed to solve one step of the MMPS-MPC problem of Section 7. Each indicated value is
the average over 20 runs with random starting points.

from different initial points always yields almost the same result11. The output sequences
that correspond to the optimal input sequence are

{y1(k)}
6
k=1 = 4.50, 10.20, 19.05, 34.49, 59.90, 99.19

{y2(k)}
6
k=1 = 5.00, 10.34, 20.00, 35.44, 60.90, 100.00 .

The CPU times required to compute the optimal input sequences are listed in Table 1. Clearly,
the approach using the relaxed problem is much more efficient than the other approaches.

Note that in this example we have only considered one MPC step. In practice the com-
putation of the optimal input sequence should be repeated every event step12. Nevertheless,
the results given above also hold if we consider several consecutive MPC steps: the approach
using the relaxed problem will stay much more efficient than the other approaches.

8 Conclusions and future research

In this paper we have further extended the popular model predictive control (MPC) framework
from discrete-time systems to max-min-plus-scaling (MMPS) discrete event systems. The
reason for using an MPC approach for MMPS systems is the same as for conventional linear
systems: MPC allows the inclusion of constraints on the inputs and outputs, it is an easy-to-
tune method, and it is flexible for structure changes (since the optimal strategy is recomputed
every time step or event step so that model changes can be taken into account as soon as
they are identified).

We have also presented some methods to solve the MMPS-MPC problem. In general this
leads to a nonlinear non-convex optimization problem. If the state and output equations can
be split in max-plus-positive-scaling and min-plus-positive-scaling parts that are decoupled,
and if the objective function and the constraints are monotonic functions of the states and
the outputs, then we can relax the MMPS-MPC problem to problem with a convex set of
feasible solutions. If in addition the objective function is convex or linear, this leads to a
problem that can be solved very efficiently.

In this paper we have only considered the noiseless case, which we have used as an ap-
proximation of a discrete event system with modeling errors or uncertainty. The extension
of the current MPC framework to nondeterministic MMPS models will be a topic for future
research. We will also develop efficient methods to solve this extended problem.

11In an experiment with 20 random starting points the first 8 decimal places of the final objective function
always had the same value.

12This implies that we can use a shifted version of the current optimal input sequence as an initial starting
point for the next optimization.
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Another topic for further research is the investigation of the effects of the three tuning
parameters (the input cost weight λ, the prediction horizon Np and the control horizon
Nc) and the determination of guidelines for selecting appropriate values for these tuning
parameters. If we take Jin(k) equal to Jin,0(k) or Jin,1(k) then the parameter λ influences
stability in the sense that internal buffer overflows are prevented by maximizing the input
time instants. However, in contrast to discrete-time systems — where the components of
the input sequence are minimized — we now want to maximize the components of the input
sequence. Nevertheless, just as in conventional MPC we have to find a balance between the
output error and control effort. It is still an open question how this can be translated into
rules or guidelines for the selection of appropriate values of the parameter λ. Furthermore,
it is obvious that for the MPC problem for MMPS systems the prediction horizon Np is also
related to the speed of the dynamics of the system. For linear discrete-time systems Nc is
usually set equal to the system order. For MMPS systems there do not yet exist (efficient)
algorithms for the computation of the system order. Just as for discrete-time systems, an
important consequence of decreasing Nc in MPC for MMPS systems is the reduction in
computational effort, especially if we use the ELCP approach to solve the problem. So a
more elaborate determination of the influences of the tuning parameters λ, Np and Nc will
be a topic for further research.
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