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Abstract

This paper establishes equivalences among five classes of hybrid systems: mixed
logical dynamical (MLD) systems, linear complementarity (LC) systems, extended
linear complementarity (ELC) systems, piecewise affine (PWA) systems, and max-
min-plus-scaling (MMPS) systems. Some of the equivalences are established under
(rather mild) additional assumptions. These results are of paramount importance
for transferring theoretical properties and tools from one class to another, with the
consequence that for the study of a particular hybrid system that belongs to any of
these classes, one can choose the most convenient hybrid modeling framework.

Key words: hybrid systems; piecewise affine systems; equivalent models.

1 Introduction

Hybrid dynamical systems are systems that contain both analog (continu-
ous) and logical (discrete) components. Recently, these systems receive a lot
of attention from both the computer science and the control community. As
tractable methods to analyze general hybrid systems are not available, sev-
eral authors have focused on special subclasses of hybrid dynamical systems
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thor W.P.M.H. Heemels. Tel. +31-40-2473587. Fax. +31-40-2434582. E-mail
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for which analysis and/or control design techniques are currently being de-
veloped. Some examples of such subclasses are: linear complementarity (LC)
systems [9, 13], mixed logical dynamical (MLD) systems [2], first-order linear
hybrid systems with saturation [5], and piecewise affine (PWA) systems [14].
Each subclass has its own advantages over the others. For instance, stability
criteria were proposed for PWA systems [10], control and verification tech-
niques for MLD hybrid models [1–3], and conditions of existence and unique-
ness of solution trajectories (well-posedness) for LC systems [9, 13].

In this paper we will show that several of such subclasses of hybrid systems
are equivalent. Some of the equivalences are obtained under additional as-
sumptions related to well-posedness and boundedness of input, state, output
or auxiliary variables. These results allow to transfer all the above analysis
and synthesis tools to any of the equivalent subclasses of hybrid systems.

2 Classes of Hybrid Dynamical Models

2.1 Piecewise Affine (PWA) Systems

Piecewise affine (PWA) systems [14] are described by

x(k + 1) = Aix(k) + Biu(k) + fi

y(k) = Cix(k) +Diu(k) + gi

for






x(k)

u(k)




 ∈ Ωi, (1)

where Ωi are convex polyhedra (i.e. given by a finite number of linear in-
equalities) in the input/state space. The variables u(k) ∈ R

m, x(k) ∈ R
n and

y(k) ∈ R
l denote the input, state and output, respectively, at time k (this no-

tation also holds for the other hybrid system models that will be introduced).
PWA systems have been studied by several authors (see [1,4,10–12,14–16] and
the references therein) as they form the “simplest” extension of linear systems
that can still model non-linear and non-smooth processes with arbitrary ac-
curacy and are capable of handling hybrid phenomena.
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2.2 Mixed Logical Dynamical (MLD) Systems

In [2] a class of hybrid systems has been introduced in which logic, dynamics
and constraints are integrated. This resulted in the description

x(k + 1) = Ax(k) + B1u(k) + B2δ(k) + B3z(k) (2a)

y(k) = Cx(k) +D1u(k) +D2δ(k) +D3z(k) (2b)

E1x(k) + E2u(k) + E3δ(k) + E4z(k) 6 g5, (2c)

where x(k) = [ xr
⊤(k) xb

⊤(k) ]⊤ with xr(k) ∈ R
nr and xb(k) ∈ {0, 1}nb (y(k)

and u(k) have a similar structure), and where z(k) ∈ R
rr and δ(k) ∈ {0, 1}rb

are auxiliary variables. The inequalities (2c) have to be interpreted compo-
nentwise. Systems of the form (2) are called mixed logical dynamical (MLD)
systems.

Remark 1 It is assumed that for all x(k) with xb(k) ∈ {0, 1}nb , all u(k) with
ub(k) ∈ {0, 1}mb , all z(k) ∈ R

rr and all δ(k) ∈ {0, 1}rb satisfying (2c) it holds
that x(k + 1) and y(k) determined from (2a)-(2b) are such that xb(k + 1) ∈
{0, 1}nb and yb(k) ∈ {0, 1}lb . This is without loss of generality, as we can take
binary components of states and outputs (if any) to be auxiliary variables as
well (see the proof of [1, Prop. 1]). Indeed, if, for instance, yb(k) ∈ {0, 1}lb is
not directly implied by the (in)equalities, we introduce an additional binary
variable δy(k) ∈ {0, 1}lb and the inequalities

[Cx(k) +D1u(k) +D2δ(k) +D3z(k)]b − δy(k)≤ 0 (3a)

[−Cx(k)−D1u(k)−D2δ(k)−D3z(k)]b + δy(k)≤ 0, (3b)

which sets δy(k) equal to yb(k). The notation [ ]b is used to select the rows
of the expression (2b) that correspond to the binary part of y(k). Hence,
yb(k) = δy(k) ∈ {0, 1}lb . Similarly, we can deal with ub(k) and xb(k + 1). ✷

2.3 Linear Complementarity (LC) Systems

Linear complementarity (LC) systems are studied in e.g. [9, 13]. In discrete
time these systems are given by the equations

x(k + 1)=Ax(k) + B1u(k) + B2w(k) (4a)

y(k) =Cx(k) +D1u(k) +D2w(k) (4b)

v(k) =E1x(k) + E2u(k) + E3w(k) + g4 (4c)

0 ≤ v(k)⊥w(k) ≥ 0 (4d)
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with v(k), w(k) ∈ R
s and where ⊥ denotes the orthogonality of vectors (i.e.

v(k)⊥w(k) means that v⊤(k)w(k) = 0). We call v(k) and w(k) the comple-
mentarity variables.

2.4 Extended Linear Complementarity (ELC) Systems

In [5–7] it has been shown that several types of hybrid systems can be modeled
as extended linear complementarity (ELC) systems:

x(k + 1) = Ax(k) + B1u(k) + B2d(k) (5a)

y(k) = Cx(k) +D1u(k) +D2d(k) (5b)

E1x(k) + E2u(k) + E3d(k) 6 g4 (5c)
p

∑

i=1

∏

j∈φi

(

g4 − E1x(k)− E2u(k)− E3d(k)
)

j
= 0, (5d)

where d(k) ∈ R
r is an auxiliary variable. Condition (5d) is equivalent to

∏

j∈φi

(

g4 − E1x(k)− E2u(k)− E3d(k)
)

j
= 0 for each i ∈ {1, 2, . . . , p} (6)

due to the inequality conditions (5c). This implies that (5c)–(5d) can be con-
sidered as a system of linear inequalities (i.e. (5c)), where there are p groups
of linear inequalities (one group for each index set φi) such that in each group
at least one inequality should hold with equality.

2.5 Max-Min-Plus-Scaling (MMPS) Systems

In [7] a class of discrete event systems has been introduced that can be mod-
eled using the operations maximization, minimization, addition and scalar
multiplication. Expressions that are built using these operations are called
max-min-plus-scaling (MMPS) expressions.

Definition 1 (Max-min-plus-scaling expression) A max-min-plus-scaling
expression f of the variables x1, . . . , xn is defined by the grammar 1

f := xi|α|max(fk, fl)|min(fk, fl)|fk + fl|βfk (7)

with i ∈ {1, 2, . . . , n}, α, β ∈ R, and where fk, fl are again MMPS expressions.

An MMPS expression is e.g. 5x1 − 3x2 + 7 +max(min(2x1,−8x2), x2 − 3x3).

1 The symbol | stands for OR and the definition is recursive.
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Fig. 1. Graphical representation of the links between the classes of hybrid systems
considered in this paper. An arrow going from class A to class B means that A is
a subset of B. The number next to each arrow corresponds to the proposition that
states this relation. Moreover, arrows with a star (⋆) require conditions to establish
the indicated inclusion.

Consider now systems that can be described by

x(k + 1) = Mx(x(k), u(k), d(k)) (8a)

y(k) = My(x(k), u(k), d(k)) (8b)

Mc(x(k), u(k), d(k)) 6 c, (8c)

where Mx, My and Mc are MMPS expressions in terms of the components of
x(k), the input u(k) and the auxiliary variables d(k), which are all real-valued.
Such systems will be called MMPS systems.

3 The Equivalence of MLD, LC, ELC, PWA and MMPS Systems

In this section we prove that MLD, LC, ELC, PWA and MMPS systems are
equivalent (although in some cases additional assumptions are required). The
relations between the models are depicted in Figure 1.

3.1 MLD and LC Systems

Proposition 1 Every MLD system can be written as an LC system.

Proof : Consider the MLD system (2). To rephrase the condition δ(k) ∈
{0, 1}rb in complementarity terms, we note that δi(k) ∈ {0, 1} is equivalent
to 0 ≤ δi(k) ⊥ 1− δi(k) ≥ 0. By introducing the auxiliary variable v1(k) this
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gives in vector notation v1(k) = e− δ(k) together with 0 ≤ δ(k) ⊥ v1(k) ≥ 0,
where e denotes the vector for which all entries are equal to one. Note that
the binary constraints over ub(k), yb(k), and xb(k + 1) are included in these
complementarity conditions as indicated in Remark 1.
Next the inequality constraints in (2c) are modeled by introducing the aux-
iliary variables w2(k) and v2(k). Define v2(k) = g5 − E1x(k) − E2u(k) −
E3δ(k) − E4z(k). It is clear that v2(k) ≥ 0 implies the existence of a w2(k)
(take w2(k) = 0) such that

0 ≤ v2(k) ⊥ w2(k) ≥ 0. (9)

Vice versa, if (9) is satisfied, it is obvious that v2(k) ≥ 0. Since w2(k) does not
influence any other relation, it follows that v2(k) ≥ 0 can be replaced by (9).

The special structure of LC systems does not directly allow auxiliary vari-
ables z(k) in the right-hand side of (4a)-(4b) (only nonnegative complemen-
tarity variables are possible). Therefore, we split z(k) in its “positive” and
“negative part” as z(k) := z+(k) − z−(k) with z+(k) = max(0, z(k)) and
z−(k) = max(0,−z(k)). In complementarity terms this can be written as
z(k) = z+(k) − z−(k) with 0 ≤ z+(k) ⊥ z−(k) ≥ 0. By collecting all equa-
tions, and introducing two extra auxiliary vectors v3(k) and v4(k) (which will
in fact be equal to z−(k) and z+(k), respectively), we obtain the LC system

x(k + 1)=Ax(k) + B1u(k) + [B2 0 B3 −B3]w(k) (10a)

y(k) =Cx(k) +D1u(k) + [D2 0 D3 −D3]w(k) (10b)












v1(k)

v2(k)

v3(k)

v4(k)













︸ ︷︷ ︸

=:v(k)

=













e

g5 − E1x(k)− E2u(k)

0

0













+













−I 0 0 0

−E3 0 −E4 E4

0 0 0 I

0 0 I 0

























δ(k)

w2(k)

z+(k)

z−(k)













︸ ︷︷ ︸

=:w(k)

(10c)

0≤ v(k)⊥w(k) ≥ 0. (10d)

where I denotes the identity matrix. ✷

Proposition 2 Every LC system can be written as an MLD system, provided
that the variables w(k) and v(k) are (componentwise) bounded.

Proof : Note that the complementarity condition (4d) implies that for each
i ∈ {1, . . . , s} we have vi(k) = 0, wi(k) ≥ 0 or vi(k) ≥ 0, wi(k) = 0. The idea
is now to introduce a vector of binary variables δ(k) ∈ {0, 1}s and represent
vi(k) = 0, wi(k) ≥ 0 with δi(k) = 1, and vi(k) ≥ 0, wi(k) = 0 with δi(k) = 0.
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This can be achieved by introducing the constraints

w(k) ≤ Mwδ(k); v(k) ≤ Mv(e− δ(k)); w(k) ≥ 0; v(k) ≥ 0,

where Mw and Mv are diagonal matrices containing upper bounds on w(k)
and v(k), respectively, on the diagonal, and e denotes (once more) the vector
for which all entries are equal to one. By setting z(k) = w(k) and replacing
v(k) in the inequalities above by E1x(k) +E2u(k) +E3w(k) + g4 it is easy to
rewrite the LC system (4) as the following MLD model

x(k + 1) = Ax(k) + B1u(k) + B2z(k)

y(k) = Cx(k) +D1u(k) +D2z(k)












0

E1

0

−E1













x(k) +













0

E2

0

−E2













u(k) +













−Mw

Mv

0

0













δ(k) +













I

E3

−I

−E3













z(k) ≤













0

Mve− g4

0

g4













.

✷

Proposition 2 assumes that upper bounds on w, v are known. This hypothesis
is not restrictive in practice, as these quantities are related to continuous in-
puts and states of the system, which are usually bounded for physical reasons.

3.2 LC and ELC Systems

Proposition 3 Every LC system can be written as an ELC system.

Proof : It can easily be verified that (4) can be rewritten as

x(k + 1) = Ax(k) + B1u(k) + B2 w(k)
︸ ︷︷ ︸

=d(k)

(11a)

y(k) = Cx(k) +D1u(k) +D2w(k) (11b)

− E1x(k)− E2u(k)− E3w(k) ≤ g4 (11c)

− w(k) ≤ 0 (11d)
p

∑

i=1

∏

j∈φi

(g4 + E1x(k) + E2u(k) + E3w(k))j(w(k))j = 0, (11e)

where the sets φi contain typically two elements and are given by φi = {i, i+s}
for i = 1, 2, . . . , s, where s is the dimension of w(k) in (4). Note that the system
of inequalities (11c)–(11d) corresponds to (5c). ✷
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3.3 PWA and MLD Systems

A PWA system of the form (1) is called well-posed, if (1) is uniquely solvable in
x(k+1) and y(k), once x(k) and u(k) are specified. The following proposition
has been stated in [1] and is an easy extension of the corresponding result in [2]
for piecewise linear (PWL) systems (i.e. PWA systems with fi = gi = 0).

Proposition 4 Every well-posed PWA system can be rewritten as an MLD
system assuming that the set of feasible states and inputs is bounded.

Remark 2 As MLD models only allow for nonstrict inequalities in (2c), in
rewriting a discontinuous PWA system as an MLD model strict inequalities
like x(k) < 0 must be approximated by x(k) ≤ −ε for some ε > 0 (typically
the machine precision), with the assumption that −ε < x(k) < 0 cannot
occur due to the finite number of bits used for representing real numbers (no
problem exists when the PWA system is continuous, where the strict inequality
can be equivalently rewritten as nonstrict, or ε = 0). See [2] for more details
and Section 4 for an example. From a strictly theoretical point of view, the
inclusion stated in Proposition 4 is therefore not exact for discontinuous PWA
systems, and the same clearly holds for an LC, ELC or MMPS reformulation
of a discontinuous PWA system when the route via MLD is taken. One way
to circumvent such an inexactness is to allow part of the inequalities in (2c)
to be strict. On the other hand, from a numerical point of view this issue is
not relevant. The equivalence of LC and MLD systems as in Subsection 3.1
implies that all continuous PWA systems can be exactly written as LC systems
as well. A similar result for continuous PWA systems can be derived from [8].
✷

The reverse statement of Proposition 4 has been established in [1] under the
condition that the MLD system is completely well-posed. The MLD system
(2a) is called completely well-posed, if x(k+1), y(k), δ(k) and z(k) are uniquely
defined in their domain, once x(k) and u(k) are assigned [2].

Proposition 5 A completely well-posed MLD system can be rewritten as a
PWA system.

3.4 MMPS and ELC Systems

Proposition 6 The classes of MMPS and ELC systems coincide.

Proof : First we prove that the MMPS system (8) can be recast as an ELC
system by showing that each of the six basic constructions for MMPS expres-
sions fit in the ELC framework:

8



• Expressions of the form f = xi, f = α, f = fk + fl and f = βfk result in
linear equations of the form (5a)–(5b).

• An expression of the form f = max(fk, fl) = −min(−fk,−fl) can be rewrit-
ten as

f − fk > 0, f − fl > 0, (f − fk)(f − fl) = 0,

which is an expression of the form (5c)–(5d).

Furthermore, it is easy to verify that two or more ELC systems can be com-
bined into one large ELC system. As a consequence, every MMPS system can
be rewritten as an ELC system.

Now we show that the ELC system (5) can be written in the form (8). Clearly,
(5a) and (5b) are MMPS expressions (albeit without max or min) of the form
(8a) and (8b), respectively. Note that by (5c) we have

(

g4 − E1x(k)− E2u(k)− E3d(k)
)

j
> 0 for each j . (12)

Furthermore, the complementarity condition (5d) can be rewritten as (6), or
equivalently:

∀i ∈ {1, 2, . . . , p} :∃j ∈ φi such that
(

g4 − E1x(k)− E2u(k)− E3d(k)
)

j
= 0 .

If we combine this with (12) we obtain

min
j∈φi

(

g4 − E1x(k)− E2u(k)− E3d(k)
)

j
= 0 for i = 1, 2, . . . , p, (13)

which are all MMPS constraints of the form (8c). The conditions in (12) for
which j does not belong to some φi can be bundled as the MMPS constraint

min
j∈Ψ

(

g4 − E1x(k)− E2u(k)− E3d(k)
)

j
> 0, (14)

where Ψ =
{

j ∈ {1, 2, . . . , q} | ∀i ∈ {1, 2, . . . , p} : j 6∈ φi

}

and where q is the

dimension of the vector g4. So, the constraints (5c)–(5d) are equivalent to the
MMPS constraints (13)–(14). ✷

3.5 MLD and ELC Systems

Proposition 7 Every MLD system can be rewritten as an ELC system.

Proof : If we make an abstraction of the range of the variables then (2a)–(2c)
coincide with (5a)–(5c) with d(k) = [δ⊤(k) z⊤(k)]⊤. Furthermore, a condition
of the form δi(k) ∈ {0, 1} is equivalent to the ELC conditions −δi(k) 6 0,
δi(k) 6 1, δi(k)(1− δi(k)) = 0. So every MLD system can be rewritten as an
ELC system. ✷

9



Remark 3 Note that the condition δi(k) ∈ {0, 1} is also equivalent to the
MMPS constraint max(−δi(k), δi(k)− 1) = 0 or min(δi(k), 1− δi(k)) = 0. ✷

Proposition 8 Every ELC system can be written as an MLD system, pro-
vided that the quantity g4 − E1x(k) − E2u(k) − E3d(k) is (componentwise)
bounded.

Proof : Introduce the following two inequalities

(g4)j − (E1x(k) + E2u(k) + E3d(k))j ≤ Mjδj(k) for each j ∈ φi (15a)
∑

j∈φi

δj(k) ≤ mi − 1, (15b)

where δj(k) ∈ {0, 1} are auxiliary variables, and Mj is an upper bound for
(g4 −E1x(k)−E2u(k)−E3d(k))j. As by the last condition at least one δh(k)
is zero for some h ∈ φi, the first inequality and the ELC inequality (g4)j −
(E1x(k)+E2u(k)+E3d(k))j ≥ 0 degenerate to an equality condition for j = h.
Hence, the system of equations (15) in combination with (5c) is of the form
(5c)–(5d). So by defining z(k) = d(k) and collecting all the inequalities, it is
immediate to rewrite the ELC representation (5) into an MLD form. ✷

4 Example

To demonstrate the equivalences proven above, we consider the example [2]

x(k + 1) =







0.8x(k) + u(k) if x(k) ≥ 0

−0.8x(k) + u(k) if x(k) < 0
(16)

with m ≤ x(k) ≤ M . In [2] it is shown that (16) can be written as

x(k + 1) = −0.8x(k) + u(k) + 1.6z(k)

−mδ(k) ≤ x(k)−m; x(k) ≤ (M + ε)δ(k)− ε

z(k) ≤ Mδ(k); z(k) ≥ mδ(k)

z(k) ≤ x(k)−m(1− δ(k)); z(k) ≥ x(k)−M(1− δ(k))

(17)

and the condition δ(k) ∈ {0, 1}. Note that the strict inequality x(k) < 0
has been replaced by x(k) ≤ −ε, where ε > 0 is a small number (typically
the machine precision). In view of Remark 2 observe that ε = 0 results in a
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mathematically exact MLD model. In this case the model is well-posed 2 , but
not completely well-posed as x(k) = 0 allows both δ(k) = 0 and δ(k) = 1.

One can verify that (16) can be rewritten as the MMPS model

x(k + 1) = −0.8x(k) + 1.6max(0, x(k)) + u(k) , (18)

as the LC formulation

x(k + 1) = −0.8x(k) + u(k) + 1.6z(k); (19a)

0 ≤ w(k) = −x(k) + z(k) ⊥ z(k) ≥ 0, (19b)

and as the ELC representation

x(k + 1) = −0.8x(k) + u(k) + 1.6d(k) (20a)

− d(k) ≤ 0; x(k)− d(k) ≤ 0; 0 =
(

x(k)− d(k)
)(

−d(k)
)

. (20b)

While the MLD representation (17) requires bounds on x(k), u(k) to be spec-
ified (although such bounds can be arbitrarily large), the PWA, MMPS, LC,
and ELC expressions do not require such a specification.

Note that we only need one max-operator in (18) and one complementarity
pair in (19). If we would transform the MLD system (17) into e.g. the LC model
as indicated by the equivalence proof, this would require nine complementarity
pairs. Hence, it is clear that the proofs only show the conceptual equivalence,
but do not result in the most compact models.

5 Conclusions and Topics for Future Research

In this paper we have shown the equivalence of five classes of hybrid systems:
MLD, LC, ELC, PWA, and MMPS systems. For some of the transformations
additional conditions like boundedness of the state and input variables or
well-posedness had to be made.

An important topic for future research is to transfer techniques for analysis
and synthesis from one class of hybrid systems to another on the basis of the
results presented here. Moreover, it is interesting to study which modeling
framework is most appropriate for solving specific control problems related to
e.g. well-posedness, safety analysis, and stability of hybrid dynamical systems.
Moreover, from a computational point of view, one might pose the question
which representation leads to the most efficient numerical algorithms for syn-
thesizing and analyzing control strategies.

2 A MLD model is called well-posed, if x(k+1) and y(k) are uniquely determined,
once x(k) and u(k) are given. Note that there are no requirements on δ(k) and z(k).
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