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Abstract—We present a fuzzy decision support system that
can be used in traffic control centers to provide a limited list
of appropriate combinations of traffic control measures for a
given traffic situation. The system is part of a larger traffic
decision support system (TDSS) that can assist the operators of
traffic control centers when they have to reduce non-recurrent
congestion using a network-wide approach. The kernel of the
system is a fuzzy case base that is constructed using simulated
scenarios. By using the case base and fuzzy interpolation the
decision support system generates a ranked list of combinations
of traffic control measures. The best combinations can then
be examined in more detail by other modules of the TDSS
that evaluate or predict their performance using macroscopic or
microscopic traffic simulation. At a later stage the fuzzy decision
system will be complemented with an adaptive learning feature
and with a set of fuzzy rules that incorporate heuristic knowledge
of experienced traffic operators.

I. INTRODUCTION

Contemporary traffic control centers use dynamic traffic

management measures such as ramp metering, DRIPs (dy-

namic route information panels) or VMS (variable message

signs) to control traffic flows on highways and urban ring

roads. The DRIPs can be used to display queue length

information, or indications of congestion, traffic jams and

alternative routes. VMS can be used to show dynamic speed

limits per lane, advisory speeds, or lane closures. Recurrent

congestion can usually be managed satisfactorily by using

local control measures. However, operators in traffic control

centers often face a difficult task when non-recurrent, non-

predictable congestion occurs (e.g., as a consequence of an

incident or due to unexpected weather conditions). In such

situations, local measures are usually not sufficient and often

an intervention at the network level is required to manage

congestion and to return to a normal traffic situation.

The effects of non-recurrent congestion can be attenuated

by redirecting the traffic flows in a larger part of the network.

The operator of the traffic control center then has to assess the

severity of the situation, predict the most probable evolution of

the state of the network, and select the most appropriate con-

trol measures. This is a complex task, which requires expert

knowledge and much experience, which can often be obtained

after extensive training only. As a result, the approaches used

by human operators in traffic control centers are in general

neither structured nor uniform. Therefore, our aim is to provide

a decision support tool to assist the operators of traffic control

centers in their decisions when they have to take measures

to deal with non-recurrent, non-predictable congestion. This

decision support system should help the operators to react in

a uniform and structured way to unusual situations. Since we

want to create a decision support system that allows for an easy

and smooth interaction with human operators, and that uses a

decision process that is both intuitive and can be explained in

linguistic terms, we have opted for a decision support system

based on a fuzzy knowledge base. Furthermore, in order to

increase the acceptance of the decision support system by the

traffic operators, it is designed as an advisory and analysis tool

that assists the operators (instead of trying to replace them).

In short, the system works as follows. Given the current

state of the network and the optimization criterion (such as

minimal total travel time, maximal throughput, or a weighted

combination of several criteria), the fuzzy decision support

system generates a ranked list of the best control measures

and presents them to the human operator of the traffic control

center. If necessary, the effect of these measures on the current

traffic situation can be simulated by an external simulation

unit. The resulting output of the overall system is a charac-

terization of the actions that can be taken and their predicted

effectiveness in the current situation. The system described in

this paper operates in a multi-level control framework. At the

lowest level we have semi-autonomous local traffic controllers

for, e.g., traffic signals or ramp metering. At a higher level the

operation of several local traffic controllers is coordinated or

synchronized by supervisory controllers. The role of the fuzzy

decision support system in this set-up is to suggest whether a

particular local traffic controller or control measure should be

activated or not.

Several authors have described decision support systems

for traffic management, such as FRED (Freeway Real-Time

Expert System Demonstration) [1], [2], [3], or the Santa Mon-

ica Smart Corridor Demonstration Project [4], [5]. However,

these architectures do not use fuzzy logic in their decision

process. Since we want a system with an intuitive operation

process that is able to generate decisions in cases that are
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Fig. 1. The overall traffic decision support system (TDSS).

not explicitly covered by the knowledge base, we have opted

for a fuzzy system. Other fuzzy decision support systems for

traffic control have been developed in [6], [7], [8]. The TRYS

system described in [6], [8] is an agent-based system for

urban motorway control. The network is divided in possibly

overlapping regions and to each region an agent is assigned.

The agent has to detect and diagnose traffic problems in its

region and subsequently suggest possible control measures to

a higher level coordinator, that then decides which action will

actually be taken. The decision process in the TRYS system

is based on knowledge frames, and some of these frames use

fuzzy logic. The paper [7] describes a fuzzy logic control

architecture that can be applied in existing traffic control

systems on a multi-lane highway with VMS. This system

uses fuzzy logic to incorporate the experience of human traffic

operators.

This paper is organized as follows. First, we describe the

overall traffic decision support system of which the fuzzy

decision support system is a subsystem. Next, we describe the

set-up and operation of the fuzzy decision support system and

a small prototype we have developed to assess the technical

feasibility of the proposed approach. Finally, we propose

possible extensions of the current system.

We assume that the reader is familiar with the basic concepts

of fuzzy logic1. More information on fuzzy logic and fuzzy

set theory can be found in [9], [10], [11] and the references

therein.

II. OVERALL FRAMEWORK

The system we are developing is a part of a larger traffic

decision support system (TDSS) [12] that is currently being

developed by the Dutch Ministry of Transportation, Road-

works, and Water Management. The structure of this system is

depicted in Figure 1. The inputs for the TDSS are indicators

of the current traffic situation, such as traffic densities, aver-

age speeds, traffic demand, time of day, weather conditions,

incidents, etc. Furthermore, the traffic operator can provide

or adjust additional parameters and specify which control

objective should be used. Based on the measurements, historic

data and traffic simulation, the system predicts the future traffic

situation (more specifically, the TDSS uses the METANET

macroscopic flow model [13] to make a forecast of the traffic

situation). In that way we can also predict the performance of

the traffic control measures (such as DRIP messages, ramp me-

tering, or lane closures) that will be applied. Since in general a

1In fact the only concept from fuzzy logic used in this paper is that of
membership function, which expresses the degree (between 0 and 1) to which
an element belongs to a set or has a certain property.
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Fig. 2. The fuzzy case-based decision support system.

large number of traffic control measures (and combinations of

them) are possible, it is not tractable to evaluate all possible

combinations of traffic control measures using macroscopic

or microscopic traffic simulation. Therefore, in practice only

a limited number of combinations can be simulated. The aim

of the subsystem we are developing is to limit the number

of possible combinations of control measures that should be

simulated by using an intelligent decision support system to

rank the possible combinations of control measures and to

present the operator with a limited number of possibilities

that deserve further examination. Afterwards, the operator can

select the most appropriate control strategy.

III. THE FUZZY DECISION SUPPORT SYSTEM

A. Structure

The fuzzy decision support system selects optimal combina-

tions of traffic control measures for a given situation by using

a weighted performance index J , defined as

J =

N
∑

k=1

wkJsub,k

where the Jsub,k’s are partial performance indices such as

predicted queue lengths, total travel times, waiting times, fuel

consumption, etc. The weights wk are not necessarily fixed,

but can be changed on-line by the user (i.e., the operator in the

traffic control center) depending on current traffic management

policies and other considerations.

Let Scm be the set of possible traffic control measures,

such as lane closures, ramp metering, DRIP messages, etc.

In general, we can combine several traffic control measures.

However, not all combinations of control measures are pos-

sible or allowed. Therefore, we define a set Scm ⊂ 2Scm of

allowed combinations of traffic control measures.

As a starting point for the fuzzy decision support system,

we have constructed a case-based system (see Figure 2). The

kernel of this system is a case base in which several scenarios

are stored together with the corresponding partial performance

index values. Each scenario or case is characterized by

• the traffic situation (traffic densities, queue lengths, aver-

age speeds, traffic demand, etc.), which we assume to

be representable by a vector bi belonging to a multi-

dimensional space B;

• the traffic control measures that are taken, i.e., an element

Ci of the set Scm;

• the predicted effect of Ci on the traffic conditions for traf-

fic situation bi, i.e., the values of the partial performance

indices Jsub,k(bi, Ci).

So case i is represented in the case base by the tuple

(bi, Ci, Jsub,1(bi, Ci), . . . , Jsub,N (bi, Ci)). Hence, given the
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Fig. 3. A detailed view of the FDSS.

weights wk, we can compute the total performance J(bi, Ci)
of the set of control measures Ci in traffic situation bi:

J(bi, Ci) =

N
∑

k=1

wkJsub,k(bi, Ci) . (1)

Remark. An important difference between our approach and

conventional case-based reasoning is that in conventional case-

based reasoning one usually has a fixed solution (for our appli-

cation this would be a combination of traffic control measures)

for each case in the case base. So in the conventional case-

based reasoning approach only the traffic situation would be

used to characterize a case. However, since we consider an

objective function J that is a weighted combination of various

performance indicators and since the weights wk are not fixed

but variable, we cannot directly relate an optimal solution to

each case (or traffic situation) and therefore we also have

to include the control measures and the values of the partial

performance indices Jsub,i in the characterization of the cases.

The core of the fuzzy decision process involves three steps:

matching, prediction and ranking (see Figure 3).

B. Matching

When presented with a new traffic situation that does not

appear in the case base, we have to select the cases for

which the traffic situation corresponds best to the given traffic

situation. This is done using a similarity function based on

fuzzy membership functions that describes the degree of sim-

ilarity between two traffic situations. The similarity between

the current traffic situation, represented by the vector bcurrent,

and the traffic situation of case i, represented by the vector bi,

is characterized by fmbs,i(bcurrent) where fmbs,i is the fuzzy

membership function that corresponds to case i. Note that the

range of fmbs,i is [0, 1]. So the similarity ranges from 0 for

no similarity at all to 1 for a perfect match.

C. Prediction

Suppose that we want to predict the performance of the set

of control measures C in the current traffic situation. First, we

use the similarity measure introduced in previous subsection

to select the K cases (K is a user-defined integer parameter)

for which the traffic situation corresponds best to the current

situation and in which the set of control measures Ci = C is

present. Assume without loss of generality that the K closest

cases correspond to the vectors b1, b2, . . . , bK ∈ B. Note

that we have C1 = C2 = . . . = CK = C. Recall that

J(bi, C) expresses the total performance J of the set of control

measures C (= Ci) in case i (cf. (1)). Then we estimate the

performance of C in the current traffic situation as

Ĵ(bcurrent, C) =

K
∑

i=1

fmbs,i(bcurrent) J(bi, C)

K
∑

i=1

fmbs,i(bcurrent)

.

D. Ranking

The best M combinations of control measures are then

selected and presented to the operator (where M is again

a user-defined integer parameter). By choosing M much

smaller than the total number of combinations in Scm we

can significantly reduce the timed needed in the subsequent

analysis process by removing from the decision process those

combinations for which the performance will probably not be

satisfactory.

E. Membership functions

For each case i we define a membership function fmbs,i.

Recall that this membership function is used to express the

degree of similarity between the current traffic situation and

the traffic situation in case i. There are several possible

membership functions such as trapezoidal, bell-shaped, and

triangular. We have opted for the latter option.

We consider each coordinate of the space B separately when

defining the membership functions. The overall membership

function fmbs,i for case i is then defined as the product of the

membership functions fmbs,i,j for the separate coordinates:

fmbs,i(x) =

mB
∏

j=1

fmbs,i,j(xj)

where mB is the dimension of the space B.

For coordinates xj that can only take on discrete values

(such as the incident status, which can only be 0 (no incident)

or 1 (incident)), we use singleton membership functions:

fmbs,i,j(xj) =

{

1 if xj = bi,j

0 otherwise

where bi,j = (bi)j . Note that by using singleton membership

functions for discrete-valued coordinates, the similarity be-

tween a situation with an incident and a case with no incident

will always be 0, so that a case with no incident will never be

used to determine the performance of control measures in an

incident situation.

For the real-valued coordinates xj we use triangular mem-

bership functions that can be parameterized using a width

factor ν ∈ [0,∞] (see Figure 4) and that are defined as follows.
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Assume that there are n cases b1, b2, . . . , bn in the case base.

Let ∆i,j = bi,j−bi−1,j . The membership function fmbs,i,j for

the real-valued coordinate xj has bi,j as its center point and

is defined as

fmbs,i,j(xj) = max

(

0,min
( 1

ν∆i,j

(

xj − (bi,j − ν∆i,j)
)

,

−
1

ν∆i+1,j

(

xj − (bi,j + ν∆i+1,j)
)

)

)

for i = 2, . . . , n − 1. So fmbs,i,j(xj) is the piecewise affine

curve that connects the points (−∞, 0), (bi,j − ν∆i,j , 0),
(bi,j , 1), (bi,j + ν∆i+1,j , 0) and (∞, 0). The “border” mem-

bership functions fmbs,1,j and fmbs,n,j are defined as

fmbs,1,j(xj) = max

(

0,min
(

1,

−
1

ν∆2,j

(

xj − (b1,j + ν∆2,j)
)

)

)

fmbs,n,j(xj) = max

(

0,min
(

1,

1

ν∆n,j

(

xj − (bn,j − ν∆n,j)
)

)

)

.

So fmbs,1,j is 1 to the left of the first center point coordinate

b1,j and fmbs,n,j is 1 to the right of the last center point

coordinate bn,j .

The parameter ν defines the width or degree of overlapping

between the membership functions. The value ν = 0.5 cor-

responds to non-overlapping membership functions that still

cover the whole coordinate axis, so that in every point that is

not a center point at least one membership function is nonzero.

For ν = 0 all non-border membership functions are 0 every-

where except in their center point where the function value

is 1 (note that this corresponds to the singleton membership

functions we have used for the discrete-valued coordinates).

The choice ν = ∞ would correspond to membership functions

that are identically 1 over the whole input range. If ν = 1 then

in any point of the input space that is not a center point and

that lies between the first and the last center point, exactly

two membership functions are nonzero. The designer of the

system can change the value of ν. Also note that due to the

modular approach used in the prototype system we can easily

replace the triangular membership functions by trapezoidal or

bell-shaped membership functions.

DRIP

N
A9

Velsertunnel Wijkertunnel

A22

Fig. 5. Layout considered in the prototype system.

IV. PROTOTYPE OF THE FDSS

In order to assess the technical feasibility of the approach

proposed above we have created a small prototype of the

decision support system in the mathematical software package

Matlab (which includes a programming language and the

possibility to create graphical user interfaces (GUIs)) for a

simple traffic system consisting of a highway that at one point

splits in two branches — a longer one of 13 km and a shorter

one of 11 km, — which join each other again at the end (see

Figure 5). Both branches have two lanes for each direction.

This network is part of the larger peri-urban network around

the city of Amsterdam in the Netherlands. The longer branch

is the A22 highway that also includes the Velsertunnel; the

shorter branch is part of the A9 highway and includes the

Wijkertunnel. The A22 is mostly used for traffic having local

origins or destinations whereas the A9 is mostly used for long

distance traffic. We only consider traffic going from the north

to the south. The two alternative routes that can be followed by

the drivers are indicated by the arrows. Near the point where

the highway splits there is a DRIP that can display queue

information.

Since at this stage of the project we only wanted to assess

the technical feasibility of the system we have only considered

a limited number of inputs, control measures and cases. Note,

however, that since our system has been programmed in

modular way, the number of inputs, possible control measures

and cases can be extended very easily.

There are two inputs for the decision support system: traffic

demand and occurrence of incidents on the A9; and three

possible control measures:

• c1: closure of lane 1 on the A9 (upstream of the incident),

• c2: closure of lane 2 on the A9 (upstream of the incident),

• c3: display a DRIP message.

The set Scm of allowed control measures equals

{∅, {c1}, {c3}, {c1, c2}, {c1, c3}}. The case base has been

constructed using 10 METANET [13] simulations. Due to

the small number of inputs and cases we have selected the

value K = 2 for the number of cases among which the

fuzzy interpolation takes place. For the width factor ν of

the membership functions we have selected the default value

ν = 1.



Fig. 6. A screenshot of the prototype of the decision support system in the
operator view (with control measures CL1: close lane 1, CL2: close lane 2,
and DRIP: display a DRIP message).

Figures 6 and 7 show some screenshots of the prototype

system. The interface window that is presented to the operators

has two modes: operator or basic mode, and expert or full

mode. In the basic mode (see Figure 6) the operator enters

the parameters that describe the current traffic situation on the

left; on the right she will then see a ranked list of the various

possible combinations of control measures, and an indication

of the reliability, i.e., the maximal degree of similarity between

the current traffic situation and that of the cases in the fuzzy

case base. The most promising combination(s) of control

measures can then be examined in more detail (e.g., by

microscopic or macroscopic traffic simulation). In the Weights

subscreen of the full mode view (see Figure 7), the user

can specify the weights wk for the various subcomponents2

Jsub,k of the objective function such as the total travel time

(TTT), total waiting time (TWT), total waiting store-and-

forward (TWSAF), total time in net (TTIN), total distance

traveled (TDT), vehicles in net (VIN), vehicles driven in

(VDI), vehicles driven out (VDO), and total fuel consumption

(TFC). In the Prediction & Case-Base subscreen the values

for each subcomponent Jsub,k of the objective function are

then displayed for the current inputs and for each scenario

in the case base. In that way the effects of the choice of the

weights and the effects of the various control measures can

be examined in more detail. However, this level of detail is

usually not needed for daily operation. That is why we have

chosen for a system with two modes (operator mode and expert

mode).

V. EXTENSIONS

The current knowledge base of our FDSS is mainly based

on simulations. Once the system operates in a real traffic

2The partial performance measures have been extracted from the
METANET simulations that have been used to generate the cases for our
simple prototype system. Due to the modular approach we have used, other
partial performance measures can easily be included.

control center, we can include actual situations and the effects

of control measures that have actually been applied to the

traffic system in our case base. In that way we get an adaptive

system that learns during operation. Such a system is described

in [14]. We then get a process that consists of the cyclic

application of the following steps:

1) Retrieve the most similar cases (in our case the similarity

can be determined using the membership function as has

been explained above).

2) Use these cases to solve the problem (in our case: to

generate the ranking of the combinations of control

measures using fuzzy interpolation).

3) Revise the proposed solution (in our case: see how

the traffic system reacts to the proposed solution, i.e.,

determine or measure its performance).

4) Retain the parts of this experiences to be used for future

application.

Furthermore, the heuristic rules that are known to experi-

enced traffic operators would be a useful addition to our sys-

tem. Therefore, at a later stage, we will include this knowledge

into our system by adding a separate fuzzy knowledge module

to our system. This could follow the same framework as the

TRYS system presented in [6], [8].

VI. CONCLUSIONS

We have presented a fuzzy decision support system (FDSS)

for traffic control centers. This system is part of a larger traffic

decision support system that assists operators of traffic control

centers when selecting the most appropriate traffic control

measures to efficiently manage non-recurrent congestion. The

FDSS uses a case base and fuzzy interpolation to generate

a ranked listing of combinations of control measures and

their estimated performance. Since the scenarios in the case

base are generated by METANET, the quality of the ranking

depends basically on the quality of the simulations. The

predictions made by the case-based reasoning system can

be made more precise by adding new cases. An important

feature of the system is that the performance function is

not fixed but consists of a weighted combination of several

partial performance measures. In addition, the weights of this

combination can be changed on-line depending on the current

traffic management policy and on other considerations. Since

the case base can be generated off-line, the FDSS reduces the

time that is needed to determine the optimal traffic control for

a given situation by limiting the number of combinations of

control measures for which on-line traffic simulations should

be performed in the traffic control center. At a later stage the

system can be extended with a fuzzy module that incorporates

expert knowledge and with an adaptive learning module.

Currently we have demonstrated the technical feasibility of

the system. In the next stage of the project we will examine the

performance of the system (for a larger network than the one

described in this paper), see how the parameters of the system

have to tuned to improve the performance, and compare this

performance with other traffic control strategies using both

simulations and field experiments. The quality of the FDSS

depends on the quality of the simulations that generated the



Fig. 7. A screenshot of the prototype of the decision support system in the expert view.

cases. In this context an important question is — assuming that

the quality of the simulation is good — how many cases do

we need for a good performance. Another interesting question

is how many inputs are needed in a larger traffic network to

be able to make adequate decisions. Moreover, the time-of-

day and day-of-week can carry important information about

the expected traffic demands. This information could also be

used to make better decisions. If the number of inputs and

control measures increases, the number of cases also has to

increase, which might lead to tractability problems. These

problems can be addressed by using a multi-level decision

support architecture. The design of such an architecture will

also be a topic for future research.
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