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On the Equivalence of Classes of Hybrid Dynamical Models

W.P.M.H. Heemels1 B. De Schutter2 A. Bemporad3

Abstract

We establish equivalences among five classes of hybrid sys-

tems, that we have encountered in previous research: mixed

logical dynamical systems, linear complementarity systems,

extended linear complementarity systems, piecewise affine

systems, and max-min-plus-scaling systems. These results

are of paramount importance for transferring properties and

tools from one class to another.

1 Introduction

Hybrid dynamical systems are systems that contain both

analog (continuous) and logical (discrete) components. Re-

cently, these systems receive a lot of attention from both the

computer science and the control community. As tractable

methods to analyze general hybrid systems are not avail-

able, several authors have focused on special subclasses

for which analysis and control design techniques are cur-

rently being developed. We show that some of these

classes are equivalent (under mild assumptions). The equiv-

alence should be understand in the sense that the “input-

state-output behavior” generated by the model classes are

equal (cf. below for a more exact definition). These results

enable the transfer of knowledge from one class to another,

they show that more applications belong to these classes and

moreover, for the study of a particular hybrid system one

can choose the modeling framework that is most suitable.

2 Classes of Hybrid Models

2.1 Piecewise Affine (PWA) Systems

PWA systems [28, 29] are described by

x(k + 1)= Aix(k) +Biu(k) + fi
y(k)= Cix(k) +Diu(k) + gi

for

[

x(k)
u(k)

]

∈ Ωi,

(1)

where Ωi are convex polyhedra (i.e. given by a finite num-

ber of inequalities) in the input/state space. The variables

u(k) ∈ R
m, x(k) ∈ R

n and y(k) ∈ R
l denote the input,

state and output, respectively, at time k.

PWA systems have been studied by several authors (see

[2, 18, 22, 24, 28, 29, 31–33] and the references therein) as

they form the “simplest” extension of linear systems that

1Dept. of Electrical Eng., Eindhoven Univ. of Technology, P.O. Box
513, 5600 MB Eindhoven, The Netherlands, tel: +31-40-247 35 87, fax:
+31-40-243 45 82, w.p.m.h.heemels@tue.nl

2Systems and Control Eng., Fac. ITS, Delft University of Technology,
P.O. Box 5031, 2600 GA Delft, The Netherlands, tel: +31-15-278 51 13,
fax: +31-15-278 66 79, b.deschutter@its.tudelft.nl

3Dip. Ingegneria dell’Informazione, Università di Siena, Via Roma
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can still model several non-linear and non-smooth processes

with arbitrary accuracy and are capable of handling hybrid

phenomena.

2.2 Mixed Logical Dynamical (MLD) Systems

In [4] Bemporad and Morari introduced MLD systems, a

class of hybrid systems in which logic, dynamics and con-

straints are integrated. This led to a description of the form

x(k + 1) = Ax(k) +B1u(k) +B2δ(k) +B3z(k) (2a)

y(k) = Cx(k) +D1u(k) +D2δ(k) +D3z(k) (2b)

E1x(k) + E2u(k) + E3δ(k) + E4z(k) 6 e5, (2c)

where x(k) = [ x⊤
r (k) x⊤

b (k) ]⊤ with xr(k) ∈ R
nr and

xb(k) ∈ {0, 1}nb (y(k) and u(k) have a similar structure),

and where z(k) ∈ R
rr and δ(k) ∈ {0, 1}rb are auxiliary

variables. The inequalities (2c) have to be interpreted com-

ponentwise.

In [4] it has been shown that the class of MLD systems

includes piecewise affine dynamic systems, linear hybrid

systems, finite state machines, (bi)linear systems with dis-

crete inputs and so on. For MLD systems, several tools were

introduced for modeling [30], control [4], state estimation

and fault detection [3], verification and safety analysis [5].

2.3 Linear Complementarity (LC) Systems

LC systems are studied in e.g. [6, 17, 25–27]. In discrete

time these systems are given by the equations

x(k + 1) = Ax(k) +B1u(k) +B2w(k) (3a)

y(k) = Cx(k) +D1u(k) +D2w(k) (3b)

v(k) = E1x(k) + E2u(k) + E3w(k) + e4 (3c)

0 ≤ v(k)⊥w(k) ≥ 0 (3d)

with v(k), w(k) ∈ R
s and where ⊥ denotes the orthogonal-

ity of vectors (i.e. v(k)⊥w(k) means that v⊤(k)w(k) = 0).

We call v(k) and w(k) the complementarity variables.

In [6,17,26,27] (linear) complementarity systems in con-

tinuous time have been studied. Applications include con-

strained mechanical systems, electrical networks with ideal

diodes or other dynamical systems with piecewise linear re-

lations, variable structure systems, constrained optimal con-

trol problems and so on. Issues related to modeling, well-

posedness [17,26,27], simulation and discretization [6] have

been of particular interest.

2.4 Extended Linear Complementarity (ELC) Systems

ELC systems are described by:

x(k + 1) = Ax(k) +B1u(k) +B2d(k) (4a)

y(k) = Cx(k) +D1u(k) +D2d(k) (4b)

E1x(k) + E2u(k) + E3d(k) 6 e4 (4c)



p
∑

i=1

∏

j∈φi

(

e4 − E1x(k)− E2u(k)− E3d(k)
)

j
= 0,

(4d)

where d(k) ∈ R
r is an auxiliary variable. Due to (4c), con-

dition (4d) is equivalent to
∏

j∈φi
(e4−E1x(k)−E2u(k)−

E3d(k))j = 0 for each i. This implies that (4c)–(4d) can

be considered as a system of linear inequalities (i.e. (4c)),

where there are p groups of linear inequalities (one group

for each index set φi) such that in each group at least one

inequality should hold with equality.

Remark 1 For ELC systems inequalities of the form (2c)

can be incorporated directly, whereas in LC systems these

inequalities have to be transformed into a (void) comple-

mentarity condition by using slack variables. For LC sys-

tems products consisting of more than 2 factors (such as e.g.

u1(k)u2(k)u3(k) = 0) are not allowed (directly) while in

ELC systems products of 3 or more factors are possible. ✷

In [11, 12] it has been shown that the class of ELC systems

encompasses max-plus-linear systems [1], first order linear

hybrid systems subject to saturation [11], and unconstrained

max-min-plus-scaling systems (see next section).

2.5 Max-Min-Plus-Scaling (MMPS) Systems

An MMPS expression f of the variables x1, . . . , xn is

defined by the grammar

f := xi|α|max(fk, fl)|min(fk, fl)|fk + fl|βfk

with i ∈ {1, . . . , n}, α, β ∈ R, and fk, fl again MMPS

expressions. An example of an MMPS expression is

max(min(2x1,−8x2), x2 − 3x3). The symbol | stands

for OR and the definition is recursive. Note that the min
operation is in fact not explicitly needed since we have

min(fk, fl) = −max(−fk,−fl).
MMPS systems are now described by

x(k + 1) = Mx(x(k), u(k), d(k)) (5a)

y(k) = My(x(k), u(k), d(k)) (5b)

together with the constraint1

Mc(x(k), u(k), d(k)) 6 c, (5c)

where Mx, My and Mc are MMPS expressions in terms

of the components of x(k), u(k) and the auxiliary variables

d(k). Model (5a)–(5b) is a generalized framework that en-

compasses several special subclasses of hybrid and discrete-

event systems such as max-plus-linear discrete event sys-

tems [1], max-min-plus systems [14, 23], and max-plus-

polynomial systems [12].

To each of the above models one can associate a behavior

[34] consisting of all sequences u : N 7→ R
m, x : N 7→ R

n

and y : N 7→ R
l such that these sequences satisfy the model

equations (e.g. (3) for LC systems) for some sequences of

auxiliary variables (e.g. for an LC model (3) for some se-

quences v : N 7→ R
s and w ∈ R

s). We say that every sys-

tem in a model class A can be rewritten as one in a model

1If (5c) is absent, we speak of unconstrained MMPS systems.

class B, if for each system in A, there is a system in B such

that the behavior of A and B are equal.

Before proving the equivalences among the five classes

of hybrid models described so far, we recall a few results

on piecewise linear functions developed by the circuit and

systems community.

3 Piecewise Linear (PWL) Functions

PWA systems have been around for quite some time in

the systems and control community [28], but only recently

the attention they receive has boosted. Also in the circuits

and systems community piecewise linear (PWL)2 static rep-

resentations play an important role [7–9, 15, 19, 20, 22, 32]

for the analysis of nonlinear circuits. These representations

of PWL functions are of course immediately relevant for the

dynamical systems considered here as the right-hand sides

of the PWA models are multi-variable PWL mappings. As

such we will give a brief overview of the work that is al-

ready available in the literature. For a more extensive sur-

vey, see [21, 22].

In the circuit theory community one has mainly focused

on PWL mappings that are continuous and the first repre-

sentations were in an explicit form [7, 9, 15, 19, 20].

A (continuous) PWL function is a function f : Rn →
R

m satisfying the following conditions [7]:

1. The domain space R
n is divided into polyhedral re-

gions Ωi, i = 1, . . . , N by a finite number of bound-

aries such that each boundary is (a subset of) an

(n − 1) dimensional hyperplane α⊤
i x − βi = 0 with

αi ∈ R
n, βi ∈ R, and cannot be covered3 by any

(n− 2)-dimensional hyperplane.

2. For any region Ωi, f can be expressed by an affine

representation f(x) = Jix+ wi for all x ∈ Ωi.

3. f is continuous over the boundary between two re-

gions, i.e. Jix+wi = Jjx+wj for all x ∈ Ωi ∩Ωj .

The first canonical representation of PWL functions pro-

posed in [8, 9, 20] is of the form f : Rn → R
m with

f(x) = a+Bx+

p
∑

i=1

ci|α
⊤
i x− βi| (6)

The notation | · | indicates the absolute value (or “vee”)-

function. Any one-dimensional PWL function f : R → R

can be written in this form. A drawback of this representa-

tion is that it cannot capture all PWL models (see [7]).

To overcome the limitations of (6) Güzelis came up with

a more general canonical form (see also [22, Ch. 2]) based

on 2-nested “vee” functions of the form

f(x) = a+Bx+

p
∑

i=1

bi|α
⊤
i x− βi|+

2Strictly speaking “piecewise affine” might be a more appropriate ter-
minology (and therefore we have used it in Section 2.1). For historical
reasons we will use PWL in the context of circuit theory.

3A boundary B is said to be covered by a hyperplane H , if B ⊆ H .



+

q
∑

j=1

cj

∣

∣

∣δj + γ⊤
j x+

r
∑

i=1

dji|α
⊤
i x+ βi|

∣

∣

∣ (7)

This representation allows boundaries that are PWL them-

selves. However, the example in [22, p. 40] demonstrates

that still not all continuous PWL mappings can be described

using this model.

Yet another extension was formulated by Kahlert and

Chua [19] that could represent all two-dimensional (contin-

uous) PWL functions f : R2 → R
2. Instead of presenting

the details of this representation, which can be found in [19]

or in one of the overviews [21,22], we will now go from the

explicit models above to the more general implicit model

as proposed by Van Bokhoven [31] and based on the lin-

ear complementarity problem (LCP) [10]. In [31] a PWL

function f : Rn → R
m has been recast in the form

y = Ax+Bw + g (8a)

v = Cx+Dw + h (8b)

0 ≤ v⊥w ≥ 0 (8c)

with x the argument of f and y its value. Given x one has

to solve (8b)–(8c) for w and v after which v can be substi-

tuted in (8a) to obtain y. By this implicit modeling one can

even include certain “one-to-many” or “set-valued” map-

pings. However, for some x the above representation may

not define any function value y as the LCP (8b)–(8c) may

have no solutions at all.

In [21, 22] it has been shown that the model description

(8) includes all the previously mentioned canonical repre-

sentations introduced by Chua and Kang [8], Güzelis and

Göknar [15], and Kahlert and Chua [19]. The only issue

left is related to the question if any continuous PWL map-

ping can be cast into the formulation (8).

Theorem 1 Any continuous PWL mapping f : Rn → R
m

can be written in terms of the representation (8).

Proof: Combining Theorem 5.2 and the second remark in

Section 6 of [13] proves the result. ✷

4 Relations Inherited from Circuit Theory

The results of the previous section yield immediately

specific relations between certain classes of unconstrained

MMPS (systems with right-hand sides being explicit canon-

ical representations based on “vee” functions), PWA (with

right-hand sides being continuous PWL functions) and LC

systems (via the explicit model based on LCPs):

Corollary 1 The classes of unconstrained MMPS systems

with right-hand sides given by (6), (7) or as in [19] can be

written as LC systems [21, 22].

Corollary 2 Every continuous PWA system can be written

as an LC system (Theorem 1).

MLD

PWA MMPS

ELC

LC
Prop. 1

Prop. 2 Prop. 3
Prop. 4

Prop. 5

Prop. 6

Prop. 7

Prop. 8

Cor. 1
Cor. 2

Cor. 3

?

?

?

?

Prop. 9 ?

?

?

?

Rem. 3

Rem. 4

Figure 1: Graphical representation of the links between the

classes of hybrid systems considered in this paper. An

arrow going from class A to class B means that A is a

subset of B. The label next to each arrow corresponds

to the result that states this relation. Moreover, arrows

with a star (⋆) require conditions to establish the indi-

cated inclusion.

5 The Equivalence of MLD, LC, ELC, PWA and

MMPS Systems

The relations in Section 4 are far from complete. Now we

will actually show that MLD, LC, ELC, PWA and MMPS

systems are equivalent (although in some cases additional

assumptions are required). The relations between the dif-

ferent models proved in this paper are depicted in Figure 1.

Unless specified otherwise, the proofs of the propositions

can be found in [16]. The examples in Section 7 will illus-

trate some of the ideas used in the proofs.

Proposition 1 Every MLD system can be written as an LC

system.

Proposition 2 Every LC system can be written as an MLD

system, provided that the variables w(k) and v(k) are (com-

ponentwise) bounded.

Proposition 2 assumes that upper bounds on w and v are

known. This hypothesis is not restrictive in practice, as

these quantities are related to continuous inputs and states of

the system, which are usually bounded for physical reasons.

Proposition 3 Every LC system can be written as an ELC

system.

A PWA system of the form (1) is called well-posed, if (1)

is uniquely solvable in x(k + 1) and y(k) once x(k) and

u(k) are specified. Similar definitions apply to the MLD,

LC, ELC and MMPS systems.

Proposition 4 [4] Every well-posed PWA system can be

rewritten as an MLD system assuming that the set of feasible

states and inputs is bounded.

Remark 2 As MLD models only allow non-strict inequal-

ities in (2c), in rewriting a discontinuous PWA system as

an MLD model strict inequalities like x(k) < 0 must be



approximated by x(k) ≤ −ε for some ε > 0 (typically

the machine precision) and the condition −ε < x(k) < 0
is included implicitly. It can be argued that the situation

−ε < x(k) < 0 cannot occur due to the finite number of bits

used for representing real numbers (no problem exists when

the PWA system is continuous, where the strict inequal-

ity can be equivalently rewritten as non-strict, i.e. ε = 0).

See [4] for more details and Section 7 for a discontinuous

example. From a strictly theoretical point of view, the in-

clusion stated in Proposition 4 is therefore not exact for dis-

continuous PWA systems, and the same clearly holds for an

LC, ELC or MMPS reformulation of a discontinuous PWA

system when the route via MLD systems is taken. One way

to circumvent such an inexactness is to allow a part of the

inequalities in (2c) to be strict. On the other hand, from a

numerical point of view this issue is not relevant. The equiv-

alence of LC and MLD systems implies that all continuous

PWA systems can be exactly written as LC systems as well

(see also Corollary 2). ✷

Proposition 5 [2] A completely well-posed4 MLD system

can be rewritten as a PWA system.

Proposition 6 The classes of (constrained) MMPS and

ELC systems coincide.

Remark 3 As a consequence of the above result and Propo-

sition 3 it is obvious that every LC system can be recast

as an MMPS system. A more direct route rewrites an LC

system (3) as the constrained MMPS system (3a)–(3b) and

min((E1x(k) +E2u(k) +E3w(k) + e4)j , wj(k)) = 0 for

all j. ✷

Proposition 7 Every MLD system can be rewritten as an

ELC system.

Remark 4 To prove that an MLD model can be written as

an MMPS system we can use ELC systems as an intermedi-

ate (Theorem 7). However, δi(k) ∈ {0, 1} is also equivalent

to the MMPS constraint min(δi(k), 1− δi(k)) = 0. ✷

Proposition 8 Every ELC system can be written as an MLD

system, provided that the quantity e4−E1x(k)−E2u(k)−
E3d(k) is (componentwise) bounded.

In the next section we present a direct equivalence be-

tween PWA and MMPS systems, which is a new and

stronger result than in [16].

6 Direct Equivalence between PWA and MMPS

Systems

Well-posed PWA systems form a subset of MMPS sys-

tems by applying Proposition 4, 7 and 6, respectively. How-

ever, the intermediate equivalence through MLD systems

requires that bounds on input and state variables are speci-

fied. We provide here a direct proof which does not require

any boundedness conditions. Moreover, this constructive

proof leads in general to “smaller” models.

4The MLD system (2a) is called completely well-posed, if x(k + 1),
y(k), δ(k) and z(k) are uniquely defined in their domain, once x(k) and
u(k) are assigned [4].

Proposition 9 Every well-posed PWA system can be writ-

ten as an MMPS system.

Proof Consider for simplicity autonomous well-posed PWA

systems of the form

x(k + 1) = Aix(k)
y(k) = Cix(k)

for x(k) ∈ Ωi, (9)

where Ωi = {x : Hix ≤ Ki} ⊆ R
n are convex polyhedra

with Hi ∈ R
qi×n and Ki ∈ R

qi , i = 1, . . . ,m, which form

a partition of the state-space5.

The equivalent MMPS of (9) is

x(k + 1) =

m
∑

i=1

Aidi(k) (10a)

y(k) =

m
∑

i=1

Cidi(k) (10b)

Hix(k)− wi(k) 6 Ki (10c)

wi(k) > 0 (10d)

min
i=1,...,m

(

max
j=1,...,n

(|(x(k)− di(k))j |)

)

= 0 (10e)

min





n
∑

j=1

|di(k)j |,

qi
∑

j=1

wi(k)j



 = 0, i = 1, . . . ,m

(10f)

where di(k) ∈ R
n, wi(k) a real vector of the same di-

mension as Ki. Note that |(x(k) − d(k))j | is equivalent to

max((x(k) − d(k))j , (d(k) − x(k))j)). Given x(k), (10e)

imposes that at least for one i the corresponding di(k)
equals x(k), and (10f) imposes the logic condition

[∃ j : wi(k)j > 0] → [di(k) = 0], ∀i = 1, . . . , m

i.e., that if the constraints (10c) can be satisfied only with

the aid of nonzero wi(k)j slack variables, then the vector

di(k) must be 0. Because of (10c) and the fact that the

polyhedra are disjoint, di(k) can only be nonzero for the

index i of the region Ωi where x(k) lies. The extension

to non-autonomous systems where Ωi = {[ xu ] : Hx
i x +

Hu
i u ≤ Ki} can be easily proved by replacing Ai with

[Ai Bi fi], Ci with [Ci Di gi], Hi(di(k) − wi(k)) 6 Ki

with [Hx
i Hu

i −Ki](di(k)− wi(k)) 6 0. ✷

7 Examples

To demonstrate the equivalences given above and to give

some idea on the proofs in [16], we will consider two exam-

ples of PWA systems: one for which the right-hand side is

continuous and one for which it is discontinuous.

Example 1 Consider the following hybrid system:

x(k + 1) =

{

x(k) + u(k) if x(k) + u(k) ≤ 1
1 if x(k) + u(k) > 1

(11)

5As observed in Remark 2, in case of discontinuities of the PWA func-
tions in the right-hand side of (9), we should replace some of the strict
inequalities by non-strict inequalities. To keep the proof compact this will
be avoided here.



representing an integrator with upper saturation, within the

range −10 ≤ x(k) ≤ 10, −1 ≤ u(k) ≤ 1. System (11)

is in PWA form with the two-dimensional input/state space

partitioned by the hyperplane x(k) + u(k) = 1. In order to

get the MLD form of (11), we introduce a binary variable

δ(k) ∈ {0, 1} and a continuous variable z(k), to obtain

x(k + 1) = z(k) (12a)

together with the linear inequalities

x(k) + u(k) + 10δ(k) ≤ 11 (12b)

−x(k)− u(k)− (12 + ε)δ(k) ≤ −1− ε (12c)

−10δ(k) + z(k) ≤ 1 (12d)

−12δ(k)− z(k) ≤ −1 (12e)

−x(k)− u(k) + 12δ(k) + z(k) ≤ 12 (12f)

x(k) + u(k) + 10δ(k)− z(k) ≤ 10 (12g)

where, using the techniques of [4], (12b)–(12c) translate the

relation [δ(k) = 1] ↔ [x(k) + u(k) ≤ 1], (12d)–(12g) the

relation z(k) = (x(k)+u(k))δ(k)+(1−δ(k)), and ε > 0 is

a small number (e.g. the machine precision) used to replace

the strict inequality x(k) + u(k) > 1 by x(k) + u(k) ≥
1 + ε. In view of Remark 2 observe that ε = 0 results in a

mathematically exact MLD model, which is well-posed as

x(k + 1) is uniquely determined given x(k) and u(k), but

not completely well-posed as x(k) + u(k) = 1 allows both

δ(k) = 0 and δ(k) = 1.

One can easily verify that (11) can be rewritten as the

(unconstrained) MMPS model

x(k+1) = x(k)+u(k)−max(0, x(k)+u(k)−1) , (13)

as the LC formulation

x(k + 1) = x(k) + u(k)− w(k) (14a)

v(k) = −x(k)− u(k) + w(k) + 1 (14b)

0 ≤ v(k) ⊥ w(k) ≥ 0 , (14c)

and as the ELC representation

x(k + 1) = x(k) + u(k)− d(k) (15a)

− d(k) ≤ 0, x(k) + u(k)− d(k) ≤ 1 (15b)

d(k)
(

1− x(k)− u(k) + d(k)
)

= 0 . (15c)

While the MLD representation (12) requires bounds on

x(k), u(k) to be specified (although such bounds can be ar-

bitrarily large), the PWA, MMPS, LC, and ELC expressions

do not require such a specification. ✷

Note that we only need one max-operator in (13) and one

complementarity pair in (14). If we would transform the

MLD system (12) into e.g. the LC model as indicated by

the equivalence proof in [16], this would require nine com-

plementarity pairs (one for each inequality in (12), one for

the binary variable δ(k) and two for the auxiliary variable

z(k)). Hence, it is clear that the proofs only show that the

system representations can be transferred into each other,

but do not result in the most efficient models.

The following example illustrates some of the issues re-

lated to discontinuous PWA systems (cf. Remark 2).

Example 2 Consider the PWA system

x(k + 1) =

{

0, u(k) > 0

1, u(k) ≤ 0
(16)

which represents a discrete-time relay system with a dis-

continuity on the plane u(k) = 0. Similarly as above we

can rewrite (16) as the MLD (17) by assuming that u(k) is

restricted to [m,M ] and ε > 0 is a small constant.

x(k + 1) = δ(k) (17a)

u(k) ≤ M(1− δ(k)) (17b)

u(k) ≥ ε+ (m− ε)δ(k) (17c)

δ(k) ∈ {0, 1} (17d)

Note that u(k) > 0 has been replaced by u(k) ≥ ε. More-

over, the relations in (17) contain implicitly the condition

u(k) ∈ [m, 0] ∪ [ε,M ] meaning that u(k) is not allowed to

be situated in the interval (0, ε). Of course, the MLD model

can be written as an ELC or (constrained) MMPS system

by replacing the condition (17d) by −δ(k) ≤ 0, δ(k) ≤ 1,

and δ(k)(1 − δ(k)) = 0 or by min(1 − δ(k), δ(k)) ≤ 0
and −min(1 − δ(k), δ(k)) ≤ 0, respectively. An explicit

(unconstrained) MMPS may be of the form

x(k+1) = 1−
1

ε
max(u(k), 0)+

1

ε
max(u(k)−ε, 0), (18)

where in the interval (0, ε) a linear interpolation is used be-

tween the discontinuous pieces. As mentioned, the MLD

formulation includes the condition u(k) ∈ [m, 0] ∪ [ε,M ]
implicitly. Here we have to add this restriction to (18) to

prevent the state from lying in the region (0, ε) (where the

model (18) does not comply with (16)) or assume that this

is implied by the computer implementation of the model.

Under the condition that 0 < u(k) < ε will not happen,

an LC model can be obtained by rewriting a relay character-

istic in complementarity terms as in [27]:

x(k + 1) = 1− w2(k) (19a)

v1(k) = 1− w2(k) (19b)

v2(k) =
ε

2
− u(k) + w1(k) (19c)

0 ≤ vi(k) ⊥ wi(k) ≥ 0 for i = 1, 2. (19d)

Observe that the discontinuity is now placed at ε
2

, which

lies in the “forbidden region.” Also the method in the proof

of Proposition 1 may be used to obtain another LC model,

which is exactly equivalent to the MLD model (i.e. includ-

ing the condition u(k) ∈ [m, 0] ∪ [ε,M ]) given by

x(k + 1) = w1(k) (20a)

v1(k) = 1− w1(k) (20b)

v2(k) = M −Mw1(k)− u(k) (20c)

v3(k) = −ε− (m− ε)w1(k) + u(k) (20d)

0 ≤ vi(k) ⊥ wi(k) ≥ 0 for i = 1, 2, 3. (20e)

Note that w2(k) and w3(k) do not influence any of the

equations and can be taken equal to zero to satisfy 0 ≤



vi(k)⊥wi(k) ≥ 0, i = 2, 3. In fact, the “dummy” comple-

mentarity conditions 0 ≤ vi(k)⊥wi(k) ≥ 0, i = 2, 3
and (20c)-(20d) are equivalent to (17b)-(17c). The comple-

mentarity between w1(k) and v1(k) implies that w1(k) ∈
{0, 1} as in (17d) and is actually equal to δ(k) in (17). ✷

8 Conclusions and Topics for Future Research

In this paper we have shown the equivalence of five

classes of hybrid systems: MLD, LC, ELC, PWA, and

MMPS systems. For some of the transformations additional

conditions like boundedness of the state and input variables

or well-posedness had to be made.

An important topic for future research is to use the equiv-

alences to transfer techniques for analysis and synthesis

from one class of hybrid systems to another. By doing so,

a combined effort will be realized for researching systems

with a behavior that can be modeled by any of the hybrid

model descriptions as presented in this paper. Moreover, it

is interesting to study which modeling framework is most

appropriate for solving specific control problems related to

e.g. well-posedness, safety analysis, and stability. Also the

computational side is crucial; one might pose the question

which representation leads to the most efficient numerical

algorithms for synthesizing and analyzing control strate-

gies. A related question is suggested by Example 1, which

demonstrated that certain hybrid models are more compact

(“economical”) than others if one considers a specific appli-

cation. The constructive proofs of the equivalences will not

always yield the most efficient models in going from one

class to another. Hence, it deserves more attention which

model class should be chosen for a particular kind of appli-

cation and how to obtain a model within the class of “small-

est size,” which will lead to computational advantages.
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