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Abstract

We present a fuzzy decision support system that can be used in traffic control centers
to provide a limited list of appropriate combinations of traffic control measures for a
given traffic situation. The system we describe is part of a larger traffic decision support
system that can assist the operators of traffic control centers when they have to reduce
non-recurrent congestion using a network-wide approach. The kernel of our system is
a fuzzy case base that is constructed using simulated scenarios. At a later stage this
system will be complemented with an adaptive learning feature and with a set of fuzzy
rules that incorporate heuristic knowledge of experienced traffic operators.





1 Introduction

Contemporary state-of-the-art traffic control centers use dynamic traffic management
measures such as ramp metering, dynamic route information panels (with, for regular
situations, queue length information, and otherwise indications of congestion, traffic
jams and alternative routes), or variable message signs (with e.g. maximum speeds per
lane or lane closures) to control the traffic flows on highways and urban ring roads.
Recurrent congestion can usually be managed satisfactorily using local control mea-
sures. However, operators in traffic control centers often face a difficult task when
non-recurrent, non-predictable congestion occurs (e.g. as a consequence of an incident
or due to unexpected weather conditions). In such situations, local measures are usu-
ally insufficient and often an intervention at the network level is required to manage
congestion and to return to a normal traffic situation. So the effects of congestion are
attenuated by redirecting the traffic flows in a larger part of the network. The operator
of the traffic control center then has to assess the severity of the situation, predict the
most probable evolution of the state of the network, and select the most appropriate
measures. This is a complex task, which requires specialist knowledge and a lot of
experience, which usually can only be obtained after extensive training. As a result,
the approaches used by human operators in traffic control centers are in general neither
structured nor uniform.

Therefore, our aim is to provide a decision support tool to assist the operators of
traffic control centers in their decisions when they have to take measures to deal with
non-recurrent, non-predictable congestion. This decision support system should help
the operators to react in a uniform and structured way to unusual situations. Since we
want to create a decision support system that allows for an easy and smooth interaction
with the human operators, with a decision process that is both intuitive and can be
explained in linguistic terms, we have opted for a decision support system based on a
fuzzy knowledge base.

In short, the system works as follows. Given the current state of the network and
the optimization criterion (such as minimal total travel time, maximal throughput, or a
weighted combination of several criteria), the fuzzy decision support system generates
a ranked list of the best control measures and presents them to the human operator of
the traffic control center. If necessary, the effect of these measures on the current traffic
situation can be simulated by an external simulation unit. The resulting output of the
system is a linguistic characterization of the actions that can be taken and their predicted
effectiveness in the current situation. The system described in this paper operates in a
multi-level control framework. At the lowest level we have semi-autonomous local traffic
controllers for e.g. traffic lights or ramp metering. On a higher level the operation of
several local traffic controllers is coordinated or synchronized by supervisory controllers.
The role of our fuzzy decision support system in this set-up is to suggest whether a
particular local traffic controller should be activated or not.

Several authors have described decision support systems for traffic management,
such as FRED (Freeway Real-Time Expert System Demonstration) [7, 8, 11], or the
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Figure 1: The overall traffic decision support system (TDSS).

Santa Monica Smart Corridor Demonstration Project [2, 9]. However, these architec-
tures do not use fuzzy logic in their decision process. Since we also want a system
with an intuitive operation process that is able to generate decisions in cases that are
not explicitly covered by the knowledge base, we have opted for a fuzzy system. Other
fuzzy decision support systems for traffic control have been developed in [1, 4, 6].

2 Overall framework

The decision support system we are developing is a part of a larger traffic decision
support system (TDSS) [3] that is currently being developed by the Dutch Ministry of
Transportation, Roadworks, and Water Management. The structure of this system is
depicted in Figure 1. The inputs for the TDSS are the current traffic situation (traffic
densities, average speeds, traffic demand, time of day, weather conditions, incidents,
etc.). Furthermore, the traffic operator can provide or adjust additional parameters and
specify which control objective should be used. Based on the measurements, historic
data and traffic simulation, the system predicts the future traffic situation (more specif-
ically, the TDSS uses the METANET macroscopic flow model [5] to make a forecast
of the traffic situation). In that way we can also predict the performance of the traffic
control measures (such as DRIP1 messages, ramp metering, or lane closures) that will
be applied. Since in general a large number of traffic control measures (and combina-
tions of them) are possible, it is not tractable to evaluate all possible combinations of
traffic control measures using macroscopic or microscopic traffic simulation. Therefore,
in practice only a limited number of combinations can be simulated. The aim of the
subsystem we are developing is to limit the number of possible combinations of control
measures that should be simulated by using an intelligent decision support system to
rank the possible combinations of control measures and to present the operator with
a limited number of possibilities that deserve further examination. Afterwards, the
operator can select the most appropriate control strategy. In this paper we present a
small prototype system with two inputs (incident status and traffic demand) and three
possible control measures (DRIP message, close 1 lane, close 2 lanes).

1DRIP: Dynamic Route Information Panel.
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Figure 2: The fuzzy case-based decision support system.

3 The fuzzy decision support system

Our decision support system selects optimal combinations of traffic control measures
for a given situation by using a weighted performance measure J defined as

J =
N
∑

i=1

wiJsub,i

where the weights wi are determined by the user and where the Jsub,i’s are partial
performance measures such as predicted queue lengths, total travel times, waiting times,
fuel consumption, etc. The weights wi are not fixed, but can be changed on-line by
the user (i.e. the operator in the traffic control center) depending on current traffic
management policies and other considerations.

As a starting point for our fuzzy decision support system, we have constructed a case-
based system (see Figure 2). The kernel of this system is a case base in which several
scenarios (cases) are stored together with the corresponding performance measures. The
scenarios are extracted from the simulation output files of METANET. Each scenario
is characterized by

• the traffic situation (traffic densities, queue lengths, average speeds, traffic de-
mand, incident status, etc.)

• the traffic control measures that are taken,

• the predicted result on the traffic conditions, i.e. the values of the partial perfor-
mance measures Jsub,i.

Hence, given the weights wi, we can compute the performance J for each scenario
and consider it as a function of the traffic situation and the control measures that are
applied.
Remark. An important difference between our approach and conventional case-based
reasoning is that in case-based reasoning one usually has a fixed solution (for our
application this would be a combination of traffic control measures) for each case
in the case base. In the conventional case-based reasoning approach only the traffic
situation would be used to characterize a case. However, since we consider an objective
function J that is a weighted combination of the various performance indicators and
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since the weights wi are not fixed but variable, we cannot directly relate an optimal
solution to each case (or traffic situation) and therefore we also have to include the
control measures in the characterization of the cases.

When presented with a new traffic situation, we first select for each allowed set of
control measures C the K cases (K is a user-defined integer parameter) for which the
traffic situation corresponds best to the given traffic situation using a distance function
d that describes the distance between two traffic situations. We could e.g. take the
Euclidian distance function for d. We use a normalized distance function that is based
on fuzzy membership functions. The distance between the current traffic situation,
represented by a vector bcurrent, and the traffic situation of case i, represented by the
vector bi, is defined as

d(bcurrent, bi) = 1− fmembership,i(bcurrent)

where fmembership,i is the fuzzy membership function that corresponds to case i. The
value of fmembership,i can be considered to express the degree of similarity between the
current traffic situation and the traffic situation of case i: we have 1 for a perfect
match and 0 for no similarity at all. This also implies that the distance function d is
scaled between 0 and 1 and that its value is independent of the units for the different
coordinates of the case vectors. The multidimensional membership function is described
in Section 4.

Next we use fuzzy interpolation between these K closest cases to get an estimation
of the performance for the combinations of the control measures that correspond to
the K cases. Assume without loss of generality that the K closest cases correspond to
the vectors b1, b2, . . . , bK . Let Jcase i(C) express the performance (i.e., the value of J)
of the set of control measures C in case i. Then we determine the performance of C
in the current traffic situation as

Jcurrent(C) =

K
∑

i=1

fmembership,i(bcurrent) Jcase i(C)

K
∑

i=1

fmembership,i(bcurrent)

.

The best M combinations of control measures are then selected and presented to
the operator (where M is again a user-defined integer parameter). By choosing M

much smaller than the number of possible combinations of control measures we can
significantly reduce the timed needed in the subsequent analysis process by removing
from the decision process those combinations for which the performance will probably
not be satisfactory.

4 Prototype of the FDSS

We have created a prototype of the decision support system in the mathematical soft-
ware package Matlab (which includes a scripting language and the possibility to create
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Figure 3: Set-up for the prototype system.

GUIs2) for a simple set-up consisting of a highway that at one point splits in two
branches — a long one of 13 km (8.1 miles) and a shorter one of 11 km (6.8 miles)),
— which join each other again at the end (see Figure 3). This network is part of the
larger peri-urban network around the city of Amsterdam in the Netherlands. The long
branch is the A22 highway that also includes the Velsertunnel; the shorter branch is
part of the A9 highway and includes the Wijkertunnel. The A22 is mostly used for
traffic having local origins or destinations whereas the A9 is mostly used for long dis-
tance traffic. We only consider traffic going from the north to the south. The two
alternative routes that can be followed by the drivers are indicated by the arrows. Near
the point where the highway splits there is DRIP that can display queue information.
Furthermore, there are also variable direction signs.

There are two inputs for our decision support system (traffic demand and occurrence
of incidents) and three possible control measures (c1: closure of lane 1, c2: closure of
lane 2, and c3: a Dynamic Route Information Panel (DRIP) message). The set allowed
combinations of control measures equals {∅, {c1}, {c3}, {c1, c2}, {c1, c3}}. Note that
since our system has been programmed in modular way, the number of inputs and
possible control measures can be extended very easily. Due to the small number of
inputs we have selected the value K = 2 for the number of cases among which the
fuzzy interpolation takes place.

The fuzzy membership functions are now defined as follows. We will consider each
coordinate of the input space separately when defining the fuzzy membership functions.

2GUI: Graphical User Interface.
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Figure 4: The fuzzy membership functions for real-valued coordinates are trian-

gular functions; bi is the center point of the ith membership function fmembership,i

and ∆i = bi − bi−1 (for ease of notation the coordinate index j has been omitted

in this figure).

The overall membership function fmembership,i for case i is then defined as the product
of the membership functions fmembership,i,j for the separate coordinates:

fmembership,i(x) =
m
∏

j=1

fmembership,i,j(xj)

where m is the number of components of the case vectors.
For coordinates xj that can only take on discrete values (such as e.g. the incident

status, which can only be 0 (no incident) or 1 (incident)), we use singleton membership
functions:

fmembership,i,j(xj) =

{

1 if xj = (bi)j

0 otherwise.

For the real-valued coordinates xj we use triangular membership functions (see Figure
4).

Figures 5 and 6 show some screenshots of the prototype system. The interface
window that is presented to the operators has two modes: operator mode, and expert
mode. In the operator mode (see Figure 5) the operator enters the parameters that
describe the current traffic situation on the left; on the right she will then see a ranked
list of the various possible combinations of control measures. The most promising
combination(s) can then be examined in more detail (e.g. by microscopic or macroscopic
traffic simulation). In the Weights subscreen of the expert mode view (see Figure 6),
the user can specify the weights wi for the various subcomponents Jsub,i of the objective
function such as the total travel time (TTT), total waiting time (TWT), total waiting
store-and-forward (TWSAF), total time in net (TTIN), total distance traveled (TDT),
vehicles in net (VIN), vehicles driven in (VDI), vehicles driven out (VDO), and total
fuel consumption (TFC). In the Prediction & Case-Base subscreen the values for each
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Figure 5: A screenshot of the demo of the decision support system in the oper-

ator view.

Figure 6: A screenshot of the demo of the decision support system in the expert

view.
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subcomponent of the objective function are then displayed for the current inputs and for
each scenario in the case base. In that way the effects of the choice of the weights and
the effects of the various control measures can be examined in more detail. However,
this level of detail is usually not needed in daily operation. That is why we have chosen
for a system with two modes (operator mode and expert mode).

5 Discussion

We have presented a fuzzy decision support system (FDSS) for traffic control centers.
This system is part of a larger traffic decision support system that assists operators of
traffic control centers when selecting the most appropriate traffic control measures to
efficiently manage non-recurrent congestion. The subsystem we have developed uses
a case base and fuzzy interpolation to generate a ranked listing of combinations of
control measures and their estimated performance. Since the scenarios in the case
base are generated by METANET, the quality of the ranking depends basically on the
quality of the simulations. The predictions made by the case-based reasoning system
can be made more precise by adding new cases. An important feature of our system is
that the performance function is not fixed but consists of a weighted combination of
several partial performance measures. In addition, the weights of this combination can
be changed on-line depending on the current traffic management policy and on other
considerations. Since the case base can be generated off-line, our subsystem reduces
the time that is needed to determine the optimal traffic control for a given situation
by limiting the number of combinations of control measures for which on-line traffic
simulations should be performed in the traffic control center.

The current knowledge base of our FDSS is mainly based on simulations and mea-
sured situations. Once the system operates in a real traffic control center, we can
include actual situations and the effects of control measures that have actually been
applied to the traffic system in our case base. In that way we get an adaptive system
that learns during operation. Such a system is described by [10].

Furthermore, the heuristic rules that are known by experienced traffic operators
would be a useful addition to our system. Therefore, in the next stage of the project,
we will include this knowledge into our system by adding a separate fuzzy knowledge
module to our system. This could follow the same framework as the TRYS system
presented by [1] and [6].

Another interesting question is how many inputs are needed in a larger traffic network
to be able to make adequate decisions. In our network there was only one input link
that characterized the traffic state, but in a larger network not only the demands on
the input are important, but also the states (speed, density) on the internal links.

Moreover, we have not considered the dynamic aspects of the system. The time-
of-day and day-of-week can carry important information about the expected traffic
demands. This information could also be utilized to make better decisions.

Since the case-based system is a universal approximator (i.e., an be made arbitrarily
precise by adding more cases) the validation of the system is not considered. The
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quality of the system depends on the quality of the simulation that generated the cases.
In this context the most important question is that — assuming that the quality of the
simulation is good — how many cases do we need for a good performance.
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