
Delft University of Technology
Fac. of Information Technology and Systems Control Systems Engineering

Technical report bds:00-14

MPC for perturbed max-plus-linear
systems∗

T.J.J. van den Boom and B. De Schutter

If you want to cite this report, please use the following reference instead:
T.J.J. van den Boom and B. De Schutter, “MPC for perturbed max-plus-linear sys-
tems,” Proceedings of the European Control Conference 2001 (ECC’01), Porto,
Portugal, pp. 3783–3788, Sept. 2001.

Control Systems Engineering
Faculty of Information Technology and Systems
Delft University of Technology
Delft, The Netherlands
Current URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/00_14.html

https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/00_14.html


MPC FOR PERTURBED MAX-PLUS-LINEAR

SYSTEMS

Ton J.J. van den Boom, Bart De Schutter

Control Lab, Fac. ITS, Delft University of Technology

P.O.Box 5031, 2600 GA Delft, The Netherlands

Phone: +31-15-2784052/5113, Fax: +31-15-2786679

Email: t.j.j.vandenboom/b.deschutter@its.tudelft.nl.

Keywords: predictive control, control and optimiza-
tion, control of discrete event systems, max-plus-linear
systems, manufacturing systems.

Abstract

Model predictive control (MPC) is a popular controller
design technique in the process industry. Conventional
MPC uses (non)linear discrete-time models. Recently
we have extended MPC to a class of discrete event sys-
tems that can be described by a model that is linear in
the (max,+) algebra. Up to now we have only consid-
ered the deterministic noise-free case without modeling
errors. In this paper we extend our previous results to
cases with noise and/or modeling errors. We show that
under quite general conditions the resulting optimiza-
tion problem can be solved very efficiently.

1 Introduction

Model predictive control (MPC) [2, 3, 5, 9] is currently
one of the most widely used advanced control design
methods in the process industry. MPC provides many
attractive features: it is applicable to MIMO systems,
it can handle constrains on inputs and outputs in a sys-
tematic way, it is capable of tracking pre-scheduled ref-
erence signals, and it is an easy-to-tune method. Usu-
ally MPC uses linear or nonlinear discrete-time mod-
els. However, the attractive features mentioned above
have led us to extend MPC to a class of discrete event
systems: the max-plus-linear (MPL) systems. Loosely
speaking we could say that this class corresponds to
the class of discrete event systems in which there is
synchronization but no concurrency. Such systems can
be modeled using the operations maximization (corre-
sponding to synchronization: a new operation starts
as soon as all preceding operations have been finished)
and addition (corresponding to durations: the finishing
time of an operation equals the starting time plus the
duration). This leads to a description that is “linear”
in the max-plus algebra [1, 6] (see also Section 2).

In [7, 8] we have extended MPC to MPL systems,
and in [14] we have presented some results in connec-
tion with the closed-loop behavior and tuning rules for
MPL-MPC. However, in those papers we have only con-
sidered the deterministic noise-free case without mod-
eling errors. In this paper we will extend our previous
results to cases with noise and/or modeling errors.
In contrast to conventional linear systems, where noise
and disturbances are usually modeled by including an
extra term in the system equations, the influence of
noise and disturbances in MPL discrete event systems
is not max-plus-additive, but max-plus-multiplicative.
This means that the system matrices are perturbed
and the system properties change. Ignoring the noise
can lead to bad tracking behavior or even an unstable
closed loop. A second important feature is modeling
error. Uncertainty in the modeling or identification
phase leads to errors in the system matrices. It is clear
that modeling errors, and noise and disturbances both
perturb the system by introducing uncertainty in the
system matrices. Sometimes it is difficult to distinguish
the two from one another, and usually fast changes in
the system matrices are considered as noise and distur-
bances, whereas slow changes or permanent errors are
considered as model mismatch. In this paper both fea-
tures are treated in one single framework and the char-
acterization of the perturbation determines whether it
describes model mismatch or disturbance. We also
show that under quite general restrictions the result-
ing MPC optimization problem can be solved very ef-
ficiently.
There are few results in the literature on noise and
modeling errors in an MPL context. However, for other
classes of discrete event systems uncertainty results can
be found in [4, 10, 13, 15] and the references therein.

2 Max-plus-linear systems and MPC

Define ε = −∞ and IRε = IR ∪ {ε}. The max-plus-
algebraic addition (⊕) and multiplication (⊗) are de-
fined as follows [1, 6]:

x⊕ y = max(x, y) x⊗ y = x+ y



for x, y ∈ IRε and

[A⊕B]ij = aij ⊕ bij = max(aij , bij)

[A⊗ C]ij =
n
⊕

k=1

aik ⊗ ckj = max
k=1,...,n

(aik + ckj)

for A,B ∈ IRm×n
ε and C ∈ IRn×p

ε . The matrix ε is the
max-plus-algebraic zero matrix: [ε]ij = ε for all i, j.
In [1, 6] it has been shown that (time-invariant) discrete
event systems in which there is synchronization but no
concurrency can be described by a model of the form

x(k) = A⊗ x(k − 1)⊕B ⊗ u(k) (1)

y(k) = C ⊗ x(k) . (2)

Systems that can be described by this model will be
called time-invariant max-plus-linear (MPL) systems.
The index k is called the event counter. For a discrete
event system x(k) would typically contain the time in-
stants at which the internal events occur for the kth
time, u(k) would contain the time instants at which the
input events occur for the kth time, and y(k) would
contain the time instants at which the output events
occur for the kth time.
In [7, 8] we have extended the MPC framework to time-
invariant MPL models (1)–(2) as follows. Just as in
conventional MPC we define a cost criterion J that re-
flects the reference tracking error (Jout) and the control
effort (Jin) in the event period [k, k +Np − 1]:

J(k) = Jout(k) + λJin(k)

where Np is the prediction horizon and λ a weighting
parameter. Possible choices for Jout and Jin are given
in [7, 8] (see also Section 5). The aim is to compute
an optimal input sequence u(k), . . . , u(k+Np−1) that
minimizes J(k) subject to linear constraints on the in-
puts and outputs. Since the u(k)’s correspond to con-
secutive event occurrence times, we have the condition
∆u(k + j) ≥ 0 for j = 0, . . . , Np − 1. Furthermore, in
order to reduce the number of decision variables and
the corresponding computational complexity we intro-
duce a control horizon Nc (≤ Np) and we impose the
additional condition that the input rate should be con-
stant from k+Nc − 1 on: ∆u(k+ j) = ∆u(k+Nc − 1)
for j = Nc, . . . , Np − 1. MPC uses a receding horizon
principle. After computation of the optimal control
sequence u(k), . . . , u(k + Nc − 1), only the first con-
trol sample u(k) will be implemented, subsequently the
horizon is shifted one sample, and the optimization is
restarted with new information of the measurements.
Let Smps be the set of functions f defined as:

f(x) = max
i

(αi,1x1 + . . .+ αi,nxn + βi)

with x ∈ IRn
ε and αi,j ∈ IR+ and βi ∈ IR. We write

f ∈ Smps(x), if we want to stress that f is a function
of x.

Lemma 1 The set Smps is closed under the operations
⊕, ⊗, and scalar multiplication by a nonnegative scalar.

Proof: For x, y, z, v ∈ IRε and ρ ∈ IR+

we have max(max(x, y),max(z, v)) = max(x, y, z, v),
max(x, y) +max(z, v) = max(x+ z, x+ v, y + z, y + v)
and ρmax(x, y) = max(ρx, ρy).

Lemma 2 If f ∈ Smps then f is a nondecreasing func-
tion of its arguments.

Proof: If x̃, x̂ ∈ IRn
ε and x̃ ≤ x̂ then we have

∑

j αij x̃j + βi ≤
∑

j αij x̂j + βi since αi,j ≥ 0 for all
i, j. As a consequence, we have f(x̃) ≤ f(x̂).

3 Noise and uncertainty model

In this section we extend the noise-free deterministic
model (1)–(2) to include uncertainty. So we now con-
sider the following max-plus-linear system:

x(k) = A(k)⊗ x(k − 1)⊕B(k)⊗ u(k) (3)

y(k) = C(k)⊗ x(k) (4)

where A(k), B(k) and C(k) represent uncertain system
matrices due to modeling errors or disturbances. Usu-
ally fast changes in the system matrices will be consid-
ered as noise and disturbances, whereas slow changes
or permanent errors are considered as model mismatch.
In this paper both features will be treated in one single
framework. The uncertainty caused by disturbances
and errors in the estimation of physical variables, is
gathered in the uncertainty vector e(k). We assume
that the uncertainty is bounded. Furthermore, e(k)
and e(k − 1) may be related, e.g., by assuming the
change ∆e(k) = e(k)− e(k − 1) to be bounded.
We assume that the uncertainty vector e(k) captures
the complete time-varying aspect of the system. The
system matrices of an MPL model usually consist of
sums or maximizations of internal process times, trans-
portation times, etc. (see also Section 6). Since the
entries of e(k) directly correspond to the uncertainties
in these duration times, it follows from Lemma 1 that
the entries of the system matrices belong to Smps:

A(k)∈Sn×n
mps (e(k)) B(k)∈Sn×m

mps (e(k))

C(k)∈Sl×n
mps(e(k))

(5)

4 Prediction model

Define the vectors

ũ(k) =







u(k)
...

u(k+Np−1)






, ỹ(k) =







ŷ(k)
...

ŷ(k+Np−1)






,



ẽ(k) =







e(k)
...

e(k +Np − 1)






.

We assume that ẽ(k) is in a bounded polyhedral set Eẽ.
Note that for ease of notation we will sometimes drop
the index k from ũ(k), ỹ(k) and ẽ(k).
The prediction model for (3)–(4) is given by:

ỹ(k) = C̃(ẽ(k))⊗ x(k − 1)⊕ D̃(ẽ(k))⊗ ũ(k) (6)

in which C̃(ẽ(k)) and D̃(ẽ(k)) are given by

C̃(ẽ(k))=







C̃1(e(k))
...

C̃Np
(e(k))







D̃(ẽ(k))=







D̃11(e(k)) · · · D̃1Np
(e(k))

...
. . .

...

D̃Np1(e(k)) · · · D̃NpNp
(e(k))







where

C̃m(ẽ(k)) = C(k+m− 1)⊗A(k+m− 1)⊗ . . .⊗A(k)

and

D̃mn(ẽ)=



























C(k+m−1)⊗A(k+m−1)⊗ . . .

. . .⊗A(k+n)⊗B(k+n−1) if m>n

C(k+m−1)⊗B(k+m−1) if m=n

ε if m<n

Lemma 3 The entries of C̃(e(k)) and D̃(e(k)) belong
to Smps(e(k)). For a given x(k−1) and ũ(k) the entries
of ỹ(k) belong to Smps(e(k)).

Proof: This is a direct consequence of the definition
of C̃(e(k)), D̃(e(k)) and (6) in combination with (5)
and Lemma 1.

5 Worst-case criterion MPC

In MPL-MPC we want to minimize the criterion

J(ỹ, ũ) = Jout(ỹ) + λJin(ũ)

where Jout represents the tracking error and Jin is re-
lated to the input dates. We aim to find the optimal
(ũ, ỹ) that minimizes J(ỹ, ũ), where ỹ and ũ are re-
lated by (6). Note that the relation between ũ and
ỹ is not unique because of (bounded) perturbation
ẽ(k). Instead of considering general linear constraints
on the inputs and outputs as in [7, 8] we will only
consider linear constraints on the input in this paper
Ac(k)ũ(k) ≤ bc(k). A typical example of such a con-
straint is an upper and lower bound for the input rate:

dmin(k + j) ≤ ∆u(k + j) ≤ dmax(k + j) .

The worst-case MPC problem at event step k is now
defined as follows:

Jwc(k) = min
ũ(k)

max
ẽ(k)∈Eẽ

J(ỹ(k), ũ(k)) (7)

subject to

ỹ(k) = C̃(ẽ(k))⊗ x(k − 1)⊕ D̃(ẽ(k))⊗ ũ(k) (8)

∆u(k + j) ≥ 0 , j = 0, . . . , Np − 1 (9)

∆2u(k + j) = 0 , j ≥ Nc (10)

Ac(k)ũ(k) ≤ bc(k) . (11)

Now we eliminate (8) by substituting this equation in
Jwc(k) and by maximizing the result over all ẽ(k). For
a given ũ(k) the worst-case ẽ(k) will be denoted by
ẽ#(ũ(k)), or by ẽ#(k) or ẽ# for short if no confusion is
possible. So for any ũ, we let

ẽ#(k) = arg max
ẽ(k)∈Eẽ

Jout(ỹ(ẽ(k), ũ))

J
#
out(ũ) = Jout(ỹ(ẽ

#(k), ũ)) .

The corresponding worst-case output is then given by

ỹ(ẽ#, ũ) = C̃(ẽ#)⊗ x(k − 1)⊕ D̃(ẽ#)⊗ ũ .

The outer worst-case MPC problem is defined as:

min
ũ(k)

J
#
out(ũ) + λJin(ũ)

subject to

∆u(k + j) ≥ 0 , j = 0, . . . , Np − 1 (12)

∆2u(k + j) = 0 , j ≥ Nc (13)

Ac(k)ũ(k) ≤ bc(k) . (14)

Now we make the following assumptions:

Assumption A1: Jout is a nondecreasing, convex
function of ỹ

Assumption A2: Jin is convex in ũ.

These assumptions hold for several objective functions
that are frequently encountered in a discrete event con-
text and are thus not overly restrictive.
If the due dates r for the outputs of the system are
known and if we have to pay a penalty for every delay,
a possible output cost criterion is the tardiness:

Jout,1(ỹ(k)) =
∑

i

max(ỹi(k)− r̃i(k), 0)

with r̃ defined similarly to ỹ. Clearly, Jout,1 satisfies
Assumption A1. The maximal output delay also satis-
fies Assumption A1:

Jout,2(ỹ(k)) = max
i

(

max(ỹi(k)− r̃i(k), 0)
)

.



For the input cost criterion we could take [7, 8]:

Jin,0(ũ(k)) = ũT (k)ũ(k)

Jin,1(ũ(k)) =
∑

i

ũi(k)

which minimize the input time instants or

Jin,2(ũ(k)) = −
∑

i

ũi(k)

which maximizes the input time instants1. Clearly,
Jin,0, Jin,1 and Jin,2 all satisfy Assumption A2.

Proposition 4 If Assumptions A1 and A2 hold, then
the outer worst-case MPC problem is convex in ũ.

Proof: Jin is convex in ũ by Assumption A2. Fur-
thermore, the constraints (12)–(14) only depend on ũ

and are convex in ũ. So we only have to prove that
J
#
out is convex in ũ. Define for 0 ≤ ρ ≤ 1:

ũ3(k) = ρũ1(k) + (1− ρ)ũ2(k)

ẽ
#
j (k) = arg max

ẽ(k)∈Eẽ

Jout(ỹ(ẽ(k), ũj)) , j = 1, 2, 3

Define M̃CD(ẽ) =
[

C̃(ẽ) D̃(ẽ)
]

. Now we have2:

[ỹ3(ẽ
#
3 , ũ3)]i = [M̃CD(ẽ#3 )]i ⊗

[

x(k−1)
ũ3(k)

]

= max
ℓ

(

[M̃CD(ẽ#3 )]i,ℓ +

[

x(k−1)
ũ3(k)

]

ℓ

)

= max
ℓ

(

[M̃CD(ẽ#3 )]i,ℓ+

[

x(k−1)
ρũ1(k)+(1−ρ)ũ2(k)

]

ℓ

)

= max
ℓ

(

ρ[M̃CD(ẽ#3 )]i,ℓ + (1−ρ)[M̃CD(ẽ#3 )]i,ℓ

+

[

ρx(k−1) + (1−ρ)x(k−1)
ρũ1(k) + (1−ρ)ũ2(k)

]

ℓ

)

≤ max
ℓ

(

ρ[M̃CD(ẽ#3 )]i,ℓ +

[

ρx(k−1)
ρũ1(k)

]

ℓ

)

+max
ℓ

(

(1−ρ)[M̃CD(ẽ#3 )]i,ℓ +

[

(1−ρ)x(k−1)
(1−ρ)ũ2(k)

]

ℓ

)

(since maxi(vi, wi) ≤ maxi(vi) + maxi(wi))

≤ ρmax
ℓ

(

[M̃CD(ẽ#3 )]i,ℓ +

[

x(k−1)
ũ1(k)

]

ℓ

)

+(1−ρ)max
ℓ

(

[M̃CD(ẽ#3 )]i,ℓ +

[

x(k−1)
ũ2(k)

]

ℓ

)

≤ ρ[ỹ(ẽ#3 , ũ1)]i + (1−ρ)[ỹ(ẽ#3 , ũ2)]i

1For a manufacturing system, this would correspond to a pro-
duction scheme in which raw material is fed to the system as late
as possible.

2We use [M ]i ([m]i) to denote the ith row (component) of a
matrix M (column vector m).

and thus

Jout(ỹ3) ≤ Jout

(

ρỹ(ẽ#3 , ũ1) + (1−ρ)ỹ(ẽ#3 , ũ2)

)

(15)

because Jout is a nondecreasing function of ỹ by As-
sumption A1. This implies that

J
#
out

(

ρũ1 + (1−ρ)ũ2

)

= J
#
out(ũ3)

= Jout(ỹ3(ẽ
#
3 , ũ3))

≤ Jout
(

ρỹ(ẽ#3 , ũ1) + (1−ρ)ỹ(ẽ#3 , ũ2)
)

(by 15)

≤ ρJout(ỹ(ẽ
#
3 , ũ1)) + (1−ρ)Jout(ỹ(ẽ

#
3 , ũ2))

(since Jout is convex in ỹ by Assumption A1)

≤ ρJout(ỹ(ẽ
#
1 , ũ1)) + (1−ρ)Jout(ỹ(ẽ

#
2 , ũ2))

≤ ρJ
#
out(ũ1) + (1−ρ)J#

out(ũ2) .

Hence, J#
out is a convex function of ũ, and as a conse-

quence, the outer worst-case MPC problem is a convex
problem.

Let us now consider the inner worst-case MPC prob-
lem:

max
ẽ(k)∈Eẽ

Jout(ỹ(ẽ, ũ)) (16)

s.t. ỹ(ẽ, ũ) = C̃(ẽ)⊗ x(k−1)⊕ D̃(ẽ)⊗ ũ .(17)

We will show how this problem can be solved efficiently.
Recall that Eẽ is a bounded polyhedral set. Note that
the vertices of Eẽ form a lattice w.r.t. the partial order
relation ≤. Let Ev

ẽ,max be the top points of this lattice,
i.e., Ev

ẽ,max is the set of the vertex points ẽvmax of Eẽ for
which we have

6 ∃ẽ ∈ Eẽ with ẽ 6= ẽvmax and ẽvmax ≤ ẽ .

Now consider the reduced inner worst-case MPC prob-
lem:

max
ẽ(k)∈Ev

ẽ,max

Jout
(

C̃(ẽ)⊗ x(k−1)⊕ D̃(ẽ)⊗ ũ
)

. (18)

Lemma 5 If Assumption A1 holds, then for a given
x(k−1) and ũ(k) the function Jout is convex in ẽ(k).

Proof: The function h is defined by h(x) = f(g(x))
and if g is convex and f is convex and nondecreasing
then h is convex. Functions that belong to Smps are
convex. Since for a given ũ we have ỹ(ẽ, ũ) ∈ Smps by
Lemma 3, ỹ is convex as a function ẽ. Furthermore,
Jout is convex and nondecreasing as a function of ỹ by
Assumption A1. Hence, Jout is convex in ẽ.

Proposition 6 If Assumption A1 holds, then an opti-
mal solution of the reduced inner worst-case MPC prob-
lem (18) is also a solution of the (full) inner worst-case
MPC problem (16)–(17).



Proof: First we prove that the maximum of the
(full) inner worst-case MPC problem (16)–(17) will be
reached in a “maximal” point of Eẽ, i.e., a point ẽmax

(not necessarily a vertex point!) of Eẽ for which

6 ∃ẽ ∈ Eẽ with ẽ 6= ẽmax and ẽmax ≤ ẽ .

Indeed, from Lemmas 2 and 3 it follows that if ẽ1 ≤ ẽ2
then ỹ(ẽ1) ≤ ỹ(ẽ2) and thus also Jout(ỹ(ẽ1, ũ) ≤
Jout(ỹ(ẽ2, ũ)) because of Assumption A1. Hence, the
maximum of the (full) inner worst-case MPC problem
will be reached in a “maximal” point of Eẽ.
Now we show that the maximum will be reached in a
“maximal” vertex point. Suppose that the maximum
would be reached in a point ẽmax that is not a ver-
tex point. In that case, ẽmax can be written as the
convex combination of the vertex points ẽv,jmax of the
face of Eẽ to which ẽmax belongs. Since for a given
x(k− 1) and ũ(k) Jout is convex in ẽ by Lemma 5
and thus also quasi-convex, we have Jout(ỹ(ẽmax, ũ)) ≤
maxj Jout(ỹ(ẽ

v,j
max, ũ)). Hence, an optimal solution of

the reduced inner problem is also an optimal solution
of the full inner problem.

The set Ev
ẽ,max is independent of ũ and can thus be

pre-computed off-line. Methods to compute all vertex
points of a polyhedral set can be found in [11, 12]. The
computation can be made more efficient by already dis-
carding the vertex points that cannot result in vertex
points that will belong to Ev

ẽ,max during the computa-
tion. In combination with Proposition 6 this allows
for an efficient solution of the inner worst-case MPC
problem. Since the outer worst-case MPC problem is
convex by Proposition 4 this implies that the overall
worst-case MPC problem can be solved efficiently.

6 Example: Simple production system

M1

M2

p1

p2

✲

✲ ✑
✑

✑
✑✑✸

✲u(k) y(k)

x1(k)

x2(k)

t1=1

t2=5

t3=0

t4=3

Figure 1: A production system.

Consider the production system of Figure 1. This sys-
tem consists of two machines M1 and M2. When a
batch of raw material is fed to the system, one part of
the batch goes directly from the input of the system to
the input of machine M1 (with a certain transportation
delay), whereas the other part of the batch first goes to
machine M2 for pre-processing. Afterwards, assembly
takes places on machineM1. We assume that each ma-
chine starts working as soon as possible on each batch,
i.e., as soon as the raw material or the required inter-
mediate products are available, and as soon as the ma-
chine is idle (i.e., the previous batch has been finished

and has left the machine). Define:

u(k) : time instant at which the system is fed for

the kth time

y(k) : time instant at which the kth product

leaves the system

xi(k) : time instant at which machine i starts for

the kth time

tj : transportation time

pi(k) : processing time on machine i for the kth

batch.

Both processing times p1(k) and p2(k) are assumed to
be estimated with some modeling error, and are cor-
rupted by noise. Suppose p1(k) ∈ [1, 5] and p2(k) ∈
[3, 6] and p1(k) + p2(k) ≤ 9. Note that this implies
that if p1(k) < 4 then the direct path from the input
to M2 is the longest, whereas if p1(k) > 4 the path
from the input via M1 to M1 is the longest.
From the system equations

x1(k) = max
(

p1(k−1)+x1(k−1), u(k)+1
)

x2(k) = max
(

p2(k−1)+x2(k−1), p1(k)+x1(k), u(k)+6
)

y(k) = x2(k)+p2(k)+3

we derive:

x(k) =

[

p1(k − 1) ε

p1(k − 1) + p1(k) p2(k − 1)

]

⊗ x(k − 1)

⊕

[

1
max(6, p1(k) + 1)

]

⊗ u(k)

y(k) =
[

ε p2(k) + 3
]

⊗ x(k) .

If we define

e(k) =









e1(k)
e2(k)
e3(k)
e4(k)









=









p1(k − 1)
p2(k − 1)
p1(k)
p2(k)









then we obtain

A(k) =

[

e1(k) ε

e1(k) + e3(k) e2(k)

]

B(k) =

[

1
max(6, e3(k)+1)

]

, C(k) =
[

ε e4(k)+3
]

For this perturbed MPL system we solve the worst-
case MPC problem. For each k the critical pairs are
(p1(k+j), p2(k+j)) = (3, 6) and (p1(k+j), p2(k+j)) =
(5, 4). The set Ev

ẽ,max consists of 2Np+1 = 32 top points,

corresponding to all 25 combinations of the two critical
points (p1(k + j), p2(k + j)) for j = 1, . . . , Np + 1.
The reference signal is given by r(k) = 10 + 5 · k , the
initial state is equal to x(0) = [ 0 10 ]T , and

J(ỹ(k), ũ(k)) = Jout,1(ỹ(k)) + λJin,2(ũ(k))

=

Np
∑

i=1

max(ỹi(k)−r̃i(k), 0)−λ

Np
∑

i=1

ũi(k)



for Np = 4, Nc = 2 and λ = 0.01. With the above
choice of the cost criterion, we can rewrite the worst-
case MPC problem into a linear programming prob-
lem. The optimal input sequence is computed for
k = 1, . . . , 100, and for each k, the first element u(k) of
the sequence ũ(k) is applied to the perturbed system
(due to the receding horizon strategy). In the exper-
iment, the true system is simulated for a random se-
quence

(

p1,t(k), p2,t(k)
)

, k = 1, . . . , 100 in the allowed
region.
Figure 2 gives the tracking error between the refer-
ence signal and the output signal y(k). It can be ob-

0 10 20 30 40 50 60 70 80 90 100
−10

−8

−6

−4

−2

0

2

4

event counter k −−>

tra
ck

in
g 

er
ro

r r
(k

)−
y(

k)
 −

−>

Figure 2: Tracking error r(k)−y(k)

served that r(k)−y(k) becomes larger than zero. This
is caused by the worst-case approach. The worst-case
MPC cost criterion is based on the lower bound of the
predicted tracking error, which should be larger than
zero. The true value of tracking error will obviously be
larger than this lower bound.

7 Conclusions

We have further extended the MPC framework to
include max-plus-linear discrete event systems with
modeling errors, noise and/or disturbances. We
have presented a unified framework to deal with
bounded uncertainties for max-plus-linear discrete
event systems. This allows the design of a worst-case
MPC controller for such systems. We have show how
the resulting optimization problem can be computed
efficiently using a two-level optimization approach.

Acknowledgments

This research was partially sponsored by the European

Community TMR project ALAPEDES, and by the FWO

Research Community ICCoS.

References

[1] F. Baccelli, G. Cohen, G.J. Olsder, and J.P.
Quadrat, Synchronization and Linearity. New York:
John Wiley & Sons, 1992.

[2] L. Biegler, “Efficient solution of dynamic opti-
mization and NMPC problems,” in Nonlinear Model
Predictive Control (F. Allgöwer and A. Zheng, eds.),
vol. 26 of Progress in Systems and Control Theory,
Basel, Switzerland: Birkhäuser Verlag, 2000.

[3] E.F. Camacho and C. Bordons, Model Predic-
tive Control in the Process Industry. Berlin, Germany:
Springer-Verlag, 1995.

[4] J. Cardoso, R. Valette, and D. Dubois, “Pos-
sibilistic Petri nets,” IEEE Transactions on Systems,
Man and Cybernetics, Part B: Cybernetics, vol. 29,
no. 5, pp. 573–582, 1999.

[5] D.W. Clarke, C. Mohtadi, and P.S. Tuffs, “Gen-
eralized predictive control – Part I. The basic algo-
rithm,” Automatica, vol. 23, no. 2, pp. 137–148, Mar.
1987.

[6] R.A. Cuninghame-Green, Minimax Algebra,
vol. 166 of Lecture Notes in Economics and Mathemat-
ical Systems. Berlin, Germany: Springer-Verlag, 1979.

[7] B. De Schutter and T. van den Boom, “Model
predictive control for max-plus-linear discrete event
systems,” Automatica, vol. 37, no. 7, July 2001.

[8] B. De Schutter and T. van den Boom, “Model
predictive control for max-plus-linear systems,” in Pro-
ceedings of the 2000 American Control Conference,
Chicago, Illinois, pp. 4046–4050, June 2000.

[9] C.E. Garćıa, D.M. Prett, and M. Morari, “Model
predictive control: Theory and practice — A survey,”
Automatica, vol. 25, no. 3, pp. 335–348, May 1989.

[10] F. Lin, “Robust and adaptive supervisory control
of discrete event systems,” IEEE Transactions on Au-
tomatic Control, vol. 38, no. 12, pp. 1848–1852, 1993.

[11] T.H. Mattheiss and D.S. Rubin, “A survey and
comparison of methods for finding all vertices of convex
polyhedral sets,” Mathematics of Operations Research,
vol. 5, no. 2, pp. 167–185, May 1980.

[12] T.S. Motzkin, H. Raiffa, G.L. Thompson, and
R.M. Thrall, “The double description method,” in
Contributions to the theory of games (H.W. Kuhn and
A.W. Tucker, eds.), no. 28 in Annals of Mathematics
Studies, pp. 51–73, Princeton, New Jersey: Princeton
University Press, 1953.

[13] S.J. Park and J.T. Lim, “Fault-tolerant robust
supervisor for discrete event systems with model uncer-
tainty and its application to a workcell,” IEEE Trans-
actions on Robotics and Automation, vol. 15, no. 2,
pp. 386–391, Apr. 1999.

[14] T. van den Boom and B. De Schutter, “MPC
for max-plus-linear systems: Closed-loop behavior and
tuning,” in Proceedings of the American Control Con-
ference 2001, Arlington, USA, June 25-27, 2001.

[15] S. Young and V.K. Garg, “Model uncertainty in
discrete event systems,” SIAM Journal on Control and
Optimization, vol. 33, no. 1, pp. 208–226, Jan. 1995.


