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Abstract

We show that the Extended Linear Complementarity Problem (ELCP) can be recast as a
standard Linear Complementarity Problem (LCP) provided that the surplus variables or
the feasible set of the ELCP are bounded. Since many extensions of the LCP are special
cases of the ELCP, this implies that these extensions can be rewritten as an LCP as
well. Our equivalence proof is constructive and leads to three possible numerical solution
methods for a given ELCP: regular ELCP algorithms, mixed integer linear programming
algorithms, and regular LCP algorithms.
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1 Introduction

The Linear Complementarity Problem (LCP) is one of the fundamental problems in math-
ematical programming [6, 36]. Several authors have introduced (both linear and nonlinear)
extensions of the LCP [5–7,14,16,20,21,23,33,36,37,42,47]. The importance of the LCP and
its generalizations is evidenced by a broad range of applications in the fields of engineering
and economics such as quadratic programming problems,, determination of Nash equilib-
ria, nonlinear obstacle problems, and problems involving market equilibria, invariant capital
stock, optimal stopping, contact and structural mechanics, elastohydrodynamic lubrication,
and traffic equilibria [6, 17, 18].

In [9] we have introduced yet another extension of the LCP, which we have called the
Extended Linear Complementarity Problem (ELCP). This problem arose from our research
on discrete event systems (max-plus-linear systems, max-plus-algebraic applications, and min-
max-plus systems [10, 13]) and hybrid systems (traffic signal control, and first-order hybrid
systems with saturation [8, 12]). Furthermore, the ELCP can also be used in the analysis of
a class of hybrid systems called complementary slackness systems or linear complementarity
systems [11, 25, 39, 45].

Besides the applications of ELCP in the domain of discrete event and hybrid systems, its
relevance is also demonstrated by the fact that the LCP and most of its “linear” extensions
are actually special cases of the ELCP [9, 11]. The objective of this paper is to show that
the reverse statement holds as well: any ELCP can be recast as an LCP provided that the
surplus variables of the inequalities of the ELCP are bounded over the feasible set (A sufficient
condition for this is that the feasible set of the ELCP is bounded). This also implies directly
that the “linear” extensions of the LCP that are a special case of the ELCP (such as, e.g.,
the Vertical LCP or the Horizontal LCP [6]) can be rewritten as an LCP (provided that
their surplus variables are bounded over the feasible set). In addition, we show a semi-global
equivalence between the ELCP and the LCP in the sense that for any arbitrarily large set
the solutions of the ELCP that lie in that set can be retrieved via an LCP.

In the derivation of our result we obtain another equivalent problem, which will be called
the mixed integer linear feasibility problem (MILFP). The equivalence proof is constructive
as we present explicit expressions for the LCP and the MILFP that are equivalent to the
original ELCP. As a consequence, our result leads to several ways to solve a given ELCP with
bounded surplus variables or with solutions that lie in a bounded set: either as an ELCP
using the algorithm we have derived in [9], as a mixed integer linear programming problem,
or as a standard LCP using one of the many available LCP algorithms. The computation time
of the ELCP algorithm of [9] increases rapidly as the number of (in)equalities and variables
increases, which may often be prohibitive. However, in many applications we only need one
solution of the ELCP. In these cases the alternative (mixed integer or LCP) algorithms offer
an attractive, more efficient way to solve the ELCP.

2 The LCP and the ELCP

All vectors used in this paper are assumed to be column vectors. Furthermore, inequalities
for vectors have to be interpreted componentwise. We use In to denote the n by n identity
matrix, and 0m×n to denote the m by n zero matrix. If the dimensions of the identity matrix
or the zero matrix are omitted, they should be clear from the context.
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2.1 Linear Complementarity Problem (LCP)

One of the possible formulations of the LCP is the following [6]:

Given M ∈ R
n×n and q ∈ R

n, find vectors w, z ∈ R
n such that

w = Mz + q (1)

w, z ≥ 0 (2)

wT z = 0 . (3)

Condition (3) is called the complementarity condition of the LCP. Sometimes we will rewrite
(2)–(3) more compactly as 0 ≤ w ⊥ z ≥ 0. For algorithms to solve the LCP we refer the
interested reader to [1, 3, 6, 27–31,34, 36, 40, 46] and the references therein.

2.2 Extended Linear Complementarity Problem (ELCP)

The ELCP is defined as follows [9]:

Given A ∈ R
p×n, B ∈ R

q×n, c ∈ R
p, d ∈ R

q, and m index sets φ1, . . . , φm ⊆ {1, . . . , p},
find x ∈ R

n such that

Ax ≥ c (4)

Bx = d (5)

m∑

j=1

∏

i∈φj

(Ax− c)i = 0 . (6)

The feasible set of the ELCP (4)–(6) is defined by F = {x ∈ R
n | Ax ≥ c, Bx = d}. The

surplus variable surp(i, x) of the ith inequality of Ax ≥ c is defined as surp(i, x) = (Ax− c)i.
Condition (6) represents the complementarity condition of the ELCP. One possible inter-

pretation of this condition is the following. Since Ax ≥ c, all the terms in (6) are nonnegative.

Hence, (6) is equivalent to
∏

i∈φj

(Ax − c)i = 0 for j = 1, . . . ,m. So we could say that each

set φj corresponds to a group of inequalities in Ax ≥ c, and that in each group at least one
inequality should hold with equality (i.e., the corresponding surplus variable is equal to 0).

Remark 2.1 We may without loss of generality assume that the ELCP is written as

Ax ≥ c (7)

m∑

i=1

∏

j∈φi

(Ax− c)j = 0 , (8)

since we can, e.g., replace Bx = d by Bx ≥ d, and obtain equality conditions on these
inequalities by adding the index sets φm+1 = {p + 1}, . . . , φm+q = {p + q}. However, if we
want to solve an ELCP using, e.g., the algorithm of [9], then the formulation (5)–(6) leads to
a more efficient solution than the reformulation (7)–(8). ✸
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Remark 2.2 The complementarity conditions of both the LCP and the ELCP consist of a
sum of products. However, in contrast to the ELCP where the products may contain one,
two or more factors, the products in complementarity condition of the LCP always contain
exactly two factors. Moreover, any variable in the LCP is contained in precisely one index
set φj , while in the ELCP formulation it may be contained in any number of index sets. ✸

In [9] we have developed an algorithm to find all solutions of an ELCP. This algorithm yields
a description of the complete solution set of an ELCP by finite points, generators for extreme
rays, and a basis for the linear subspace associated with the maximal affine subspace of the
solution set of the ELCP.

2.3 Extensions of the LCP

Several authors have introduced linear and nonlinear extensions and generalizations of the
LCP. Some examples of “linear” extensions of the LCP are: the Horizontal LCP [6], the
Vertical LCP [6] (also known as the Generalized LCP of Cottle and Dantzig [5]), the Gener-
alized LCP of De Moor and Vandenberghe [7], the Generalized Order LCP and the Extended
Generalized Order LCP of Gowda and Sznajder [21], the Extended LCP of Mangasarian and
Pang [20, 33], the Generalized LCP of Ye [47], the mixed LCP [6], the Extended Horizontal
LCP of Sznajder and Gowda [42], the Generalized LCP of Eaves [14], and the Linear Dynamic
Complementarity Problem [39,45]. In [9,11] we have shown that all these generalizations are
special cases of the ELCP.

The underlying geometrical explanation for the fact that all the generalizations of the
LCP mentioned above are particular cases of the ELCP is that they all have a solution set
that consists of the union of faces of a polyhedron, and that the union of any arbitrary set
of faces of an arbitrary polyhedron can be described by an ELCP [9]. More generally, if we
define a “linear” generalization of the LCP as a problem consisting of an explicit or implicit
system of linear (in)equalities in combination with a “general” complementarity condition
(i.e., an ELCP-like complementarity condition that constrains the solutions of the problem
to lie on the (relative) boundary of the feasible set), then the solution set of this “linear”
generalization will consist of the union of faces of a polyhedron, which implies that such a
“linear” generalization of the LCP is a special case of the ELCP.

3 The link between the LCP and ELCP

Lemma 3.1 The LCP is a special case of the ELCP.

Proof : If we set x =

[
w

z

]

, A = I2n, B = [In −M ], c = 02n×1, d = q and φj = {j, j + n} for

j = 1, . . . , n in the formulation of the ELCP, we get an LCP. ✷

Theorem 3.2 If the surplus variables of the inequalities of an ELCP are bounded (from
above1) over the feasible set of the ELCP, then the ELCP can be rewritten as an LCP.

1We only need boundedness from above since the surplus variables are always nonnegative due to the
condition Ax ≥ c.
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Proof : Consider the ELCP (4)–(6). If there is an equality condition Bx = d present, then
we remove it using the procedure given in Remark 2.1. So from now on we consider the
formulation (7)–(8) of the ELCP.

The proof will be done in two steps. First, we will transform the ELCP into a mixed
integer problem to get rid of the ELCP complementarity condition at the cost of introducing
some additional binary variables. In the second step we will transform all variables (both
binary and real-valued) into nonnegative real ones, which will lead to an LCP.

Define a diagonal matrixDupp ∈ R
p×p with (Dupp)ii = d

upp
ii an upper bound for surp(i, x) =

(Ax−c)i over the feasible set F of the ELCP. Now consider the following system of equations:

δ ∈ {0, 1}p, x ∈ R
n (9)

0 ≤ (Ax− c)i ≤ d
upp
ii δi for i = 1, . . . , p, (10)

∑

i∈φj

δi ≤ #φj − 1 for j = 1, . . . ,m, (11)

where #φj denotes the number of elements of the set φj . Problem (9)–(11) will be called the
equivalent mixed integer linear feasibility problem (MILFP).

Now we show that the MILFP is equivalent to the ELCP (7)–(8) in the sense that a vector
x is a solution of the ELCP (7)–(8) if and only if there exists a vector δ such that (x,δ) is a
solution of (9)–(11). Equation (7) is implied by (10). Note that (9) and (11) imply that for
each j at least one of the δi’s with i ∈ φj is equal to 0. If δi′ = 0, then it follows from (10)
that (Ax − c)i′ = 0. This implies that in each index set φj there is at least one index for
which the corresponding surplus variable equals 0. Hence, the complementarity condition (8)
is also implied by (9)–(11). So (9)–(11) imply (7)–(8), and it is easy to verify that the reverse
statement also holds. As a consequence, the MILFP is equivalent to the ELCP.

Define a matrix S ∈ R
m×p with sji = 1 if i ∈ φj and sji = 0 otherwise, and a vector

t ∈ R
m with tj = #φj − 1. The MILFP can now be rewritten compactly as

δ ∈ {0, 1}p, x ∈ R
n (12)

0 ≤ Ax− c ≤ Duppδ (13)

Sδ ≤ t . (14)

Now we will transform this problem into an LCP. This will be done in three steps.

1. First we transform condition (12) into the LCP framework. All the variables of an LCP
should be real-valued, but the vector δ in the MILFP is a binary vector. However, the
condition δi ∈ {0, 1} is equivalent to 0 ≤ δi ⊥ 1 − δi ≥ 0. So if we introduce a vector
vδ ∈ R

p of auxiliary variables, then the condition δ ∈ {0, 1}p is equivalent to

δ, vδ ∈ R
p, vδ = 1p − δ, 0 ≤ δ ⊥ vδ ≥ 0 ,

where 1p is a p-component column vector consisting of all 1’s.

2. The inequality 0 ≤ Ax − c can be adapted to the LCP framework by introducing an
auxiliary vector vA ∈ R

p with vA = Ax− c ≥ 0. To obtain a complementarity condition
for vA we introduce wA ∈ R

p such that 0 ≤ vA ⊥ wA ≥ 0 (Note that we can always take
wA = 0 to get this condition satisfied). Hence, 0 ≤ Ax− c can be rewritten as

vA = Ax− c, 0 ≤ vA ⊥ wA ≥ 0
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with vA, wA ∈ R
p. The inequalities Ax− c ≤ Duppδ and Sδ ≤ t can be dealt with in a

similar way.

3. All variables in an LCP are nonnegative whereas this condition is not present in the
MILFP or the ELCP. Therefore, we split x in its positive part x+ = max(x, 0) and
its negative part x− = max(−x, 0). So x = x+ − x− and 0 ≤ x+ ⊥ x− ≥ 0. To
obtain independent complementarity conditions for x+ and x− we introduce additional
auxiliary vectors v+, v− ∈ R

n with v+ = x+ and v− = x− such that 0 ≤ v− ⊥ x+ ≥ 0
and 0 ≤ v+ ⊥ x− ≥ 0.

Combining the three steps results in the following equivalent LCP:











vδ
v−

v+

vA
vDupp

vS











︸ ︷︷ ︸

w

=











−Ip 0 0 0 0 0
0 0 In 0 0 0
0 In 0 0 0 0
0 A −A 0 0 0

Dupp −A A 0 0 0
−S 0 0 0 0 0











︸ ︷︷ ︸

M











δ

x+

x−

wA

wDupp

wS











︸ ︷︷ ︸

z

+











1p
0
0

−c

c

t











︸ ︷︷ ︸

q

(15)

0 ≤ w ⊥ z ≥ 0 (16)

with w, z ∈ R
3p+2n+m. The solution of the original ELCP can be extracted from the solution

of the LCP (15)–(16) by setting x = x+ − x−. ✷

The introduction of the MILFP in this proof is inspired by the paper [2], in which a class of
hybrid systems is discussed consisting of mixed logical dynamic systems, which can be shown
to be equivalent to systems with an ELCP-based model description [24].

The removal of the equality condition Bx = d in the proof above is only done to simplify
the proof. If we want to use this proof to solve an ELCP by reformulating it as an MILFP, it
is numerically better to keep the equalities. In that case the full ELCP (4)–(6) would result
in the MILFP (9)–(11) but with the additional constraint Bx = d.

If we are only interested in obtaining one solution of an ELCP, we can transform the
corresponding MILFP into a mixed integer linear programming problem by adding a dummy
linear objective function. This problem can then be solved using, e.g., a branch-and-bound
method [19,43] or a branch-and-cut method [4].

The matrix M of the LCP (15)–(16) is not positive definite. Moreover, this LCP is in
general not strictly feasible (i.e., in general the set {z ∈ R

n | Mz + q > 0, z > 0} is empty).
This may prevent us from using fast and efficient LCP methods such as, e.g., Lemke’s method
or strictly feasible interior point methods to solve the LCP (15)–(16). So then we may have
to use alternative approaches such as the mixed integer programming approach of [38, 41] or
a reformulation as a quadratic programming problem [6] (cf. the example in the appendix).

A sufficient condition for the surplus variables of the inequalities of the ELCP to be
bounded is that the feasible set F of the ELCP is bounded. However, note that boundedness
of the feasible set is not a necessary condition for boundedness of the surplus variables over
the feasible set. Consider, e.g., the ELCP x ∈ R

2, 1 ≤ x1 ≤ 2, (x1−1)(2−x1) = 0, which has
an unbounded feasible set F = {x ∈ R

2 | x1 = 1 or x1 = 2}, but bounded surplus variables
surp(1, x), surp(2, x) ∈ [0, 1] over the feasible set F .

Upper bounds for the surplus variables over the feasible set can be determined as follows:
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• The upper bounds duppjj can be computed efficiently using a linear programming problem:

d
upp
ii = max

Ax−c≥0
(Ax− c)i for i = 1, . . . , p . (17)

If any of the p linear programming problems yields an unbounded objective function
(duppii → ∞), then the ELCP does not have a bounded feasible set and then the condition
of Theorem 3.2 does not hold.

• If we know upper bounds xupp and lower bounds xlow for the components of x, e.g., as a
consequence of physical or other constraints, then we can even more efficiently compute
upper bounds as

d
upp
ii = (A+xupp −A−xlow − c)i for i = 1, . . . , p, (18)

with A+ and A− the positive and the negative part of A (i.e., A+, A− ∈ R
p×n with

(A+)ij = max(aij , 0) and (A−)ij = max(−aij , 0) for all i, j). So A = A+ −A−.

Even if we have an ELCP for which the surplus variables are not bounded over the feasible
set, then in practical applications it often occurs that we are only interested in solutions that
lie in a given (bounded) region. In that case we can use the following theorem which can be
proved in a similar way as Theorem 3.2.

Theorem 3.3 Consider the ELCP (4)–(6) and let X be an arbitrary bounded subset of Rn.
Then every solution x ∈ X of the ELCP can be obtained as a solution of an equivalent MILFP
or LCP (where the upper bounds duppii are now defined as upper bounds of the surplus variables
over the set X instead of over the feasible set F of the ELCP).

Note that Theorem 3.3 provides an equivalence between the ELCP and the LCP (or MILFP)
in a semi-global sense: for any arbitrarily large set X, we can provide the solutions (or say
that there are none) of an ELCP via the equivalent MILFP or LCP.

As mentioned before, several extensions of the LCP (which we have called “linear” gener-
alizations of the LCP in Section 2.3) are special cases of the ELCP. So if the surplus variables
or the feasible set of such a “linear” generalization of the LCP are bounded, then it follows
from Theorem 3.2 that it can be rewritten as an LCP.

Several other authors have also studied the link between generalizations of the LCP and
the standard LCP:

• Some equivalence results such as, e.g., between the mixed LCP and the standard LCP [6]
require non-singularity conditions for certain matrices. Note that such conditions are
not present in our equivalence result.

• In [6, 22] it has been shown that (variants of) the Horizontal LCP can be recast as an
LCP. In addition, in [15] it was shown that an Horizontal LCP can be written as a system
of piecewise linear equations (with real-valued variables), and vice versa. In [26] it is
shown that under certain conditions (a special case of) the Generalized LCP of Ye [47] is
equivalent to an LCP. Moreover, in [44] an algorithm is presented to reduce a Horizontal
LCP to an LCP whenever it is possible to do so. However, in all these extensions of the
LCP a “conventional” complementarity condition of the form 0 ≤ w ⊥ z ≥ 0 is used
instead of the more complex ELCP complementarity condition.
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• In [32, 35] it has been shown that the Vertical LCP can be reformulated as an LCP.

However, note that our result is more general since the ELCP can be considered as a unifying
framework for all “linear” extensions of the LCP.

Moreover, several authors have already considered the link between a standard LCP and
a mixed integer programming problem [38, 41]. However, to the authors’ best knowledge,
the link between the ELCP and a mixed integer programming problem has not yet been
considered previously.

4 Conclusion

We have shown that an ELCP with bounded surplus variables over the feasible set (or with
a bounded feasible set) can be rewritten as an LCP. This also implies that many linear
extensions of the LCP can be recast as an LCP under the same assumption. In addition, we
have also shown an equivalence between the ELCP and the LCP in a semi-global sense: for
any arbitrarily large set we can provide the solutions (or say that there are none) of an ELCP
via an equivalent LCP. In our constructive equivalence proof we have introduced a mixed
integer linear feasibility problem that is also equivalent to the ELCP. As a consequence, we
now have three different ways to solve an ELCP: using the ELCP algorithm of [9], using a
mixed integer (linear programming) algorithm, or using one of the many LCP algorithms.
The main advantage of the latter two approaches is that they can be used for applications
in which we only need one solution of the ELCP since in that case they will be much more
efficient than the ELCP algorithm of [9], which computes all solutions and, as a consequence,
requires much more computation time.

An important topic for further research is a thorough evaluation and comparison of the
performance of several different mixed integer and LCP algorithms for the special cases of
the ELCP that arise in specific applications involving discrete event systems and hybrid
systems. As our equivalence proof was constructive, we have obtained explicit LCP and
MILFP expressions for a given ELCP. The resulting LCP or MILFP reformulation is not
necessarily the most efficient one (i.e., with a minimal number of variables or equations).
This causes no problems if we only want to prove the conceptual equivalence, which was the
intention of this paper. However, in case we aim at using the equivalent LCP or MILFP to
solve the original ELCP in a computationally very efficient way, then it might be useful to look
for techniques to reduce the LCP or MILFP by removing redundant variables or inequalities
before actually solving the LCP or MILFP. This will also be a topic for future research.
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[44] R.H. Tütüncü and M.J. Todd. Reducing horizontal linear complementarity problems.
Linear Algebra and Its Applications, 223/224:717–729, July 1995.

[45] A.J. van der Schaft and J.M. Schumacher. Hybrid systems modelling and complemen-
tarity problems. In Proceedings of the European Control Conference (ECC’97), Brussels,
Belgium, paper 868, July 1997.

[46] S.J. Wright. An infeasible-interior-point algorithm for linear complementarity problems.
Mathematical Programming, 67(1):29–51, October 1994.

[47] Y. Ye. A fully polynomial-time approximation algorithm for computing a stationary point
of the general linear complementarity problem. Mathematics of Operations Research,
18(2):334–345, May 1993.

10



Appendix: Example

Consider the following ELCP:

Find x ∈ R
3 such that

x1 ≥ 1 (19)

−x1 ≥ −2 (20)

x2 ≥ 1 (21)

−x2 + 4x3 ≥ −1 (22)

−x1 − 2x2 − 2x3 ≥ −13 (23)

subject to

surp(1, x) surp(2, x) surp(5, x) + surp(2, x) surp(3, x) + surp(4, x) = 0 . (24)

The feasible set F of this ELCP is presented in Figure 1 and corresponds to the polyhedron
with the following vertices:

e1 =





1
1
0



, e2 =





2
1
0



, e3 =





1
1
5



, e4 =





1
5
1



, e5 =





2
1
4.5



, e6 =





2
4.6
0.9



.

The faces of the polyhedron F correspond to the boundary hyperplanes of the inequalities
(19)–(23). The solutions of the ELCP are then the points of the polyhedron F that satisfy
the complementarity condition (24). It is easy to verify that (24) will be satisfied if

• the 1st, 3rd and 4th surplus variable are all 0 (which corresponds to the intersection of
the boundary hyperplanes of (19), (21) and (22), i.e., the point e1),

• the 2nd and the 4th surplus variable are all 0 (which corresponds to the intersection of
the boundary hyperplanes of (20) and (22), i.e., the line e2e6).

The other combinations (1-2-4, 2-3-4, 5-2-4, and 5-3-4) are either implied by the combinations
given above, or do not lead to a feasible solution since the corresponding hyperplanes intersect
outside the feasible set. So the solution set of the ELCP is given by

S = {e1} ∪ e2e6 =











1
1
0










∪






λ





2
1
0



+ (1− λ)





2
4.6
0.9





∣
∣
∣
∣
∣
λ ∈ [0, 1]






.

In Figure 1 the solution set S of the ELCP (19)–(24) is indicated by the thick dot and the
thick line.

The feasible set of the ELCP is bounded so that we can apply Theorem 3.2. For the
ELCP (19)–(24) we have

A =









1 0 0
−1 0 0
0 1 0
0 −1 4

−1 −2 −2









, c =









1
−2
1

−1
−13









, φ1 = {1, 2, 5}, φ2 = {2, 3} and φ3 = {4} .
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Figure 1: The feasible set F with vertices e1, e2, . . . e6 of the ELCP (19)–(24) and the solution
set {e1} ∪ e2e6 of the ELCP (indicated by the thick dot and the thick line).

Furthermore, (17) yields the following upper bounds duppjj for (Ax − c)j over the feasible set

of the ELCP2: {duppjj }j=1,...,5 = 1, 1, 4, 20, 10. So we can rewrite the ELCP as the MILFP
(12)–(14) with

Dupp =









1 0 0 0 0
0 1 0 0 0
0 0 4 0 0
0 0 0 20 0
0 0 0 0 10









, S =





1 1 0 0 1
0 1 1 0 0
0 0 0 1 0



, t =





2
1
0



 ,

and with x ∈ R
3, δ ∈ {0, 1}5. If introduce the dummy objective function x1 + x2 + x3 +

δ1 + δ2 + δ3 + δ4 + δ5, we get a mixed integer linear programming problem. If we use a
branch-and-bound algorithm to solve this problem, we obtain the following solution:

xMILFP =





1
1
0



, δMILFP =









0
1
0
0
1









.

Note that xMILFP = e1 belongs to S.

2Using formula (18) for the upper bound xupp = [ 2 5 5 ]T and the lower bound xlow = [ 1 1 0 ]T yields the
same result.
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Finally, we can rewrite the MILFP as an LCP (15)–(16) with w, z ∈ R
24. We have

M =
[
M1 024×13

]
with

M1 =
















































−1 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 −1 0 0
0 0 0 0 0 −1 0 0 1 0 0
0 0 0 0 0 0 1 0 0 −1 0
0 0 0 0 0 0 −1 4 0 1 −4
0 0 0 0 0 −1 −2 −2 1 2 2
1 0 0 0 0 −1 0 0 1 0 0
0 1 0 0 0 1 0 0 −1 0 0
0 0 4 0 0 0 −1 0 0 1 0
0 0 0 20 0 0 1 −4 0 −1 4
0 0 0 0 10 1 2 2 −1 −2 −2

−1 −1 0 0 −1 0 0 0 0 0 0
0 −1 −1 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0
















































and q =
















































1
1
1
1
1
0
0
0
0
0
0

−1
2

−1
1
13
1

−2
1

−1
−13

2
1
0
















































.

If we solve this LCP using a quadratic programming approach3 [6], we get

δLCP =









0
1
0
0
1









, x+LCP =





1
1
0



, x−LCP =





0
0
0



 ,

and thus

xLCP = x+LCP − x−LCP =





1
1
0



 ,

which gives the same solution as the branch-and-bound algorithm for the MILFP. If we use
the ELCP algorithm of [9] to solve the LCP, we obtain — after extraction of xLCP — the
complete solution set S of the original ELCP (19)–(24).

3Note that, e.g., Lemke’s method is not guaranteed to give a solution of this LCP since the matrix M

is indefinite, and since there exist degenerate solutions of the LCP (i.e., solutions with wi = zi = 0 for
some indices i) (see [6] for more information). If we consider the quadratic programming problem (QP)
minz∈R24{zT (Mz + q) = 0, z ≥ 0,Mz + q ≥ 0}, then it is easy to verify that the optimal QP solution zQP

yields a solution of the LCP if the value of the objective function in zQP is equal to 0.
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